

SPECIFICATION

T60404-N4646-X161 Item no.:

K-No.: 25256

50 A Current Sensor Module for 5V-Spply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Date: 05.11.2012

Customer: Standard type Customers Part no.:

2 Page 1 of

Description

- Closed loop (compensation) Current Sensor with magnetic field probe
- Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- Excellent accuracy
- Very low offset current
- Very low temperature dependency and offset current drift
- Very low hysteresis of offset current
- short response time
- Wide frequency bandwidth
- Compact design
- Reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications

min. typ. max. Unit

- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptible Power Supplies (UPS)

Electrical data	a – Ratings	min.	typ.	max.	Einheit
I _{PN}	Primary nominal r.m.s. current		50		Α
V_{out}	Output voltage @ I _P		V_{Re}	$_{\rm ef}$ ± (0.625* $I_{\rm P}/I_{\rm F}$	PN) V
V_{out}	Output voltage @ I _P =0, T _A =25 ℃		V_{Re}	ef ± 0.0025	V
V_Ref	Reference voltage external	0		4	V
V_{Ref}	Reference voltage internal		2.5	± 0.005	V
ΚN	Turns ratio		1:	1000	

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
I _{P,max}	Max. measuring range	±172			
Χ	Accuracy @ I _{PN} , T _A = 25 ℃			1	%
ϵ_{L}	Linearity			0.1	%
V_{out} -2,5 V	Offset voltage @ I _P =0, T _A = 25 ℃			±2,5	mV
$\Delta V_{out}/2,5V/\Delta T$	Temperature drift of V _{out} @ I _P =0, T _A = -4085 ℃		3	10	ppm/K
t _r	Response time @ 80% von I _{PN}		1		μs
∆t (I _{P,max})	Delay time at di/dt = 100 A/μs		1		μs
f	Frequency bandwidth	DC100			kHz

General data

editor

				٠,١,٠		•			
T _A	Ambient operating	temperature	-40		+85	℃			
Ts	Ambient storage temperature				+85	$^{\circ}$			
m	Mass			18		g			
Vc	Supply voltage		4.75	5	5.25	V			
I _{C0}	Current consumpti	ion		16		mA			
	Constructed and manufactored and tested in accordance with EN 61800-5-1 (Primary to Secondary)								
	Reinforced insulat	ion, Insulation material grou	p 1, Pollution o	degree 2					
S _{clear}	Clearance (compor	nent without solder pad)	12			mm			
Screep	Creepage (compon	ent without solder pad)	12			mm			
V_{sys}	System voltage	overvoltage category 3	RMS		600	V			
V_{work}	Working voltage	(tabel 7 acc. to EN61800-5	5-1)						
		overvoltage category 2	RMS		1000	V			
UPD	Rated discharge v	oltage	peak vali	ue	1225	V			

Maximal continuous and peak currents at defined temperatures

T _A	50 ℃	70 ℃	85 °C	105 ℃
I _P	150 A	110 A	100 A	50 A
$I_{P,max}$	172 A	172 A	172 A	172 A

designer

Date	Name	Issue	Amendment			
05.11.12	Le	81	Insignificant:	Date changed.		
13.02.09	Le	81	Insignificant:	Date changed.		
Hrsg.: KB	B-E		arb: Le		KB-PM IA: KRe.	freig.: HS released

check

SPECIFICATION

Item no.: T60404-N4646-X161

K-No.: 25256

50 A Current Sensor Module for 5V-Spply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Date: 05.11.2012

Customer: Standard type Customers Part no.:

2 Connections:

Marking:

of

 $1..4 = 0.7 \times 0.7 \text{mm}$

DC

Page

2

Mechanical outline (mm):

General tolerances DIN ISO 2768-c

Toleranz der Stiftabstände ±0,2mm (Tolerances grid distance) DC = Date Code F = Factory *= vorläufig (preliminary)

7AN 4646X160

Schematic diagram

Additional information is obtainable on request.

Temperature of the primary conductor should not exceed 110 ℃.

This specification is no declaration of warranty acc. BGB §443 dar.

Hrsg.: KB-E	Bearb: Le		KB-PM IA: KRe.	freig.: HS
editor	designer		check	released

Additional Information

Item No.: T60404-N4646-X161

K-No.: 25256

50 A Current Sensor Module for 5V-Supply Voltage

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 05.11.2012

Customer: Customers Part No.: Page 1	1	ot	2
--------------------------------------	---	----	---

