SPECIFICATION

Item no.: T60404-N4646-X956

K-no.: 25927 300 mA Differential Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit

(electronic circuit)

Date: 20.10.2015

Customer: Standard type Customers Part no.:

4 Page 1 of

Description

- Closed loop (compensation) Current Sensor with magnetic field probe
- Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- Excellent accuracy
- Very low offset current
- Very low temperature dependency and offset current drift
- Very low hysteresis of offset current
- Short response time
- Wide frequency bandwidth
- Compact design
- Reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptible Power Supplies (UPS)

Electrical data - Ratings

I _{PN}	Primary rated current, r.m.s	50	Α
$I_{\Delta N}$	Differential rated current, r.m.s	0.3	Α
V_{out}	Output voltage @ I _{∆N}	$V_{Ref} \pm (0.74*I_{\Delta P}/I_{\Delta N})$	V
$V_{out}(0)^*$	Output voltage @ I _P =0, T _A =25°C	V _{Ref} ± 0.025	V
V _{out} (Error)	in case of error (current sensor) V _{out} < 0,5V is set	<0.5	V
V_{Ref}	Internal Reference voltage	2.5 ± 0.005	V
	External Reference voltage range	1.4 3.5	V
V _{Ref} (test current)**)	Reference voltage (external)	00.1	V
V _{out} (Teststrom)**)	Ausgangsspannung @ V _{Ref} = 00.1V	$V_{out}(0) + 0.250 \pm 0.060$) V
K_N	Turns ratio	(1): 1: 1000	
V _{out} (Teststrom)**)	Reference voltage (external) Ausgangsspannung @ V _{Ref} = 00.1V	00.1 V _{out} (0) + 0.250± 0.060	V V) V

^{*)} With switching on and after "test current" the current sensor is degaussed by an internal AC-current for about 110ms. Meantime the output is set to $V_{out} < 0.5V$.

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
$I_{\Delta P, max}$	Max. measuring range (differencial current)	±0.85			
Χ	Accuracy @ I _{ΔN} , T _A = 25°C			1.5	%
ϵ_{L}	Linearity			1	%
V_{out} - V_{Ref}	Offset voltage @ I _P =0, T _A = 25°C			±25	mV
Δ V _o / Δ T	Temperature drift of Vout @ IP=0, TA= -4085°C		0.1		mV/°C
t _r	Response time @ 90% von $I_{\Delta N}$		35		μs
f	Frequency bandwidth	DC10			kHz

General data

		min.	typ.	max.	Unit
T_A	Ambient operating temperature	-40		+85	°C
T_S	Ambient storage temperature	-40		+85	°C
m	Mass		42		g
V_{C}	Supply voltage	4.75	5	5.25	V
Ic	Current consumption		16		mA

Date	Name	Issue	Amendment					
20.10.15	DJ	81	Typo on page	e 4: X and Xges. Val	ues adapted on outp	ut voltage on Page 1	(0.625 → 0.74). La _l	oidary change.
Hrsg.	: KB-E		arb: DJ		KB-PM: KRe.			freig.: Berton

^{**)} Due to external $V_{Ref} = 0...0.1V$ an internal test current is generated.

K-no.:

SPECIFICATION

Item no.: T60404-N4646-X956

25927

300 mA Differential Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Date: 20.10.2015

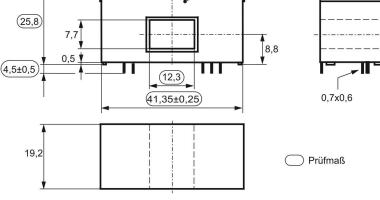
Customer: Standard type Customers Part no .:

2 Page 4 of Connections:

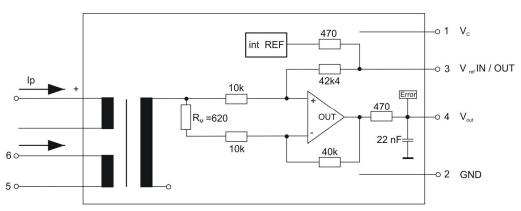
Mechanical outline (mm): General tolerances DIN ISO 2768-c 41,75±0,25 Toleranz der Stiftabstände 2 3 4 ±0,2mm 1,57 DC = Date Code F = Factory 8,89 2x2,54 2,54 Beschriftung (27,94)

0,6*0,7 mm

0,8 mm


1...4:

5...6:


ZAN 4646-X956

DC

Marking:

Schematic diagram

Applicable documents:

Current direction: A positive output current appears at point Vout, by primary current in direction of the arrow.

Housing and bobbin material UL-listed: Flammability class 94V-0.

Enclosures according to IEC529: IP50.

Short clearance and creepage distances due to metallic shielding.

Temperature of the primary conductor should not exceed 100°C.

