VACUUMSCHMELZE # **SPECIFICATION** Item no.: T60404-N4646-X764 Date: K-no.: 26078 50 A Current Sensor for 5V- Supply Voltage For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) Customer: Standard type Customers Part no.: Page 1 of 4 02.02.2017 # **Description** - Closed loop (compensation) Current Sensor with magnetic field probe - · Printed circuit board mounting - Casing and materials UL-listed # **Characteristics** - · Excellent accuracy - Very low offset current - Very low temperature dependency and offset current drift - · Very low hysteresis of offset current - · Short response time - · Wide frequency bandwidth - Compact design - · Reduced offset ripple # **Applications** Mainly used for stationary operation in industrial applications: - AC variable speed drives and servo motor drives - Static converters for DC motor drives - · Battery supplied applications - Switched Mode Power Supplies (SMPS) - Power Supplies for welding applications - Uninterruptible Power Supplies (UPS) # Electrical data - Ratings | I _{PN} | Primary nominal r.m.s. current | 50 | Α | |-----------------|--|----------------------------------|---| | V_{out} | Output voltage @ I _P | $V_{Ref} \pm (0.625*I_P/I_{PN})$ | V | | V_{out} | Output voltage @ I _P =0, T _A =25°C | $V_{Ref} \pm 0.000725$ | V | | V_{Ref} | External Reference voltage range | 04 | V | | | Internal Reference voltage | 2.5 ±0.005 | V | | K _N | Turns ratio | 14 : 1400 | | # Accuracy - Dynamic performance data | | | mın. | typ. | max. | Unit | |-------------------------------------|---|-------|------|--------|--------| | I _{P,max} | Max. measuring range | ±150 | | | | | X | Accuracy @ I _{PN} , T _A = 25°C | | | 0.7 | % | | EL | Linearity | | | 0.1 | % | | V _{out} - V _{Ref} | Offset voltage @ I _P =0, T _A = 25°C | | | ±0.725 | mV | | $\Delta V_o / V_{Ref} / \Delta T$ | Temperature drift of V_{out} @ $I_P=0$, $V_{Ref}=2.5V$, $T_A=-40$ | 085°C | 0.7 | 10 | ppm/°C | | t _r | Response time @ 90% von I _{PN} | | 300 | | ns | | ∆t (I _{P,max}) | Delay time at di/dt = 100 A/μs | | 200 | | ns | | f | Frequency bandwidth | DC200 | | | kHz | # General data | | | min. | typ. | max. | Unit | |----------------|--|------|------|------|------| | T _A | Ambient operating temperature | -40 | | +85 | °C | | Ts | Ambient storage temperature (acc to M3101) | -40 | | +105 | °C | | m | Mass | | 12 | | g | | V_{C} | Supply voltage | 4.75 | 5 | 5.25 | V | | Ic | Current consumption | | 15 | | mA | Constructed and manufactored and tested in accordance with EN 61800-5-1 (Pin 1 – 4 to Pin 5 – 12) Reinforced insulation, Insulation material group 1, Pollution degree 2 | S _{clear} | Clearance (component without solder pad) | 9.6 | | mm | |--------------------|--|------------|------|----| | Screep | Creepage (component without solder pad) | 10.6 | | mm | | V_{sys} | System voltage overvoltage category 3 | RMS | 600 | V | | V_{work} | Working voltage | RMS | 1060 | V | | Upp | Rated discharge voltage | neak value | 1320 | V | Note: "According UL 508: Max. potential difference = 600 V_A | Date | Name | Issue | Amendment | | | | | | |-----------|------|-------|---------------|---|----------------------|-------------------|--|----------------------| | 02.02.17 | DJ | 83 | Page A1, M-s | heet M3101 added (| (storage temperature | e). Minor change. | | | | 16.11.16 | DJ | 83 | Typo: Turns r | /po: Turns ratio K _N changed from 14: 2000 to 14: 1400. Minor change | | | | | | Hrsg.: MC | C-PD | | arb: DJ | | MC-PM: Ga. | | | freig.: BEF released | # K-no.: 26078 Customer: Standard type Mechanical outline (mm): [13,7] # **SPECIFICATION** T60404-N4646-X764 Item no.: 50 A Current Sensor for 5V- Supply Voltage For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) Date: 02.02.2017 2 Customers Part no.: General tolerances DIN ISO 2768-c Page of Connections: > 1...4: 0,46*0,46 mm 5..12: Ø 1 mm 4 Marking: **VAT** UL-sign 4646-X764-83 DC 12,7 3x1,905 10,16 22.2 Marking test dimension c**PA**Sus 24 0,5 +0,1 -0 3,5±0,5 Tolerances grid distance ±0,25mm DC= Date Code F = Factory # Schematic diagram ### Possibilities of wiring $(@ T_A = 85^{\circ}C)$ | primary
