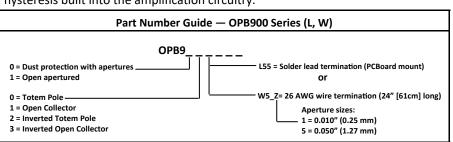
### OPB900 through OPB913 Series (L, W\_Z)

#### Features:

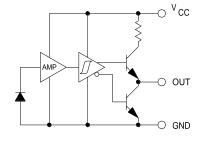
- 0.375" (9.5 mm) wide gap
- Choice of logical output configurations
- Choice of opaque or IR transmissive housing material
- Choice of PCBoard or 26 AWG, UL rated wire
- Data rates to 250 kBaud



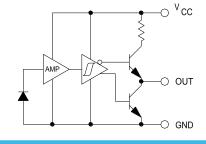
#### **Description:**


The **OPB900** - **OPB913** series of Photologic® Integrated Circuit Switches provide optimum flexibility for the design engineer. Building from a standard housing with a 0.375" (9.5mm) wide slot, a user can specify the type and polarity of the TTL output and the type of shell material.

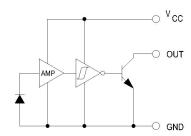
Electrical output can be specified as either TTL Totem Pole (buffered) or TTL Open Collector, either of which can be supplied with an inverted output polarity.


All versions have the added stability of hysteresis built into the amplification circuitry.

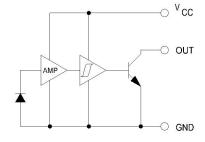
### **Applications:**


- Mechanical switch replacement
- Speed indication (tachometer)
- Mechanical limit indication
- Edge sensing
- Object sensing




#### **Totem-Pole-Output**




#### **Inverted Totem-Pole**



### **Open-Collector-Output**



#### **Inverted Open Collector**





General Note



### OPB900 through OPB913 Series (L, W\_Z)

#### **Electrical Specifications** [30.99±0.25] 1.22±.01 [30.99±0.25] PIN #1 INDICATOR 25.40±0.25 [25.40±0.25] 1.00±.01 PIN #1 INDICATOR 1.000±.01 S S [3.18±0.13] 2 × **Ø**.125±.005 [3.18±0.13] **Ø**.125±.005 [3.18±0.13] [3.18±0.13] 125±.005 .125±.005 [18.67±0.25] [18.67±0.25] .735±.01 [2.79] [9.53±0.25] .375±.01 [2.79] 9.53±0.25 [10.80±0.25] .110 NOM .375±.01 .425±.01 NOM [2.54±0.25] [2.03±0.13] [10.80±0.25] .100±.01 .080±.005 .425±.01 [10.80] [2.54±0.25] [2.03±0.13] .425 .100±.01 [1.02] .080±.005 MIN MIN 040 [0.51±0.13] .020±.005 SQ. TYP [4.83±0.25] 14.73 .190±.01 580 [1.91±0.13] [6.35±0.25] .560 .075±.005 [6.35±0.25] [4.83±0.25] .250±.01 .190±.01 [ MILLIMETERS] DIMENSIONS ARE IN: [3.81±0.25] [2.54±0.25] .100±.01 .150±.01 [16.38±0.13]

| Color-Pin# | Description | Color-Pin # | Description | Color-Pin # | Description     | Color-Pin # | Description Color-Pin # |         | Description |
|------------|-------------|-------------|-------------|-------------|-----------------|-------------|-------------------------|---------|-------------|
| Red-1      | Anode       | Black-2     | Cathode     | White-3     | V <sub>cc</sub> | Blue-4      | Output                  | Green-5 | Ground      |

### Absolute Maximum Ratings (T<sub>A</sub> = -40°C to + 70° Unless otherwise noted)

.645±.005

| Storage Temperature                                                                                    | -40° C to +85° C |
|--------------------------------------------------------------------------------------------------------|------------------|
| Operating Temperature                                                                                  | -40° C to +70° C |
| Lead Soldering Temperature (1/16" (1.6 mm) from case for 5 seconds with soldering iron) <sup>(1)</sup> | 260° C           |

#### **Input Infrared LED**

| DC Forward Diode (LED) Current               | 40 mA  |
|----------------------------------------------|--------|
| DC Reverse Diode (LED) Voltage               | 2 V    |
| Input Diode Power Dissipation <sup>(1)</sup> | 100 mW |

#### **Output Photologic®**

| Supply Voltage, V <sub>CC</sub> (not to exceed 3 seconds) | 10V    |
|-----------------------------------------------------------|--------|
| Voltage at Output Lead (Open Collector Output version)    | 35 V   |
| Output Photologic® Power Dissipation <sup>(2)</sup>       | 200 mW |
| Total Device Power Dissipation <sup>(3)</sup>             | 300 mW |

#### Notes:

- (1) Derate linearly 2.22 mW/°C above 25°C
- (2) Derate linearly 4.44 mW/°C above 25°C
- (3) Derate linearly 6.66 mW/°C above 25°C
- (4) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
- (5) Methanol or isopropanol are recommended as cleaning agents. The plastic housing is soluble in chlorinated hydrocarbons and keytones.



