
GENERAL DESCRIPTION

The IAM-20381HT is a grade-2 3-axis accelerometer for Automotive non-safety applications, housed in a thin 3x3x0.75mm³ (16-pin LGA) package. It also features a 4096-byte FIFO that can lower the traffic on the serial bus interface and reduce power consumption by allowing the system processor to burst read sensor data and then go into a low-power mode. IAM-20381HT, with its 3-axis integration, enables manufacturers to eliminate the costly and complex selection, qualification, and system level integration of discrete devices, guaranteeing optimal motion performance.

The accelerometer has a user-programmable full-scale range of $\pm 2g$, $\pm 4g$, $\pm 8g$ and $\pm 16g$. Factory-calibrated initial sensitivity of sensors reduces production-line calibration requirements.

Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and two programmable interrupts. The device features I²C and SPI serial interfaces, a VDD operating range of 1.71V to 3.6V, and a separate digital IO supply, VDDIO from 1.71V to 3.6V.

BLOCK DIAGRAM

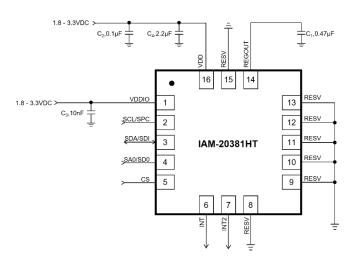
APPLICATIONS

IAM-20381HT address a wide range of Automotive applications, including but not limited to:

- Lift Gate Motion Detection
- Tilt measurement
- Infotainment and Navigation Systems
- Car Alarm
- Telematics
- Insurance Vehicle Tracking
- Drive Style Recording

ORDERING INFORMATION

PART ⁺	AXES	TEMP RANGE	PACKAGE	MSL*
IAM-20381HT	X, Y, Z	-40°C to +105°C	16-Pin LGA	3


⁺Denotes RoHS and Green-compliant package

* Moisture sensitivity level of the package

FEATURES

- Digital-output X-, Y-, and Z-axis accelerometer with a user-programmable full-scale range of ±2g, ±4g, ±8g and ±16g and integrated 16-bit ADCs
- User-programmable digital filters for accelerometer and temperature sensor
- Embedded Self-test
- Two interrupt lines
- Wake-on-Motion interrupt for low-power operation of applications processor
- Reliability testing performed according to AEC–Q100: PPAP and qualification report available upon request
- Final test at -40°C, 25°C, and +105°C

TYPICAL OPERATING CIRCUIT

InvenSense, Inc. reserves the right to change specifications and information herein without notice unless the product is in mass production and the datasheet has been designated by InvenSense in writing as subject to a specified Product / Process ation Method regulation. InvenSense, Inc. 1745 Technology Drive, San Jose, CA 95110 U.S.A +1(408) 988–7339 www.invensense.com Document Number: DS-000559 Revision: 1.0 Rev. Date: 11/24/2023

TABLE OF CONTENTS

	Gene	ral Description	1
	Block	Diagram	1
	Applie	cations	1
	Order	ing Information	1
	Featu	res	1
	Туріса	al Operating Circuit	1
TABL	E OF CC	NTENTS	2
LIST (DF FIGU	RES	5
LIST (OF TABL	ES	6
1	Introd	luction	7
	1.1	Purpose and Scope	7
	1.2	Product Overview	7
	1.3	Applications	7
2	Featu	res	8
	2.1	Accelerometer Features	8
	2.2	Additional Features	8
3	Electr	ical Characteristics	9
	3.1	Accelerometer Specifications	9
	3.2	Electrical Specifications	10
	3.3	I ² C Timing Characterization	13
	3.4	SPI Timing Characterization	14
	3.5	Absolute Maximum Ratings	15
	3.6	Thermal Information	15
4	Appli	cations Information	16
	4.1	Pin Out Diagram and Signal Description	16
	4.2	Typical Operating Circuit	17
	4.3	Bill of Materials for External Components	17
	4.4	Block Diagram	18
	4.5	Overview	18
	4.6	Three-Axis MEMS Accelerometer with 16-bit ADCs and Signal Conditioning	19
	4.7	I ² C and SPI Serial Communications Interfaces	19
	4.8	Self-Test	20
	4.9	Clocking	20
	4.10	Sensor Data Registers	20
	4.11	FIFO	20
	4.12	Interrupts	20
	4.13	Digital-Output Temperature Sensor	20
	4.14	Bias and LDOs	20
	4.15	Charge Pump	20