windings | primary
RMS | current maximal | output voltage
RMS | turns ratio | primary resistance | wiring | |---------------------|--------------------|------------------------|-----------------------|-------------|---------------------|--------| | N₽ | I _P [A] | Î _{P,max} [A] | $V_{out}(I_P)[V]$ | K_N | R_P [m Ω] | | | 1 | 50 | ±150 | 2.5±0.625 | 1:1400 | 0.25 | 9 12 | | 2 | 12 | ±75 | 2.5±0.300 | 2:1400 | 1.0 | 9 12 | | 4 | 8 | ±37,5 | 2.5±0.300 | 4:1400 | 4 | 9 12 | | Hrsg.: MC-PD | Bearb: DJ | MC-PM: Ga. | | freig.: BEF | |--------------|-----------|------------|--|-------------| | editor | designer | check | | released | # VACUUMSCHMELZE # **SPECIFICATION** Item no.: T60404-N4646-X764 Date: 02.02.2017 K-no.: 26078 50 A Current Sensor for 5V- Supply Voltage For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) Customer: Standard type Customers Part no.: Page 3 of 4 # **Electrical Data** | <u> </u> | | | | | | |---|---|---------|-----------------------|-------------------------------|-----------| | | <u>I</u> | min. | typ. | max. | Unit | | V _{Ctot} | Maximum supply voltage (without function) | | | 7 | V | | Ic | Supply Current with primary current | 15m/ | $4 + I_p * K_N + V_o$ | _{ut} /R _L | mA | | I _{out,SC} | Short circuit output current | | ±20 | | mA | | R_P | Resistance / primary winding @ T _A =25°C | | 1 | | mΩ | | Rs | Secondary coil resistance @ T _A =85°C | | | 67 | Ω | | $R_{i,Ref}$ | Internal resistance of Reference input | | 670 | | Ω | | R_{i} ,(V_{out}) | Output resistance of Vout | | | 1 | Ω | | R_L | External recommended resistance of Vout | 1 | | | $k\Omega$ | | C_L | External recommended capacitance of Vout | | | 500 | pF | | $\Delta X_{Ti}/\Delta T$ | Temperature drift of X @ T _A = -40 +85 °C | | | 40 | ppm/K | | $\Delta V_0 = \Delta (V_{out} - V_{Ref})$ | Sum of any offset drift including: | | 2 | 6 | mV | | V_{0t} | Longtermdrift of V ₀ | | 1 | | mV | | V_{0T} | Temperature drift von $V_0 @ T_A = -40 +85$ °C | | 1 | | mV | | V_{0H} | Hysteresis of V_{out} @ I_{P} =0 (after an overload of 10 x I_{PN}) | | | 1 | mV | | $\Delta V_0/\Delta V_C$ | Supply voltage rejection ratio | | | 1 | mV/V | | V _{oss} | Offsetripple (with 1 MHz- filter first order) | | | 35 | mV | | V _{OSS} | Offsetripple (with 100 kHz- filter firdt order) | | 2 | 5 | mV | | V _{oss} | Offsetripple (with 20 kHz- filter first order) | | 0.6 | 1 | mV | | Ck | Maximum possible coupling capacity (primary – second | ondary) | 5 | 10 | pF | | | Mechanical stress according to M3209/3
Settings: 10 – 2000 Hz, 1 min/Octave, 2 hours | | | 30g | | Inspection (Measurement after temperature balance of the samples at room temperature; SC = significant characteristic) | V _{out} (SC) | (V) M | 3011/6: | Output voltage vs. external reference (I _P =40As, 40-80Hz) | 625±0,7% | mV | |---------------------------------------|-----------|---------|---|----------|----| | Vout-V _{Ref} (I _P | =0) (V) M | 3226: | Offset voltage | ± 0.725 | mV | | V_d | (V) M | 3014: | Test voltage, rms, 1 s
