SPECIFICATION T60404-N4646-X161 Item no.: K-No.: 25256 # 50 A Current Sensor Module for 5V-Spply Voltage For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) Date: 05.11.2012 Customer: Standard type Customers Part no.: 2 Page 1 of # Description - Closed loop (compensation) Current Sensor with magnetic field probe - Printed circuit board mounting - Casing and materials UL-listed #### Characteristics - Excellent accuracy - Very low offset current - Very low temperature dependency and offset current drift - Very low hysteresis of offset current - short response time - Wide frequency bandwidth - Compact design - Reduced offset ripple # **Applications** Mainly used for stationary operation in industrial applications: - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Battery supplied applications min. typ. max. Unit - Switched Mode Power Supplies (SMPS) - Power Supplies for welding applications - Uninterruptible Power Supplies (UPS) | Electrical data | a – Ratings | min. | typ. | max. | Einheit | |-----------------|--|------|----------|---|---------| | I _{PN} | Primary nominal r.m.s. current | | 50 | | Α | | V_{out} | Output voltage @ I _P | | V_{Re} | $_{\rm ef}$ ± (0.625* $I_{\rm P}/I_{\rm F}$ | PN) V | | V_{out} | Output voltage @ I _P =0, T _A =25 ℃ | | V_{Re} | ef ± 0.0025 | V | | V_Ref | Reference voltage external | 0 | | 4 | V | | V_{Ref} | Reference voltage internal | | 2.5 | ± 0.005 | V | | ΚN | Turns ratio | | 1: | 1000 | | # Accuracy - Dynamic performance data | | | min. | typ. | max. | Unit | |--------------------------------|---|-------|------|------|-------| | I _{P,max} | Max. measuring range | ±172 | | | | | Χ | Accuracy @ I _{PN} , T _A = 25 ℃ | | | 1 | % | | ϵ_{L} | Linearity | | | 0.1 | % | | V_{out} -2,5 V | Offset voltage @ I _P =0, T _A = 25 ℃ | | | ±2,5 | mV | | $\Delta V_{out}/2,5V/\Delta T$ | Temperature drift of V _{out} @ I _P =0, T _A = -4085 ℃ | | 3 | 10 | ppm/K | | t _r | Response time @ 80% von I _{PN} | | 1 | | μs | | ∆t (I _{P,max}) | Delay time at di/dt = 100 A/μs | | 1 | | μs | | f | Frequency bandwidth | DC100 | | | kHz | #### **General data** editor | | | | | ٠,١,٠ | | • | | | | |--------------------|--|-------------------------------|------------------|----------|------|------------|--|--|--| | T _A | Ambient operating | temperature | -40 | | +85 | ℃ | | | | | Ts | Ambient storage temperature | | | | +85 | $^{\circ}$ | | | | | m | Mass | | | 18 | | g | | | | | Vc | Supply voltage | | 4.75 | 5 | 5.25 | V | | | | | I _{C0} | Current consumpti | ion | | 16 | | mA | | | | | | Constructed and manufactored and tested in accordance with EN 61800-5-1 (Primary to Secondary) | | | | | | | | | | | Reinforced insulat | ion, Insulation material grou | p 1, Pollution o | degree 2 | | | | | | | S _{clear} | Clearance (compor | nent without solder pad) | 12 | | | mm | | | | | Screep | Creepage (compon | ent without solder pad) | 12 | | | mm | | | | | V_{sys} | System voltage | overvoltage category 3 | RMS | | 600 | V | | | | | V_{work} | Working voltage | (tabel 7 acc. to EN61800-5 | 5-1) | | | | | | | | | | overvoltage category 2 | RMS | | 1000 | V | | | | | UPD | Rated discharge v | oltage | peak vali | ue | 1225 | V | | | | # Maximal continuous and peak currents at defined temperatures | T _A | 50 ℃ | 70 ℃ | 85 °C | 105 ℃ | |----------------|-------|-------|-------|-------| | I _P | 150 A | 110 A | 100 A | 50 A | | $I_{P,max}$ | 172 A | 172 A | 172 A | 172 A | designer | Date | Name | Issue | Amendment | | | | |-----------|------|-------|----------------|---------------|----------------|------------------------| | 05.11.12 | Le | 81 | Insignificant: | Date changed. | | | | 13.02.09 | Le | 81 | Insignificant: | Date changed. | | | | Hrsg.: KB | B-E | | arb: Le | | KB-PM IA: KRe. | freig.: HS