IAM-20381HT

	4.16	Standard Power Modes	21
	4.17	Sensor Initialization and Basic Configuration	21
5	Progra	ammable Interrupts	23
	5.1	Wake-on-Motion Interrupt	23
6	Digita	I Interface	24
	6.1	I ² C and SPI Serial Interfaces	24
	6.2	I ² C Interface	24
	6.3	IC Communications Protocol	24
	6.4	I ² C Terms	26
	6.5	SPI Interface	27
7	Serial	Interface Considerations	28
	7.1	IAM-20381HT Supported Interfaces	28
8	Regist	er Map	29
9	Regist	er Descriptions	30
	9.1	Registers 13 to 15 – Accelerometer Self-Test Registers	30
	9.2	Register 25 – Sample Rate Divider	30
	9.3	Register 26 – Configuration	30
	9.4	Register 28 – Accelerometer Configuration	31
	9.5	Register 29 – Accelerometer Configuration 2	32
	9.6	Register 30 – Low Power Mode Configuration	33
	9.7	Register 31 – Wake-on Motion Threshold (Accelerometer)	33
	9.8	Register 35 – FIFO Enable	34
	9.9	Register 54 – FSYNC Interrupt Status	34
	9.10	Register 55 – INT/INT2 Pin / Bypass Enable Configuration	34
	9.11	Register 56 – Interrupt Enable	35
	9.12	Register 58 – Interrupt Status	35
	9.13	Registers 59 to 64 – Accelerometer Measurements	35
	9.14	Registers 65 and 66 – Temperature Measurement	36
	9.15	Register 104 – Signal Path Reset	36
	9.16	Register 105 – Accelerometer Intelligence Control	36
	9.17	Register 106 – User Control	37
	9.18	Register 107 – Power Management 1	37
	9.19	Register 108 – Power Management 2	37
	9.20	Registers 114 and 115 – FIFO Count Registers	38
	9.21	Register 116 – FIFO Read Write	38
	9.22	Register 117 – Who Am I	38
	9.23	Registers 119, 120, 122, 123, 125, 126 Accelerometer Offset Registers	39
10	Assen	nbly	40
	10.1	Orientation of Axes	40
	10.2	Package Dimensions	41

IAM-20381HT

11	Part Number Package Marking	43
12	Reference	44
13	Revision History	45

LIST OF FIGURES

Figure 1. I ² C Bus Timing Diagram	13
Figure 2. SPI Bus Timing Diagram	14
Figure 3. Pin out Diagram for IAM-20381HT 3.0x3.0x0.75mm ³ LGA	16
Figure 4. IAM-20381HT LGA Application Schematic	
Figure 5. IAM-20381HT Block Diagram	18
Figure 6. IAM-20381HT Solution Using I2C Interface	19
Figure 7. IAM-20381HT Solution Using SPI Interface	19
Figure 8. START and STOP Conditions	24
Figure 9. Acknowledge on the I ² C Bus	25
Figure 10. Complete I ² C Data Transfer	25
Figure 11. Typical SPI Master/Slave Configuration	27
Figure 12. I/O Levels and Connections	28
Figure 13. Orientation of Axes of Sensitivity	40
Figure 14. Package Dimensions	41
Figure 15. Part Number Package Marking	