To avoid shortcuts between Pin 6 and shielding make sure a minimum distance of 1mm between current sensor and pc-board

Hrsg.: KB-E	Bearb: DJ	KB-PM: KRe.		freig.: Berton
editor	designer	check		released

VACUUMSCHMELZE

SPECIFICATION

Item no.: T60404-N4646-X956

Date:

K-no.: 25927 300 mA Differential Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit

20.10.2015

(electronic circuit)

Customer: Standard type Customers Part no.: Page 3 of 4

Electrical Data

		min.	turn	max.	Unit
V_{Ctot}	Maximum supply voltage (without function)		typ.	6	V
I _C	Supply Current with primary current	16m	A +I _p *K _N +V _o	•	mA
I _{out,SC}	Short circuit output current	10111	±20	uvitL	mA
R _{P1.P2}	Primary resistance @ T _A =25°C		0.17		mΩ
R _{P3}	Primary resistance @ T _A =25°C		1.14		mΩ
	•		1.14	00	
Rs	Secondary coil resistance @ T _A =85°C		470	80	Ω
R _{i,Ref}	Internal resistance of Reference input		470		Ω
R_{i} , (V_{out})	Output resistance of V _{out}		470		Ω
R_L	External recommended resistance of Vout		100		kΩ
C _L	External recommended capacitance of Vout		no limit		pF
$\Delta X_{Ti}/\Delta T$	Temperature drift of X @ T _A = -40 +85 °C			400	ppm/K
$\Delta V_{Ref}/\Delta T$	Temperature drift of V _{Ref} @ T _A = -40 +85 °C		5	50	ppm/K
$\Delta V_0 = \Delta (V_{out} - V_{Ref})$	Sum of any offset drift including:		16	25	mV
V_{0t}	Longtermdrift of V ₀		12		mV
V _{0T}	Temperature drift von V ₀ @ T _A = -40+85°C		10		mV
$\Delta V_0/\Delta V_C$	Supply voltage rejection ratio		7.5	1	mV/V
V _{0H}	Hystereses of Vout @ I _P =0 (after an overload of 1000 x	I _{PN})	75	175	mV
V _{0H, Demag}	Hystereses after Degaussing			12	mV
V _{OSS}	Offsetripple (without external filter)			120	mV
V _{OSS}	Offsetripple (with 20 kHz- filter firdt order)		35	50	mV
V _{OSS}	Offsetripple (with 1.6 kHz- filter first order)		10	15	mV
	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hours			3g	

<u>Inspection</u> (Measurement after temperature balance of the samples at room temperature, SC = significant characteristic, V = 100% test, AQL 1/S4 = accepted quality level)

$V_{out}-V_{Ref}(I_{\Delta P})$ (V)	M3011/6:	Output voltage vs. reference (I _{∆P} =0.4A, 40-80Hz)	0.972 1.002	V (SC)
V_{out} - V_{Ref} (I_P =0) (V)	M3226:	Offset voltage	± 0.025	V
V _{out} (test current) (V)		Output voltage @ V _{Ref} = 0V	0.250± 0.060	V

SPECIFICATION

Item no.: T60404-N4646-X956

K-no.: 25927

300 mA Differential Current Sensor for 5V- Supply Voltage

For electronic current measurement:

DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit

Date: 20.10.2015

(electronic circuit)

Customer: Standard type Customers Part no.: Page 4 of 4

Explanation of sever al of the terms used in the tablets (in alphabetical order)

t_r: Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_{\Delta P} = 0.9 \cdot I_{\Delta N}$ between a rectangular current and the output voltage V_{OUt} ($I_{\Delta P}$)

 $\Delta t \; (I_{\Delta Pmax})$: Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between $I_{\Delta Pmax}$ and the output voltage $V_{out}(I_{\Delta Pmax})$ with a primary current rise of $di_{\Delta P}/dt \ge 100 \; A/\mu s$.

 U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e $U_{PD} = \sqrt{2} * V_e / 1,5$

V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * U_{PD} required for partial discharge test in IEC 61800-5-1

 $V_{vor} = 1,875 * U_{PD} / \sqrt{2}$

 V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1

Vwork Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation

 V_0 : Offset voltage between V_{out} and the rated reference voltage of $V_{ref} = 2,5V$.

 $V_0 = V_{out}(0) - 2.5V$

 V_{0H} : Zero variation of V_0 after overloading with a DC of tenfold the rated value

V_{0t}: Long term drift of V_o after 100 temperature cycles in the range -40 bis 85 °C.

X: Permissible measurement error in the final inspection at RT, defined by

$$X = 100 \cdot \left| \frac{V_{out}(I_{\Delta N}) - V_{out}(0)}{0.74V} - 1 \right| \%$$

X_{ges}(I_{DN}): Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN}

$$X_{\rm ges} = 100 \cdot \left| \frac{V_{\rm out} \left(I_{\Delta N} \right) - 2,5V}{0,74V} - 1 \right| \quad \% \quad \text{or} \quad X_{\rm ges} = 100 \cdot \left| \frac{V_{\rm out} \left(I_{\Delta N} \right) - V_{\it ref}}{0,74V} - 1 \right| \quad \%$$

 $\varepsilon_{\rm L}\!\!: \qquad \qquad \text{Linearity fault defined by} \qquad \varepsilon_{\rm L}\!\!=\!100 \cdot \left| \frac{I_{\Delta\!P}}{I_{\Delta\!N}} - \frac{V_{out}(I_{\Delta\!P}) - V_{out}(0)}{V_{out}(I_{\Delta\!N}) - V_{out}(0)} \right| \%$

Hrsg.: KB-E Bearb: DJ KB-PM: KRe. check freig.: Berton released