released | check # **SPECIFICATION** Item no.: T60404-N4646-X161 K-No.: 25256 # 50 A Current Sensor Module for 5V-Spply Voltage For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) Date: 05.11.2012 Customer: Standard type Customers Part no.: 2 Connections: Marking: of $1..4 = 0.7 \times 0.7 \text{mm}$ DC Page 2 Mechanical outline (mm): General tolerances DIN ISO 2768-c Toleranz der Stiftabstände ±0,2mm (Tolerances grid distance) DC = Date Code F = Factory *= vorläufig (preliminary) **7AN** 4646X160 # Schematic diagram Additional information is obtainable on request. Temperature of the primary conductor should not exceed 110 ℃. This specification is no declaration of warranty acc. BGB §443 dar. | Hrsg.: KB-E | Bearb: Le | | KB-PM IA: KRe. | freig.: HS | |-------------|-----------|--|----------------|------------| | editor | designer | | check | released | # **Additional Information** Item No.: T60404-N4646-X161 K-No.: 25256 50 A Current Sensor Module for 5V-Supply Voltage For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit) Date: 05.11.2012 | Customer: Customers Part No.: Page 1 | 1 | ot | 2 | |--------------------------------------|---|----|---| |--------------------------------------|---|----|---| | Electrical | Data | |-------------------|------| |-------------------|------| | | | min. | typ. | max. | Unit | |---|---|-----------------|------------------------|-------------------------------|-----------| | V _{Ctot} | Maximum supply voltage (without function) | | | 6 | V | | Ic | Supply Current with primary current | 16m | $1A + I_p * K_N + V_o$ | _{ut} /R _L | mA | | I _{out,SC} | Short circuit output current | | ±20 | | mA | | R_S | Secondary coil resistance @ T _A =85°C | | | 14 | Ω | | R _{i,Ref} | Internal resistance of Reference input | | 670 | | Ω | | | | | | | | | R_{i} ,(V_{out}) | Output resistance of Vout | | | 1 | Ω | | R_L | External recommended resistance of Vout | 1 | | | $k\Omega$ | | C_L | External recommended capacitance of Vout | | | 500 | pF | | $\Delta X_{Ti}/\Delta T$ | Temperature drift of X @ T _A = -40 +85 ℃ | | | 40 | ppm/K | | $\Delta V_0 = \Delta (V_{out} - V_{Ref})$ | Sum of any offset drift including: | | 2 | 6 | mV | | V_{0t} | Long term drift of V ₀ | | 1 | | mV | | V_{0T} | Temperature drift von V ₀ @ T _A = -40+85 ℃ | | 1 | | mV | | V_{0H} | Hystereses of V_{out} @ $I_P=0$ (after an overload of 10 x I_F | _{PN}) | | 1.5 | mV | | $\Delta V_0/\Delta V_C$ | Supply voltage rejection ratio | | | 1 | mV/V | | V_{oss} | Offsetripple (with 1 MHz- filter first order) | | | 25 | mV | | V _{oss} | Offsetripple (with 100 kHz- filter firdt order) | | 2.5 | 6 | mV | | V_{oss} | Offsetripple (with 20 kHz- filter first order) | | 0.7 | 1.5 | mV | | Ck | Maximum possible coupling capacity (primary – se
Mechanical stress according to M3209/3
Settings: 10 – 2000 Hz, 1 min/Decade, 2 hours | condary) | 6 | | pF | # **Inspection** (Measurement after temperature balance of the samples at room temperature) | Vout (IP=IPI | N) (V) M3011/6: | Output voltage vs. internal reference (I _P =50A, 40-80Hz) | 625±1% | mV | |-----------------------|--------------------------------|--|----------|----| | V_{out} – V_{Ref} | (I _P =0) (V) M3226: | Offset voltage | ± 0.0025 | V | | V_d | (V) M3014: | Test voltage, RMS, 1 s