LIST OF TABLES

Table 1. Accelerometer Specifications	9
Table 1. Accelerometer Specifications Table 2. D.C. Electrical Characteristics	10
Table 3. A.C. Electrical Characteristics	11
Table 4. Other Electrical Specifications	12
Table 4. Other Electrical Specifications Table 5. I ² C Timing Characteristics	13
Table 6. SPI Timing Characteristics (8 MHz Operation)	
Table 7. Absolute Maximum Ratings	
Table 8. Thermal Information	15
Table 8. Thermal Information Table 9. Signal Descriptions Table 10. Bill of Materials	16
Table 10. Bill of Materials	17
Table 11. Standard Power Modes for IAM-20381HT	
Table 12. Table of Interrupt Sources Table 13. Serial Interface	23
Table 13. Serial Interface	24
Table 14. I ² C Terms	26
Table 15. Register map	29
Table 16. Temperature Sensor bandwidth configuration	31
Table 17. Accelerometer Data Rates and Bandwidths (Low-Noise Mode)	
Table 18. Example Configurations for Accelerometer WoM Mode	33
Table 19 Package Dimensions	42
Table 20. Part Number Package Marking	43

1 INTRODUCTION

1.1 PURPOSE AND SCOPE

This document is a product specification, providing description, specifications, and design related information on the IAM-20381HT Automotive MotionTracking device. The device is housed in a thin 3x3x0.75 mm³ 16-pin LGA package.

1.2 PRODUCT OVERVIEW

The IAM-20381HT is a grade-2 3-axis accelerometer for Automotive non-safety applications contained in a thin 3x3x0.75 mm³ (16-pin LGA) package. It also features a 4096-byte FIFO that can lower the traffic on the serial bus interface and reduce power consumption by allowing the system processor to burst read sensor data and then go into a low-power mode. IAM-20381HT, with its 3-axis integration, enables manufacturers to eliminate the costly and complex selection, qualification, and system level integration of discrete devices, guaranteeing optimal motion performance.

The accelerometer has a user-programmable full-scale range of $\pm 2g$, $\pm 4g$, $\pm 8g$ and $\pm 16g$. Factory-calibrated initial sensitivity of both sensors reduces production-line calibration requirements.

Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and programmable interrupts. The device features I²C and SPI serial interfaces, a VDD operating range of 1.71V to 3.6V, and a separate digital IO supply, VDDIO from 1.71V to 3.6V.

Communication with all registers of the device is performed using either I²C up to 400 kHz or SPI up to 8 MHz.

By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers with companion CMOS electronics through wafer-level bonding, TDK-InvenSense has driven the package size down to a footprint and thickness of 3x3x0.75 mm³ (16-pin LGA), to provide a very small yet high-performance. The device provides high robustness by supporting 10,000*g* shock reliability.

1.3 APPLICATIONS

Typical applications include, but aren't limited to:

- Lift Gate Motion Detections
- Accurate Location for Vehicle to Vehicle and Infrastructure
- View Camera Stabilization and Vision Systems
- Head-up display (HUD) and augmented reality HUD
- Car Alarm
- Telematics
- Insurance Vehicle Tracking

2 FEATURES

2.1 ACCELEROMETER FEATURES

The triple-axis MEMS accelerometer in IAM-20381HT includes a wide range of features:

- Digital-output X-, Y-, and Z-axis accelerometer with a programmable full-scale range of ±2g, ±4g, ±8g and ±16g and integrated 16-bit ADCs
- Two user-programmable interrupts
- Wake-on-Motion (WoM) interrupt for low-power operation of applications processor
- Self-test

2.2 ADDITIONAL FEATURES

The IAM-20381HT includes the following additional features:

- Thinnest LGA package for automotive applications: 3x3x0.75 mm³ (16-pin LGA)
- 4096-byte FIFO buffer enables the applications processor to read data in bursts
- Digital-output temperature sensor
- User-programmable digital filters for accelerometer and temperature sensor
- 10,000g shock tolerant
- 400 kHz Fast Mode I²C for communicating with all registers
- 8 MHz SPI serial interface for communicating with all registers
- MEMS structure hermetically sealed and bonded at wafer level
- RoHS and Green compliant

3 ELECTRICAL CHARACTERISTICS

3.1 ACCELEROMETER SPECIFICATIONS

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, $T_A = 25$ °C, Full Scale = 8g, Low-Noise Mode enabled unless otherwise noted.