Electrical	Data
-------------------	------

		min.	typ.	max.	Unit
V _{Ctot}	Maximum supply voltage (without function)			6	V
Ic	Supply Current with primary current	16m	$1A + I_p * K_N + V_o$	_{ut} /R _L	mA
I _{out,SC}	Short circuit output current		±20		mA
R_S	Secondary coil resistance @ T _A =85°C			14	Ω
R _{i,Ref}	Internal resistance of Reference input		670		Ω
R_{i} ,(V_{out})	Output resistance of Vout			1	Ω
R_L	External recommended resistance of Vout	1			$k\Omega$
C_L	External recommended capacitance of Vout			500	pF
$\Delta X_{Ti}/\Delta T$	Temperature drift of X @ T _A = -40 +85 ℃			40	ppm/K
$\Delta V_0 = \Delta (V_{out} - V_{Ref})$	Sum of any offset drift including:		2	6	mV
V_{0t}	Long term drift of V ₀		1		mV
V_{0T}	Temperature drift von V ₀ @ T _A = -40+85 ℃		1		mV
V_{0H}	Hystereses of V_{out} @ $I_P=0$ (after an overload of 10 x I_F	_{PN})		1.5	mV
$\Delta V_0/\Delta V_C$	Supply voltage rejection ratio			1	mV/V
V_{oss}	Offsetripple (with 1 MHz- filter first order)			25	mV
V _{oss}	Offsetripple (with 100 kHz- filter firdt order)		2.5	6	mV
V_{oss}	Offsetripple (with 20 kHz- filter first order)		0.7	1.5	mV
Ck	Maximum possible coupling capacity (primary – se Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Decade, 2 hours	condary)	6		pF

Inspection (Measurement after temperature balance of the samples at room temperature)

Vout (IP=IPI	N) (V) M3011/6:	Output voltage vs. internal reference (I _P =50A, 40-80Hz)	625±1%	mV
V_{out} – V_{Ref}	(I _P =0) (V) M3226:	Offset voltage	± 0.0025	V
V_d	(V) M3014:	Test voltage, RMS, 1 s pin 1-4 to inner hole	1.8	kV
Ve	(AQL 1/S4)	Partial discharge voltage acc.M3024 (RMS)	1300	V
		with V_{vor} (RMS)	1625	V

Type Testing (Pin 1-4 to inner hole)

Designed according standard EN 50178 with insulation material group 1

	group			
V _W HV transient test according to M3064 (1,2 μs / 50 μs-wave form)				kV
V_d	Testing voltage to M3014	(5 s)	3.6	kV
Ve	Partial discharge voltage acc.M3024 (RMS)		1300	V
	with V (RMS)		1625	V

Applicable documents

Current direction: A positive output current appears at point I_S , by primary current in direction of the arrow.

Housing and bobbin material UL-listed: Flammability class 94V-0.

Enclosures according to IEC529: IP50.

Datum	Name	Index	Änderung					
05.11.12	Le	81	Typo: Type to	o: Type testing Vd, Testing voltage changed from M3924 into M3014. Lapidary change.				
13.02.09	22.09 Le 81 Write error. Offsetripple to high, values reduced. Insignificant.							
1/0	(a) - 10							
Hrsg.: KB	5- L	_	arb: Le			KB-PM IA: KRe.		freig.: HS released

Additional Information

Item No.: T60404-N4646-X161

K-No.: 25256

50 A Current Sensor Module for 5V-Supply Voltage

For the electronic measurement of currents:

DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power)

and the secondary circuit (electronic circuit)

Date: 05.11.2012

2

of

2

Customer: Customers Part No.: Page

Explanation of several of the terms used in the tablets (in alphabetical order)

tr: Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.8^{\circ}$ I_{PN} between a rectangular current and the output voltage V_{OUt} (I_D)

 Δt (I_{Pmax}): Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between I_{Pmax} and the output voltage $V_{out}(I_{Pmax})$ with a primary current rise of dip/dt \geq 100 A/ μ s.

 U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e U_{PD} = $\sqrt{2} \times V_e / 1.5$

 V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1.875 * U_{PD} required for partial discharge test in IEC 61800-5-1

 $V_{vor} = 1.875 * U_{PD} / \sqrt{2}$

 V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1

Vwork Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation

 V_0 : Offset voltage between V_{out} and the rated reference voltage of $V_{ref} = 2.5V$.

 $V_0 = V_{out}(0) - 2.5V$

 V_{0H} : Zero variation of V_0 after overloading with a DC of tenfold the rated value

 V_{0t} : Long term drift of V_o after 100 temperature cycles in the range -40 bis 85 °C.

X: Permissible measurement error in the final inspection at RT, defined by

 $X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0.625V} - 1 \right| \%$

X_{ges}(I_{PN}): Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN}

 $X_{ges} = 100 \cdot \left| \frac{V_{out} (I_{PN}) - 2,5V}{0,625V} - 1 \right| \% \text{ or } X_{ges} = 100 \cdot \left| \frac{V_{out} (I_{PN}) - V_{ref}}{0,625V} - 1 \right| \%$

 $\varepsilon_{\rm L}: \qquad \qquad \text{Linearity fault defined by} \qquad \varepsilon_{\rm L} = 100 \cdot \left| \frac{I_{\rm P}}{I_{\rm PN}} - \frac{V_{\it out}(I_{\it P}) - V_{\it out}(0)}{V_{\it out}(I_{\it PN}) - V_{\it out}(0)} \right| \, \%$

This "Additional information" is no declaration of warranty according BGB \$443.

Hrsg.: KB-E Bearb: Le KB-PM IA: KRe. freig.: HS released