

Features:

- O.D. = 28mm [1.10"]
- Motor Shaft Diameter 2 mm [0.079"]
- Motor Shaft length 3.8 mm [0.150"] minimum
- Pulses per revolution 256 maximum
- Analog Output
- 100 5,000 RPM

Description:

The **OPE1275H** and **OPE2275H** are designed for small shafted motors with a shaft diameter of 2 mm [0.079"] and a minimum length of 3.8 mm [0.150"]. The **OPE1275H** provides a single channel analog output for speed of rotation while the **OPE2275H** provides a dual channel analog output for speed and direction of rotation.

The output of the **OPE1275H** provides a rise and fall pulse providing the designer two slopes for each pulse doubling the count capability. The **OPE2275H** provides quadrature rise and fall pulse patterns providing the design engineer 4 times the pulse per revolution count.

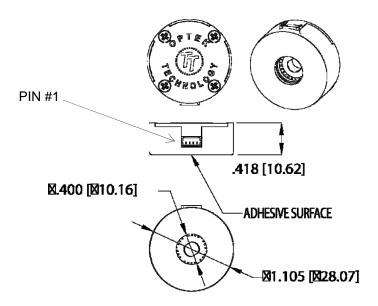
The OPE1275H and OPE2275H are very easy to assemble on your motor shaft using a #1 Phillips screwdriver.

Power requirements are 5 volts ± .5 volts.

Electrical connection is achieved with a 4-pin Molex 53048-0410 connector providing V+, Ground and Output pins. The mating connector is a 4-pin Molex 51021-0400 (Terminal pin 50058 or 50079) or equivalent.

Mounting of the hollow shaft version of the **OPE1275 and OPE2275** is achieved with a stick-on transfer adhesive pre-applied to the back of the housing. Just peel off the protective base and press the encoder to your motor.

Frequency response is from 100 to 25 kHz providing a maximum of 256 cycles per revolution (CPR)


This product is designed for general encoding for low-speed applications.

• Printer motors	motors <u>OPE X 275 H - ZZZ</u>				
Machine autorMachine safet	y OPTEK Product Encoder		Resolution per revolution: 128 holes per revolution		
	Channels: 1 = Single channel 2 = Dual Channel		256 holes per revolution Shaft Configuration: H = Hollow Shaft		
Pb	Motor Diameter- 27.5mm				
RoHS	OPTEK reserves the right to make changes at any tir	me in order to improve desigr	n and to supply the best product possible.		

None of the second seco

OPE1275H OPE2275H

Pin Out						
1	2	3	4			
V _{CC}	CH A	СН В	GND			

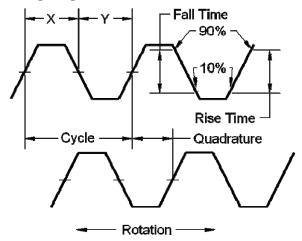
Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

	Maximum	Units
Storage Temperature Range	-40° C to +85°	С
Operating Temperature Range	0° C to +85°	С
Power Supply Voltage V _{CC}	4.5 to 5.5	V_{DC}
Power Dissipation ⁽²⁾	250	mW
Vibration (5 Hz to 2 kHz)	20	g
Shaft Axial Play	± 0.51 mm [0.02"]	
Off-Axis Mounting Tolerance	0.254 mm [0.01"]	
Acceleration	250,000	rad/sec ²

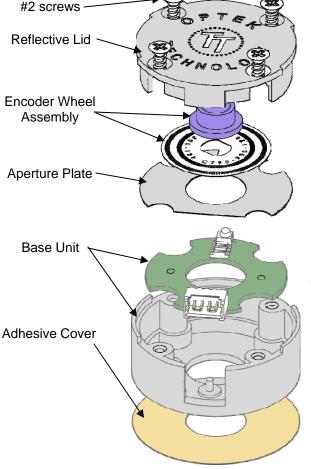
Mechanical Specifications:

	Dimensions	Units
Moment of Inertia	6.48 X 10 ⁻⁵	OZ-IN-S ²
Shaft Length	0.3 to 0.7	Inches

Electrical Characteristics (T_A = 25°C unless otherwise noted — for reference only)


SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
V _{CC}	Supply Voltage	4.5	5.0	5.5	٧	
I _{CC}	Supply Current	-	21	27	mA	V _{CC} = 5.0 volts
V _{OH}	High Level Output Voltage	Vcc-0.5	-	-	V	$I_C = 100 \mu A$
V _{OL}	Low Level Output Voltage	-	-	0.4	V	I _C = 20 mA
TR	Rise Time	-	500	-	ns	10% to 90%, V _{CC} = 5.0 volts
TF	Fall Time	-	100	-	ns	10% to 90%, V _{CC} = 5.0 volts
FR	Frequency Response	-	-	60	kHz	
H.S.	Hole Size	0.10	-	-	inch	
Rotation	Maximum speed of rotation with 1024 holes per rotation	-	-	100	rev/sec	
Encoding Characteristics:						
SE	Symmetry Error	0	16	75	°e	
QE	Quadrature Error—OPE2275H only	0	12	60	е	

SE	Symmetry Error	0	16	75	°a
QE	Quadrature Error—OPE2275H only	0	12	60	е


All parameters measured using pulse technique, Vcc = 5.0 volts and $T_A = 25$ °C.

Timing Diagram:

Hollow Shaft Assembly Instructions:

Timing Definitions:

PPR = Pulses Per Revolution

Electrical Degree (°e) = 1/360th of 1 cycle

Cycle = 360 electrical degrees (°e)

Symmetry = Relationship between X & Y in electrical degrees (°e).

Position Error = The difference between the actual shaft position and the position indicated by the encoder cycle count.

Quadrature: The lead or lag difference between channels "A" and "B" in electrical degrees (normally 90°e)

Cycle Error = The difference between the actual shaft rotational position and the cycle count rotational position.

Rise Time = Time required to switch between 10% and 90% of the highest to lowest signal levels.

Fall Time = Time required to switch between 90% and 10% of the highest to lowest signal levels.

Make sure the kit has all required parts:

- 1 each Base Unit
- 1 each Base Unit Alignment Tool
- 1 each Aperture Plate
- 1 each Encoder Wheel Assembly
- 1 each Wheel Assembly Alignment Tool
- 1 each Reflective Lid
- 4 each #2-56 self tapping screws
- Peal the protective covering from the adhesive on the back of the Base Unit.
- 2. To center the Base unit, carefully slide the Base Unit over the flange on the motor and press firmly.
- 3. Place the Aperture Plate on the Base Unit.
- 4. Slide the Encoder Wheel Assembly over the motor shaft until it almost touches the Aperture Plate.
- 5. Carefully place the Reflective Lid on the encoder (rotate as necessary to align) and attach with 4 #2 self tapping screws (provided).
- 6. Connect the electrical interface to the encoder.

Issue	Change Description	Approval	Date
А	Initial Issue	Trevor Schelp	11-21-2008
A.1	A.1 Change Ordering Information from H = Hollow Shaft to H = Hollow Shaft (Single Channel Only)		6/17/09
A.2	Change OD from 27 mm [1.06"] to 28mm [1.10"]	Trevor Schelp	7/20/09
A.3	Change Maximum 5,000 RPM to 100-5,000 RMP. Add "shaft" diameter to description. Delete (Single Channel Only) from ordering information. Remove dash (-) from part number on illustration, 2nd page. Change CPR to PPR under Timing Definitions.		8/6/09
A.4	Removed Shaft Series from Datasheet and updated Part Number	Trevor Schelp	10/1/09