All Zero-g output, sensitivity, and noise specifications include board soldering effects, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
	ACCELEROMETER SENSITIVITY	,				
	AFS_SEL=0		±2		g	3
Full Coolo Dongo	AFS_SEL=1		±4		g	3
Full-Scale Range	AFS_SEL=2		±8		g	3
	AFS_SEL=3		±16		g	3
ADC Word Length	Output in two's complement format		16		bits	3
	AFS_SEL=0		16,384		LSB/g	3
Consitivity Coolo Factor	AFS_SEL=1		8,192		LSB/g	3
Sensitivity Scale Factor	AFS_SEL=2		4,096		LSB/g	3
	AFS_SEL=3		2,048		LSB/g	3
Sensitivity Scale Factor Tolerance	All axes, 25°C, initial		±0.25		%	1,2
Sensitivity Scale Factor Variation Over Temperature	All axes, -40°C to +105°C AFS_SEL=0, initial		±0.8		%	1
Nonlinearity	Best Fit Straight Line for 2g, 25°C		±0.05		%	1
Cross-Axis Sensitivity	25°C		±1		%	1
	ZERO-G OUTPUT	•				
Zero-G Level Tolerance	All axes, 25°C, including lifetime drift		±50		mg	1,2,5
Zero-G Level Variation Over	All axes, -40°C to +105°C, including		±50		mg	1,2,5
Temperature	lifetime drift					
	NOISE PERFORMANCE	1				
Power Spectral Density	Low-noise mode, +25°C, initial, Noise BW = 235 Hz, VDD = VDDIO = 1.8V		135		µg/√Hz	1,4
Low Pass Filter Response	Programmable Range	5		218	Hz	3
Accelerometer Start-up Time	From Sleep mode, 25°C			20	ms	1
Output Data Rate	Low-noise (active)	4		4000	Hz	1

Notes:

Table 1. Accelerometer Specifications

1. Based on characterization data on a limited number of parts.

2. Tested in production at component level. Over temperature tests are performed at 25°C, 105°C, and/or -40°C.

3. Guaranteed by design.

4. Calculated from Total RMS Noise.

5. Lifetime estimated from AEC-Q100 HTOL test.

3.2 ELECTRICAL SPECIFICATIONS

3.2.1 D.C. Electrical Characteristics

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A = 25°C, Low-Noise Mode enabled unless otherwise noted.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES	
SUPPLY VOLTAGES							
VDD		1.71	1.8	3.6	V	1	
VDDIO		1.71	1.8	3.6	V	1	
	SUPPLY CURRENTS & BOOT TIME						
Normal Mode	3-axis Accelerometer, 4 kHz ODR		390		μΑ	1	
Accelerometer Low -Power Mode	100 Hz ODR, 1x averaging		57		μA	2	
Full-Chip Sleep Mode			6		μΑ	1	
	TEMPERATURE RANGE						
Specified Temperature Range	Performance parameters are not applicable beyond Specified Temperature Range	-40		+105	°C	1,2	

Table 2. D.C. Electrical Characteristics

Notes:

- 1. Based on characterization data on a limited number of parts.
- 2. Based on qualification.

3.2.2 A.C. Electrical Characteristics

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A = 25°C, unless otherwise noted.

CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
	JPPLIES		•		
Monotonic ramp. Ramp rate is 10% to 90% of the	0.01		100	ms	1
	ATURE SENSOR				
		1	105	°C	1
	10	0	105		1
Untrimmed		326.8			1
DOW				- , -	
			100	mc	1
	0.01	11	-		1
- · · ·	-	11			1
•	-	1101000	5	ms	1
SAU = 1		1101001	1		
DIGITAL INPUTS (F		I, CS)	T		
	0.7*VDDIO			V	
			0.3*VDDIO	V	1
		< 10		pF	
		1	1	I	F
R _{LOAD} =1 MΩ;	0.9*VDDIO			V	
R _{LOAD} =1 MΩ;			0.1*VDDIO	V	
			0.1	V	1
OPEN=1		100		nA	
LATCH INT EN=0		50		μs	
I ² C I/C) (SCL, SDA)				
	-0.5V		0.3*VDDIO	V	
	0.7*VDDIO		VDDIO + 0.5V	V	
		0.1*VDDIO		V	
3 mA sink current	0		0.4	V	
V ₀₁ =0.4V		3		mA	1
		6		mA	
		100		nA	
	20:0.10		200		
C_b bus capacitance in pr	20+0.1Cb		300	ns	
INTERNAL	CLOCK SOURCE				
FCHOICE_B=1,2,3 SMPLRT_DIV=0		32		kHz	2
FCHOICE_B=0; DLPFCFG=0 or 7		8		kHz	2
FCHOICE_B=0; DLPFCFG=1,2,3,4,5,6;		1		kHz	2
	-5		+5	%	1
					1
					1
CLKSEL=0, 8 CLKSEL=1, 2, 3, 4, 5	-10		+10 +1	%	1
	Monotonic ramp. Ramp rate is 10% to 90% of the final value TEMPER/ Ambient 25°C Untrimmed Valid power-on RESET From power-up From sleep SA0 = 0 SA0 = 1 DIGITAL INPUTS (F SA0 = 1 DIGITAL INPUTS (F RLOAD=1 MΩ; RLOAD=1 MΩ; OPEN=1, 0.3 mA sink Current OPEN=1 LATCH_INT_EN=0 I ² C I/C SMPLNI SMPLNI Cb bus capacitance in pf INTERNAL FCHOICE_B=1,2,3 SMPLRT_DIV=0 FCHOICE_B=0; DLPFCFG=0 or 7 SMPLRT_DIV=0 FCHOICE_B=0;	rate is 10% to 90% of the final valueTEMPERATURE SENSORAmbient-40 $25^{\circ}C$ -Untrimmed-POWER-ON RESET0.01From power-up0.01From sleep-SA0 = 00.7SA0 = 10.7*VDDIODIGITAL INPUTS (FSVK, SAO, SPC, SDOLIGITAL OUTPUT (SDO, INT)RLOAD=1 MQ;0.9*VDDIORLOAD=1 MQ;0.9*VDDIORLOAD=1 MQ;0.9*VDDIOQPEN=1, 0.3 mA sink Current-0.5VOPEN=1-0.5VLATCH_INT_EN=0-0.5VSmA sink current0Vol=0.4V Vol=0.6V-0.5VINTERNAL CUCK SOURCEFCHOICE_B=1,2,3 SMPLRT_DIV=020+0.1Cb SMPLRT_DIV=0FCHOICE_B=0; DLPFCFG=0 or 7 SMPLRT_DIV=0-0.5VFCHOICE_B=0; DLPFCFG=0 or 7 SMPLRT_DIV=0-0.5CCLKSEL=0, 6; 25°C-5CLKSEL=1, 2, 3, 4, 5; 25°C-1	Monotonic ramp. Ramp rate is 10% to 90% of the final value 0.01 TEMPERATURE SENSOR Ambient -40 25°C 0 Untrimmed 326.8 POWER-ON RESET Valid power-on RESET 0.01 From power-up 11 From sleep 11 SA0 = 0 1101000 SA0 = 1 10101001 DIGITAL INPUTS (FSVNC, SA0, SPC, SDI, CS)	Monotonic ramp. Ramp rate is 10% to 90% of the final value 0.01 100 TEMPERATURE SENSOR Ambient -40 105 25°C 0 0 Untrimmed 326.8 0 Valid power-on RESET 0.01 100 From power-up 11 100 From sleep 5 5 SA0 = 0 1101000 5 SA0 = 1 1101000 3 DIGITAL INPUTS (FSYNC, SA0, SPC, SD, CS) DIGITAL INPUTS (FSYNC, SA0, SPC, SD, CS) DIGITAL INPUTS (FSYNC SA0, SPC, SD, CS) DIGITAL OUTPUT (SDO, INT) RLOAD=1 MQ; 0.7*VDDIO OPEN=1 1000 INTERNAL CLOCK SOUNCE FCHOICE_B=12,3 and sink 0.1*VDDIO OPEN=1 100 INTERNAL CLOCK SOURCE FCHOICE_B=12,2,3 32 INTERNAL CLOCK SOURCE FCHOICE_B=0; 32	Monotonic ramp. Ramp rate is 10% to 90% of the final value 0.01 100 ms TEMPERATURE SENSOR Ambient -40 105 °C 25°C 0 105 °C 25°C 0 105 °C Untrimmed 326.8 LSB/°C POWER-ON RESET Valid power-on RESET 0.01 100 ms From power-up 11 100 ms From power-up 1101000 5 ms SA0 = 0 1101000 V V O 0.7*VDDIO V V Colspan="2">OIGITAL INPUTS (FSYNC, SA0, SPC, SDI, CS) DIGITAL OUTPUT (SDO, INT) RLoAD=1 MQ; 0.9*VDDIO V RLOAD=1 MQ; 0.9*VDDIO V V OPEN=1, 0.3 mA sink 0.1 V V OPEN=1 100 nA V O.5V 0.3*VDDIO V O.5V 0.3*VDDIO V