pin 1-4 to inner hole | 1.8 | kV | | Ve | (AQL 1/S4) | Partial discharge voltage acc.M3024 (RMS) | 1300 | V | | | | with V_{vor} (RMS) | 1625 | V | # **Type Testing** (Pin 1-4 to inner hole) Designed according standard EN 50178 with insulation material group 1 | | group | | | | |--|---|-------|------|----| | V _W HV transient test according to M3064 (1,2 μs / 50 μs-wave form) | | | | kV | | V_d | Testing voltage to M3014 | (5 s) | 3.6 | kV | | Ve | Partial discharge voltage acc.M3024 (RMS) | | 1300 | V | | | with V (RMS) | | 1625 | V | #### **Applicable documents** Current direction: A positive output current appears at point I_S , by primary current in direction of the arrow. Housing and bobbin material UL-listed: Flammability class 94V-0. Enclosures according to IEC529: IP50. | Datum | Name | Index | Änderung | | | | | | |-----------|---|-------|---------------|---|--|----------------|--|------------------------| | 05.11.12 | Le | 81 | Typo: Type to | o: Type testing Vd, Testing voltage changed from M3924 into M3014. Lapidary change. | | | | | | 13.02.09 | 22.09 Le 81 Write error. Offsetripple to high, values reduced. Insignificant. | | | | | | | | | 1/0 | (a) - 10 | | | | | | | | | Hrsg.: KB | 5- L | _ | arb: Le | | | KB-PM IA: KRe. | | freig.: HS
released | # **Additional Information** Item No.: T60404-N4646-X161 K-No.: 25256 50 A Current Sensor Module for 5V-Supply Voltage For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit) Date: 05.11.2012 2 of 2 Customer: Customers Part No.: Page Explanation of several of the terms used in the tablets (in alphabetical order) tr: Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.8^{\circ}$ I_{PN} between a rectangular current and the output voltage V_{OUt} (I_D) Δt (I_{Pmax}): Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between I_{Pmax} and the output voltage $V_{out}(I_{Pmax})$ with a primary current rise of dip/dt \geq 100 A/ μ s. U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e U_{PD} = $\sqrt{2} \times V_e / 1.5$ V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1.875 * U_{PD} required for partial discharge test in IEC 61800-5-1 $V_{vor} = 1.875 * U_{PD} / \sqrt{2}$ V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1 Vwork Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation V_0 : Offset voltage between V_{out} and the rated reference voltage of $V_{ref} = 2.5V$. $V_0 = V_{out}(0) - 2.5V$ V_{0H} : Zero variation of V_0 after overloading with a DC of tenfold the rated value V_{0t} : Long term drift of V_o after 100 temperature cycles in the range -40 bis 85 °C. X: Permissible measurement error in the final inspection at RT, defined by $X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0.625V} - 1 \right| \%$ X_{ges}(I_{PN}): Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN} $X_{ges} = 100 \cdot \left| \frac{V_{out} (I_{PN}) - 2,5V}{0,625V} - 1 \right| \% \text{ or } X_{ges} = 100 \cdot \left| \frac{V_{out} (I_{PN}) - V_{ref}}{0,625V} - 1 \right| \%$ $\varepsilon_{\rm L}: \qquad \qquad \text{Linearity fault defined by} \qquad \varepsilon_{\rm L} = 100 \cdot \left| \frac{I_{\rm P}}{I_{\rm PN}} - \frac{V_{\it out}(I_{\it P}) - V_{\it out}(0)}{V_{\it out}(I_{\it PN}) - V_{\it out}(0)} \right| \, \%$ This "Additional information" is no declaration of warranty according BGB \$443. Hrsg.: KB-E Bearb: Le KB-PM IA: KRe. freig.: HS released