

TSEV01C01C10

THERMOPILE SENSOR MODULE

Product Description

TSEV01C01C10 is a contact-less temperature measuring system for OEM use based on the detection of infrared radiation. TSEV01C01C10 is equipped with an infrared sensor (Thermopile) in front. The Thermopile Sensor has to be pointed at the target object of interest.

- Detection of infrared radiation with a Thermopile sensor, which turns incoming radiation to an analogue voltage
- Determination of sensor temperature using a thermistor
- Calculation of ambient and object temperature using a processing unit
- Providing the ambient and objects temperature via I²C bus

The TSEV01C01C10 is suitable for a wide range of application where non-contact temperature measurement is required.

Features

- 0°C ... +300°C measurement range
- Small field of view
- 4V ... 16V supply voltage range
- Up to 1.5% accuracy
- I²C Interface
- 2mA current consumption

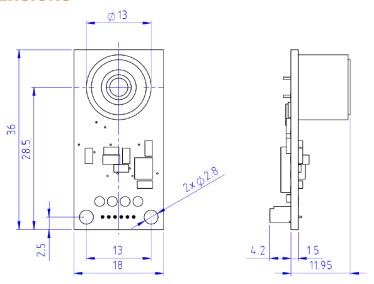
Applications

- Contactless temperature measurement
- Climate control
- Industrial process control
- Household applications

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are limiting values of permitted operation and should never be exceeded under the worst possible conditions either initially or consequently. If exceeded by even the smallest amount, instantaneous catastrophic failure can occur. Even if the device continues to operate satisfactorily, its life may be considerably shortened.

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply voltage	V_{DD}		-0.3		+16	V
Operating temperature	T _{op}		-10		85	°C
Storage temperature	T _{stor}	dry	-10		+85	°C
Humidity	Hum		Non condensing			

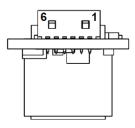

OPERATING CONDITIONS

If not otherwise noted, 25°C ambient temperature, 5V supply voltage and object with ε =0.98 were applied.

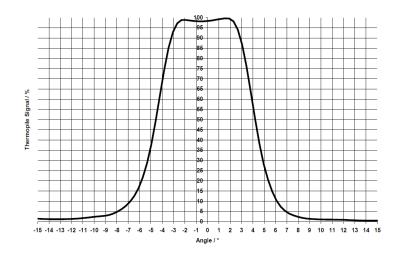
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Operating supply voltage	V _{DD}	stabilized	4	5	16	V
Emission Coefficient	Е		0.95			
Object Temperature Range	T _{obj}		0		+300	°C
Ambient Temperature Range	T _{amb}		0		+100	°C
Resolution	Res				0.1	°C
Field of View	FOV ₁₀	Total FOV at 10% signal level		14		0
Field of View	FOV ₅₀	Total FOV at 50% signal level		10		٥
Supply Current	I	Full ambient temp. range, no output load		2		mA
I2C Baudrate	F _{I2C}		10		100	kHz
Data Output Rate	Fout			1		Hz
Standard Start-Up Time	t _{Start}				3	S
Accuracy tolerance when 10°C < T _{amb} < 40°C		170°C < Tobject < 190°C		±1.5 ¹⁾		%FS
and after 3 minutes stabilization time	ΔΤ	Outside above range		±2.5 ¹⁾		%FS

¹⁾ Valid for a distance of 100mm and black body size of 150mm x 150mm.

MECHANICAL DIMENSIONS

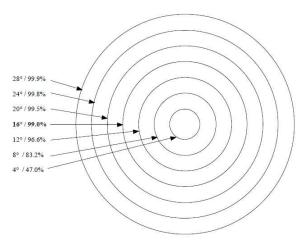


Units: mm


TERMINALS

Mating Connector: Molex 51021-0600

Pin	Name	Description	Туре
1	NC		
2	NC		
3	SDA	I ² C Data (3.6V)	Interface
4	SCL	I ² C Clock (3.6V)	Interface
5	GND	Ground	Supply
6	V _{CC}	Supply Voltage (5V)	Supply



FIELD OF VIEW

SIGNAL DISTRIBUTION

The non-ideal filter characteristics have to been considered for the correct measurement distance with respect to the measurement object surface size. To achieve most accurate measurement results, measurement object should at least cover 99% of the sensors field of view.