Table 3. A.C. Electrical Characteristics

Notes:

- 1. Based on characterization data on a limited number of parts.
- 2. Guaranteed by design.

3.2.3 Other Electrical Specifications

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A = 25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES	
SERIAL INTERFACE							
SPI Operating Frequency, All Registers	Low Speed Characterization		100 ±10%		kHz	1	
Read/Write	High Speed Characterization		1	8	MHz	1, 2	
			Modes 0				
SPI Modes			and 3				
I ² C Operating Frequency	All registers, Fast-mode			400	kHz	1	
	All registers, Standard-mode			100	kHz	1	

Table 4. Other Electrical Specifications

Notes:

1. Based on characterization data on a limited number of parts.

2. SPI clock duty cycle between 45% and 55% should be used for 8-MHz operation.

3.3 I²C TIMING CHARACTERIZATION

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A = 25°C, unless otherwise noted.

PARAMETERS	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
I ² C TIMING	I ² C FAST-MODE					
f _{SCL} , SCL Clock Frequency				400	kHz	1
$t_{\text{HD.STA}}$ (Repeated) START Condition Hold Time		0.6			μs	1
t _{LOW} , SCL Low Period		1.3			μs	1
t _{HIGH} , SCL High Period		0.6			μs	1
t _{SU.STA} , Repeated START Condition Setup Time		0.6			μs	1
t _{HD.DAT} , SDA Data Hold Time		0			μs	1
t _{su.dat} , SDA Data Setup Time		100			ns	1
t _r , SDA and SCL Rise Time	C_b bus cap. from 10 to 400 pF	20+0.1Cb		300	ns	1
t _f , SDA and SCL Fall Time	C_b bus cap. from 10 to 400 pF	20+0.1Cb		300	ns	1
t _{su.sto} , STOP Condition Setup Time		0.6			μs	1
$t_{\mbox{\scriptsize BUF}},$ Bus Free Time Between STOP and START Condition		1.3			μs	1
C _b , Capacitive Load for each Bus Line			< 400		рF	1
t _{vp.dat} , Data Valid Time				0.9	μs	1
t _{VD.ACK} , Data Valid Acknowledge Time				0.9	μs	1

Table 5. I²C Timing Characteristics

Notes:

1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets.

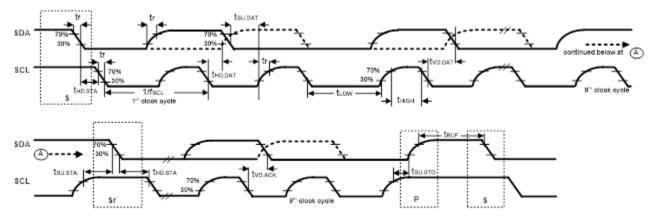


Figure 1. I²C Bus Timing Diagram

3.4 SPI TIMING CHARACTERIZATION

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A = 25°C, unless otherwise noted.

