

Item no.: T60404-N4646-X160

K-No.: 24959

100 A Current Sensor Module for 5V-Spply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Date: 23.09.2016

Customer: Standard type

Customers Part no.:

Page 1 of 4

Description

- Closed loop (compensation)
 Current Sensor with magnetic field probe
- · Printed circuit board mounting
- · Casing and materials UL-listed

Characteristics

- Excellent accuracy
- · Very low offset current
- Very low temperature dependency and offset current drift
- · Very low hysteresis of offset current
- short response time
- · Wide frequency bandwidth
- Compact design
- Reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptible Power Supplies (UPS)

Electrical data	a – Ratings	min.	typ.	max.	Einheit
I _{PN}	Primary nominal r.m.s. current		100)	Α
V_{out}	Output voltage @ I _P		V_{Re}	$_{\rm ef}$ ± (0.625* $I_{\rm P}/I_{\rm I}$	_{PN}) V
V_{out}	Output voltage @ I _P =0, T _A =25°C		V_{Re}	ef ± 0.0025	V
V_{Ref}	Reference voltage external	0		4	V
V_{Ref}	Reference voltage internal		2.5	± 0.005	V
KN	Turns ratio		1:	1000	

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
I _{P,max}	Max. measuring range	±230			
Χ	Accuracy @ I _{PN} , T _A = 25°C			1	%
ϵ_{L}	Linearity			0.1	%
V_{out} -2,5 V	Offset voltage @ I _P =0, T _A = 25°C			±2.5	mV
$\Delta V_{out}/2,5V/\Delta T$	Temperature drift of V _{out} @ I _P =0, T _A = -4085°C		3	10	ppm/K
t _r	Response time @ 80% von I _{PN}		1		μs
Δt (I _{P,max})	Delay time at di/dt = 100 A/μs		1		μs
f	Frequency bandwidth	DC100			kHz

General data

		min.	typ.	max.	Unit
T_A	Ambient operating temperature	-40		+85	°C
Ts	Ambient storage temperature	-40		+85	°C
m	Mass		18		g
V_C	Supply voltage	4.75	5	5.25	V
I _{C0}	Current consumption		16		mA
S _{clear}	Clearance (component without solder pad)	12			mm
Screep	Creepage (component without solder pad)	12			mm
V _{sys} V _{work}	System voltage overvoltage category III Working voltage (table 3 acc. to IEC 61800)	-5-1:2007)		600	V_{RMS}
	overvoltage category 2	,		1000	V_{RMS}
J_{PD}	Rated discharge voltage			1414	V_{peak}
	Max. potential difference acc to UL 508			600	V_{RMS}
	0		41- IEO 0400	0 F 4.0007 (D	

Constructed and manufactored and tested in accordance with IEC 61800-5-1:2007 (Primary to Secondary) Reinforced insulation, Insulation material group 1, Pollution degree 2, Overvoltage category III

Date	Name	Issue	Amendment						
23.09.16	Ockajak	81	Typo: change	ypo: changed test voltage from M3024 to M3014. Minor change.					
07.04.15	DJ	81	Sensor chang	Sensor changed back to issue "81". Data sheet changed. CN-15-276					
Hrsg.: MC	C-PD	Bea	arb: DJ		MC-PM: KRe.			freig.: BEF released	

Item no.:

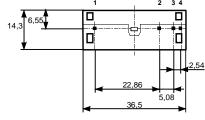
T60404-N4646-X160

K-No.: 24959

100 A Current Sensor Module for 5V-Spply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Date: 23.09.2016

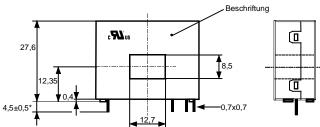

Customer: Standard type Customers Part no.: Page 2 of 4

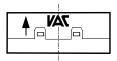
Mechanical outline (mm):

General tolerances DIN ISO 2768-c

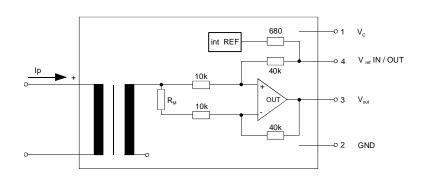
Connections:

 $1..4 = 0.7 \times 0.7 \text{mm}$


Toleranz der Stiftabstände ±0,2mm


DC = Date Code
F = Factory

*= vorläufig


Marking:

UL-sign 4646-X160 F DC

Schematic diagram

Hrsg.: MC-PD Bearb: DJ MC-PM: KRe. check freigased

Item no.: T60404-N4646-X160

K-No.: 24959

100 A Current Sensor Module for 5V-Spply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Date: 23.09.2016

3 of

4

Customer: Standard type Customers Part no.: Page

Electrical Data

		min.	typ.	max.	Unit
V _{Ctot}	Maximum supply voltage (without function)			6	V
Ic	Supply Current with primary current	16m	$A + I_p * K_N + V_o$	_{ut} /R _L	mA
I _{out,SC}	Short circuit output current		±20		mA
Rs	Secondary coil resistance @ T _A =85°C			14	Ω
R _{i,Ref}	Internal resistance of Reference input		670		Ω
R_{i} , (V_{out})	Output resistance of Vout			1	Ω
R_L	External recommended resistance of Vout	1			kΩ
C_L	External recommended capacitance of Vout			500	pF
$\Delta X_{Ti}/\Delta T$	Temperature drift of X @ T _A = -40 +85 °C			40	ppm/K
$\Delta V_0 = \Delta (V_{out} - V_{Ref})$	Sum of any offset drift including:		2	6	mV
V_{0t}	Long term drift of V ₀		1		mV
V_{0T}	Temperature drift von V ₀ @ T _A = -40+85°C		1		mV
V_{0H}	Hystereses of V_{out} @ $I_P=0$ (after an overload of 10 x I_P	N)		0.7	mV
$\Delta V_0/\Delta V_C$	Supply voltage rejection ratio			1	mV/V
V _{oss}	Offsetripple (with 1 MHz- filter first order)			20	mV
V_{oss}	Offsetripple (with 100 kHz- filter firdt order)		2.5	6	mV
V _{oss}	Offsetripple (with 20 kHz- filter first order)		0.7	1.5	mV
C_k	Maximum possible coupling capacity (primary – see Mechanical stress according to M3209/3 Settings: 10 Hz, 1 min/Oktave, 2 hours	condary)	6		pF

Inspection (Measurement after temperature balance of the samples at room temperature, SC = significant characteristic)

V _{out} (SC)	(V) M3011/6	Output voltage vs. internal reference (I _P =100A, 40-80Hz)	625±0.7%	mV
V_{out} – V_{Ref}	(I _P =0) (V) M3226:	Offset voltage	± 0.0025	V
V_d	(V) M3014:	Test voltage, RMS, 1 s pin 1-4 to inner hole	1.8	kV
V _e	(AQL 1/S4):	Partial discharge voltage acc.M3024 with V _{vor}	1500 1875	V_{RMS} V_{RMS}

Type Testing (Pin 1-4 to inner hole)

V_W	HV transient test according to M3064 (1,2 µs / 50 µs-wave form)			kV
V_d	Testing voltage to M3014	(5 s)	3.6	kV
Ve	Partial discharge voltage acc.M3024		1500	V_{RMS}
	with V _{vor}		1875	Vpms

Applicable documents

Current direction: A positive output current appears at point I_S, by primary current in direction of the arrow.

Enclosures according to IEC529: IP50.

Temperature of the primary conductor should not exceed 110°C

Further standards UL 508, file E317483, category NMTR2 / NMTR8

Hrsg.: MC-PD	Bearb: DJ	MC-PM: KRe.		freig.: BEF
editor	designer	check		released

Item no.:

T60404-N4646-X160

K-No.: 24959

100 A Current Sensor Module for 5V-Spply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Date: 23.09.2016

of

4

Customer: Standard type Customers Part no.: Page 4

Explanation of several of the terms used in the tablets (in alphabetical order)

 t_r : Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.8 \cdot I_{PN}$ between a rectangular current and the output voltage V_{OUt} (I_p)

 Δt (I_{Pmax}): Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between I_{Pmax} and the output voltage $V_{out}(I_{Pmax})$ with a primary current rise of di_P/dt \geq 100 A/ μ s.

 U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_{work} $U_{PD} = \sqrt{2} \times V_{work}$

 V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1.875 * U_{PD} required for partial discharge test in IEC 61800-5-1:2007

 $V_{vor} = 1.875 * U_{PD} / \sqrt{2}$

V_{sys} System voltage value of rated voltage according to IEC 61800-5-1:2007.

 V_{work} Working voltage voltage according to IEC 61800-5-1:2007 which occurs by design in a circuit or across insulation.

 V_0 : Offset voltage between V_{out} and the rated reference voltage of V_{ref} = 2.5V.

 $V_0 = V_{out}(0) - 2.5V$

V_{0H}: Zero variation of V₀ after overloading with a DC of tenfold the rated value

V_{0t}: Long term drift of V₀ after 100 temperature cycles in the range -40 bis 85 °C.

X: Permissible measurement error in the final inspection at RT, defined by

$$X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right| \%$$

X_{ges}(I_{PN}): Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN}

$$X_{\rm ges} = 100 \cdot \left| \frac{V_{\rm out} \left(I_{\rm PN} \right) - 2,5V}{0,625 \rm V} - 1 \right| \ \% \ \text{or} \ X_{\rm ges} = 100 \cdot \left| \frac{V_{\rm out} \left(I_{\rm PN} \right) - V_{\it ref}}{0,625 \rm V} - 1 \right| \ \% \$$

 $\varepsilon_{\rm L} : \qquad \qquad \text{Linearity fault defined by} \qquad \varepsilon_{\rm L} = 100 \cdot \left| \frac{I_{\rm P}}{I_{\rm PN}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{V_{out}(I_{PN}) - V_{out}(0)} \right| \, \%$