 $V_{CC}$  = 4.75 V,  $I_{OL}$  = 12.8 mA,  $I_F$  = 0 mA<sup>(1)</sup>

 $V_{CC} = 4.75 \text{ V}, I_{OL} = 12.8 \text{ mA}, I_F = 20 \text{ mA}^{(1)}$ 

 $V_{CC} = 4.75 \text{ V}, I_{OH} = -800 \mu\text{A}, I_{F} = 20 \text{ mA}^{(1)}$ 

 $V_{CC}$  = 4.75 V,  $I_{OH}$  = -800  $\mu$ A,  $I_F$  = 0  $mA^{(1)}$ 

 $V_{CC} = 4.75 \text{ V}$ ,  $V_{OH} = 30 \text{ V}$ ,  $T_A = 25^{\circ} \text{ C}$ 

 $V_{CC} = 4.75 \text{ V}, V_{OH} = 30 \text{ V}, T_A = 25^{\circ} \text{ C}$ 

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ} \text{ C}$ 

 $V_{CC} = 5.25 \text{ V, } I_F = 20 \text{ mA}$ 

 $V_{CC} = 5.25 \text{ V, } I_F = 0 \text{ mA}$ 

 $V_{CC} = 5 \text{ V, } T_A = 25^{\circ} \text{ C}$ 

R<sub>L</sub> = 8 TTL Loads (Totem-Pole)

 $R_L = 360 \Omega$  (Open-Collector)

 $V_{CC} = 5 V$ 

Output = GND

Output = GND

 $I_F = 0$  or 20 mA

### OPB900 through OPB913 Series (L, W\_Z)

#### Electrical Characteristics (T<sub>A</sub> = -40°C to + 70° Unless otherwise noted)

| SYMBOL           | PARAMETER                                                                            | MIN      | TYP      | MAX       | UNITS | TEST CONDITIONS                                                 |
|------------------|--------------------------------------------------------------------------------------|----------|----------|-----------|-------|-----------------------------------------------------------------|
| put Diod         | e (See OP240B for more information — for refe                                        | erence o | nly)     |           |       |                                                                 |
| $V_{F}$          | Forward Voltage                                                                      | -        | -        | 1.7       | V     | I <sub>F</sub> = 20 mA, T <sub>A</sub> = 25° C                  |
| I <sub>R</sub>   | Reverse Current                                                                      |          | -        | 100       | μΑ    | V <sub>R</sub> = 2 V, T <sub>A</sub> = 25° C                    |
| tput Pho         | otologic® Sensor (See OPL560 for more inform                                         | ation —  | for refe | erence on | ly)   |                                                                 |
| $V_{CC}$         | Operating D.C. Supply Voltage                                                        | 4.75     | -        | 5.25      | V     |                                                                 |
| I <sub>CCL</sub> | Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output  |          | -        | 15        | mA    | V <sub>CC</sub> = 5.25 V, I <sub>F</sub> = 0 mA <sup>(1)</sup>  |
| CCL              | Inverted Totem-Pole Output<br>Inverted Open-Collector Output                         | -        | -        | 15        | mA    | V <sub>CC</sub> = 5.25 V, I <sub>F</sub> = 20 mA <sup>(1)</sup> |
| Іссн             | High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output | -        | -        | 15        | mA    | V <sub>CC</sub> = 5.25 V, I <sub>F</sub> = 20 mA <sup>(1)</sup> |
|                  | Inverted Totem-Pole Output Inverted Open-Collector Output                            | -        | -        | 15        | mA    | V <sub>CC</sub> = 5.25 V, I <sub>F</sub> = 0 mA <sup>(1)</sup>  |

0.4

0.4

100

100

20

-100

-100

2

70

5

2.4

-30

-30

٧

٧

μΑ

mA

mA

ns

#### Notes:

 $V_{OL}$ 

 $V_{OH}$ 

 $I_{OH}$ 

 $I_F(+)$ 

 $I_{F}(+)/I_{F}(-)$ 

 $I_{OS}$ 

 $t_r$ ,  $t_f$ 

 $t_{PLH}$ ,  $t_{PHL}$ 

**Hysteresis** 

(1) Normal application would be with light source blocked, simulated by  $I_F = 0$  mA.

#### General Note

Inverted Open-Collector Output

**Buffered Open-Collector Output** 

Inverted Open-Collector Output

Low Level Supply Current:

**Buffered Totem-Pole Output** 

Inverted Totem-Pole Output

High Level Output Voltage:

**Buffered Totem-Pole Output** 

Inverted Totem-Pole Output
High Level Output Current:

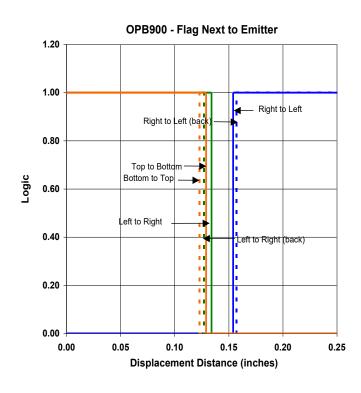
**Buffered Open-Collector Output** 

Inverted Open-Collector Output

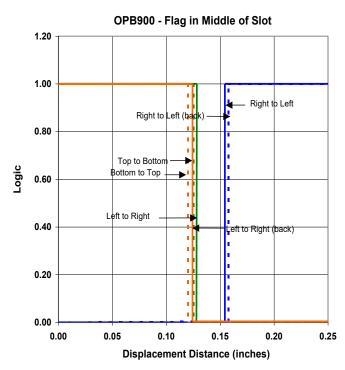
**Short Circuit Output Current:** 

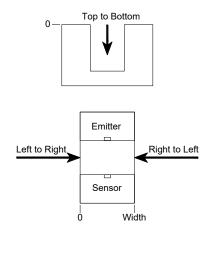
**Buffered Totem-Pole Output** 

Inverted Totem-Pole Output


Output Rise Time, Output Fall Time

Propagation Delay Low-High and High-Low


LED Positive-Going Threshold Current




OPB900 through OPB913 Series (L, W\_Z)