PARAMETERS	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
SPI TIMING						
f _{SPC} , SPC Clock Frequency				8	MHz	1
t _{LOW} , SPC Low Period		56			ns	1
t _{HIGH} , SPC High Period		56			ns	1
t _{su.cs} , CS Setup Time		2			ns	1
t _{HD.CS} , CS Hold Time		63			ns	1
t _{su.spi} , SDI Setup Time		3			ns	1
t _{HD.SDI} , SDI Hold Time		7			ns	1
t _{vD.SDO} , SDO Valid Time	C _{load} = 20 pF			40	ns	1
t _{HD.SDO} , SDO Hold Time	C _{load} = 20 pF	6			ns	1
t _{DIS.SDO} , SDO Output Disable Time				20	ns	1
t _{Fall} , SCLK Fall Time				6.5	ns	2
t _{Rise} , SCLK Rise Time				6.5	ns	2

Table 6. SPI Timing Characteristics (8 MHz Operation)

Notes:

- 1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets.
- 2. Based on other parameter values.

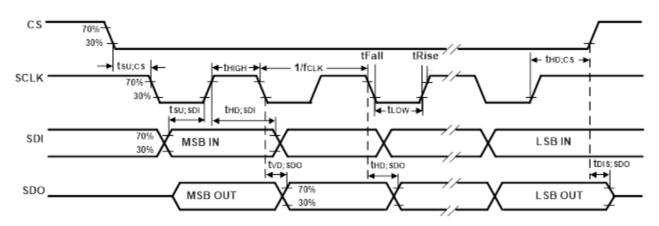


Figure 2. SPI Bus Timing Diagram

3.5 ABSOLUTE MAXIMUM RATINGS

Stress above those listed as "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability.

PARAMETER	RATING
Supply Voltage, VDD	-0.5V to 4V
Supply Voltage, VDDIO	-0.5V to 4V
REGOUT	-0.5V to 2V
Input Voltage Level (SA0, FSYNC, SCL, SDA)	-0.5V to VDDIO + 0.5V
Acceleration (Any Axis, unpowered)	10,000g for 0.2ms
Temperature Range	-40°C to 105°C
Storage Temperature Range	-40°C to 125°C
	2 kV (HBM);
Electrostatic Discharge (ESD) Protection	750V (CDM corner pins)
	500V (CDM all other pins)
Latch-up	JEDEC Class II (2),125°C
Laten-up	±100 mA
Ultrasonic excitation (cleaning/welding/)	Not allowed

Table 7. Absolute Maximum Ratings

3.6 THERMAL INFORMATION

THERMAL METRIC	DESCRIPTION	VALUE
θ _{JA}	Junction-to-ambient thermal resistance	84.58 °C/W
ψл	Junction-to-top characterization parameter	7 °C/W

Table 8. Thermal Information


4 APPLICATIONS INFORMATION

4.1 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION

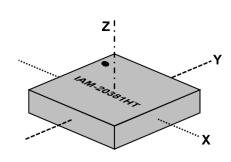

PIN NUMBER	PIN NAME	PIN DESCRIPTION
1	VDDIO	Digital I/O supply voltage
2	SCL/SPC	I ² C serial clock (SCL); SPI serial clock (SPC)
3	SDA/SDI	I ² C serial data (SDA); SPI serial data input (SDI)
4	SA0/SDO	I ² C slave address LSB (SA0); SPI serial data output (SDO)
5	CS	Chip select (0 = SPI mode; $1 = I^2C$ mode)
6	INT	Interrupt digital output (push-pull or open-drain)
7	INT2	Second Interrupt digital output (push-pull or open-drain)
8	FSYNC	Synchronization digital input (optional). Connect to GND if unused
9	RESV	Reserved. Connect to GND
10	RESV	Reserved. Connect to GND
11	RESV	Reserved. Connect to GND
12	RESV	Reserved. Connect to GND
13	GND	Connect to GND
14	REGOUT	Regulator filter capacitor connection
15	RESV	Reserved. Connect to GND
16	VDD	Power Supply

Table 9. Signal Descriptions

Note: VDD, VDDIO, SCL/SPC and CS pins must be correctly managed at power-up to guarantee proper IAM-20381HT start-up. Please refer to sections 4.17.1 and 4.17.2 for detailed power-up instructions.