12C INTERFACE

The typical baud rate of this device is 100kBit/s. The supported address length is seven bits. The I^2C slave address is 54h. Pull-up resistors of 10kOhm are provided on the board.

PHYSICAL INTERFACE PARAMETERS

Parameter	Symbol	Condition	Min	Тур
Baudrate	10		100	kBit/s
Address length		7		Bit
Address (standard)		54h		
Input High Level	2		3.6	V
Input Low Level			1	V
Output High Level	2.5			V
Output Low Level			1	V

I²C COMMAND REFERENCE

AMBIENT AND OBJECT MEASUREMENT

Please refer following table for I^2C commands to read object temperature and ambient temperature. Both values are transmitted in hundredth of degrees.

Command	Description	Reply	Bytes
0xB6	Read object temperature	Object temperature in hundredth of degree	2
0xB5	Read ambient temperature	Ambient temperature in hundredth of degree	2

EXAMPLE OF TEMPERATURE CALCULATION

Send command (read object temp.): 0xB6

Return values i.e.: Byte(0) = 0x0E, Byte(1) = 0xAA

Temperature calculation: $T_{obj} = (256 * Byte(0) + Byte(1)) / 100 = (256 * 14 + 170) / 100 = 37,54°C$

OUT OF RANGE INDICATION

In case of ambient or object temperature over exceeding specified temperature ranges temperature outputs showing following data:

Command	Description	Reply	Bytes
0xB6	Object temperature > 300°C	0xFFF0	2
0xB6	Object temperature < 0°C	0xFFF1	2
0xB5	Ambient temperature > 100°C	0xFFFF	2
0xB5	Ambient temperature < 0°C	0xF000	2

READING TEMPERATURE

I.e. object temperature.

WRITE SEQUENCE

Data	Direction
Start, Address (Write 0x54), Command (0xB6), Stop	Master → Slave

READ SEQUENCE

TEND CEGOENCE			
Data	Direction		
Start, Address (Read 0x55)	Master → Slave		
Read data (high byte of temperature)	Master ← Slave		
Read data (low byte of temperature)	Master ← Slave		
Stop	Master → Slave		

ORDER INFORMATION

Further customer specific adaptations are available on request. Please refer to the table below for part name, description and order information.

Part Number	Part Desription	Comment		
G-TPMO-026	TSEV01C01C10	Thermopile Module, I ² C Interface, 0°C +300°C		

EMC

Due to the use of these modules for OEM application no CE declaration is done. Especially line coupled disturbances like surge, burst, HF etc. cannot be removed by the module due to the small board area and low price feature. There is no protection circuit against reverse polarity or over voltage implemented. The module will be designed using capacitors for blocking and ground plane areas in order to prevent wireless coupled disturbances as good as possible.

NORTH AMERICA

Measurement Specialties, Inc., a TE Connectivity Company 1711 139th Lane NW Andover, MN 55304 Tel: +1 763 689 4870 Fax: +1 763 689 5033

customercare.ando@te.com

EUROPE

TE Connectivity Sensors Germany GmbH

Hauert 13

44227 Dortmund Germany Tel: +49-231-9740-0 Fax: +49-231-9740-20

CustomerCare.dtmd@te.com

ASIA

Measurement Specialties (China), Ltd., a TE Connectivity Company No. 368 Wulian 1st Road Gongxing Town Shuangliu, Chengdu Sichuan, 610200 China

Tel: +86 (0) 28 8573 9088 Fax: +86 (0) 28 8573 9070

customercare.chdu@te.com

te.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, MEAS, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2016 TE Connectivity Ltd. family of companies All Rights Reserved.