pin 1 – 4 vs. pin 5 – 12 | 1.8 | kV | | Ve | (AQL 1 | /S4) | Partial discharge voltage acc.M3024 (RMS) | 1400 | V | | | | | with V _{vor} (RMS) | 1750 | V | # Type Testing (Pin 1 - 4 to Pin 5 - 12) | Vw | HV transient test according to M3064 (1,2 μs / 50 μs-wa | ve form) | 8 | kV | |----------------|---|----------|------|----| | V_d | Testing voltage to M3014 | (5 s) | 3.6 | kV | | V _e | Partial discharge voltage acc.M3024 (RMS) | | 1400 | V | | | with V _{vor} (RMS) | | 1750 | V | # **Applicable documents** Operating temperature of the current sensor and the primary conductor must not exceed 105° C. Current direction: A positive output current appears at point I_s, by primary current in direction of the arrow. Housing and bobbin material UL-listed: Flammability class 94V-0. Enclosures according to IEC529: IP50. Further standards UL 508 file E317483, category NMTR2 / N | Hrsg.: MC-PD | Bearb: DJ | MC-PM: Ga. | | freig.: BEF | |--------------|-----------|------------|--|-------------| | editor | designer | check | | released | # **SPECIFICATION** Item no.: T60404-N4646-X764 K-no.: 26078 50 A Current Sensor for 5V- Supply Voltage For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit Date: 02.02.2017 Customer: Standard type Customers Part no.: Page 4 of 4 # Explanation of several of the terms used in the tablets (in alphabetical order) (electronic circuit) t_r: Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.9 \cdot I_{PN}$ between a rectangular current and the output voltage V_{OUt} (I_p) Δt (I_{Pmax}): Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between I_{Pmax} and the output voltage $V_{out}(I_{Pmax})$ with a primary current rise of dip/dt \geq 100 A/ μ s. V_0 : Offset voltage between V_{out} and the rated reference voltage of $V_{ref}=2,5V.$ $V_o=V_{out}(0)\,$ - 2,5V U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e $U_{PD} = \sqrt{2} \cdot V_e / 1.5$ V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * U_{PD} required for partial discharge test in IEC 61800-5-1 $V_{vor} = 1.875 * U_{PD} / \sqrt{2}$ V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1 Vwork Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation V_{0H}: Zero variation of V₀ after overloading with a DC of tenfold the rated value V_{0t}: Long term drift of V₀ after 100 temperature cycles in the range -40 bis 85 °C. X: Permissible measurement error in the final inspection at RT, defined by $X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0.625 V} - 1 \right| \%$ X_{ges}(I_{PN}): Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN} $\mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - 2,5V}{0,625 \text{V}} - 1 \right| \quad \% \quad \text{or} \quad \mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - V_{\textit{ref}}}{0,625 \text{V}} - 1 \right| \quad \%$ $\varepsilon_{\rm L}\!\!: \qquad \qquad \text{Linearity fault defined by} \qquad \varepsilon_{\rm L}\!\!=\!100 \cdot \left| \frac{I_{\rm P}}{I_{\rm PN}} - \frac{V_{\scriptscriptstyle out}(I_{\scriptscriptstyle P}) - V_{\scriptscriptstyle out}(0)}{V_{\scriptscriptstyle out}(I_{\scriptscriptstyle PN}) - V_{\scriptscriptstyle out}(0)} \right| \, \%$ | VACUUMSCHMELZE | SPECIF | PECIFICATION Item no.: | | | T60404-N | 4646-X764 | |-----------------|--|------------------------|----------------|------|----------|-------------| | K-no.: 26078 | For electronic current measurement: DC, AC, pulsed, mixed, with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) | | | | Date: | 02.02.2017 | | Customer: Stand | dard type | | Customers Part | no.: | Page : | 5 of 4 | | | | | | | | | | Hrsg.: MC-PD | Bearb: DJ
designer | | MC-PM: Ga. | | | freig.: BEF |