LGA Package (Top View) 16-pin, 3mm x 3mm x 0.75mm Typical Footprint and Thickness

Orientation of axes

Figure 3. Pin out Diagram for IAM-20381HT 3.0x3.0x0.75mm³ LGA

4.2 TYPICAL OPERATING CIRCUIT

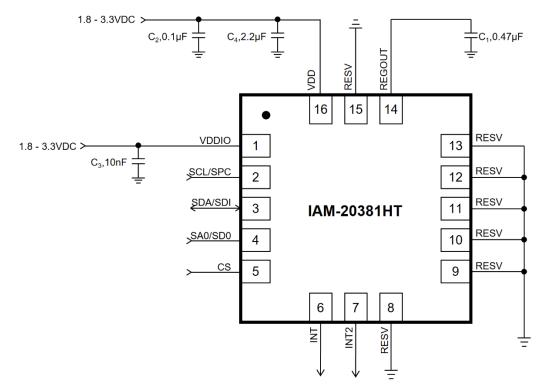


Figure 4. IAM-20381HT LGA Application Schematic

Note: I^2C lines are open drain and pullup resistors (e.g. 10 $k\Omega)$ are required.

4.3 BILL OF MATERIALS FOR EXTERNAL COMPONENTS

COMPONENT	LABEL	SPECIFICATION	QUANTITY
REGOUT Capacitor	C1	X7R, 0.47 μF ±10%	1
	C2	X7R, 0.1 μF ±10%	1
VDD Bypass Capacitors	C4	X7R, 2.2 μF ±10%	1
VDDIO Bypass Capacitor	C3	X7R, 10 nF ±10%	1

Table 10. Bill of Materials

4.4 BLOCK DIAGRAM

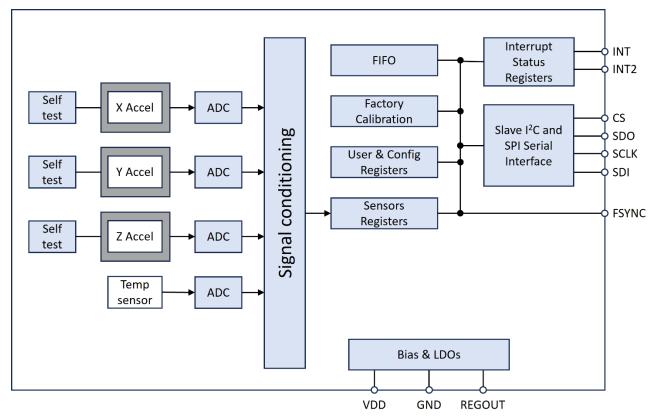


Figure 5. IAM-20381HT Block Diagram

4.5 OVERVIEW

The IAM-20381HT is comprised of the following key blocks and functions:

- Three-axis MEMS accelerometer sensor with 16-bit ADCs and signal conditioning
- Primary I²C and SPI serial communications interfaces
- Self-Test
- Clocking
- Sensor Data Registers
- FIFO
- Two independent Interrupts
- Digital-Output Temperature Sensor
- Bias and LDOs
- Charge Pump
- Standard Power Modes

4.6 THREE-AXIS MEMS ACCELEROMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING

The IAM-20381HT's 3-Axis accelerometer uses separate proof masses for each axis. Acceleration along a particular axis induces displacement on the corresponding proof mass, and capacitive sensors detect the displacement differentially. The IAM-20381HT's architecture reduces the accelerometers' susceptibility to fabrication variations as well as to thermal drift. When the device is placed on a flat surface, it will measure 0g on the X- and Y-axes and +1g on the Z-axis. The accelerometers' scale factor is calibrated at the factory and is nominally independent of supply voltage. Each sensor has a dedicated sigma-delta ADC for providing digital outputs. The full-scale range of the digital output can be adjusted to $\pm 2g$, $\pm 4g$, $\pm 8g$, or $\pm 16g$.

4.7 I²C AND SPI SERIAL COMMUNICATIONS INTERFACES

The IAM-20381HT communicates to a system processor using either a SPI or an I^2C serial interface. The IAM-20381HT always acts as a slave when communicating to the system processor. The LSB of the I^2C slave address is set by pin 4 (SAO).

4.7.1 IAM-20381HT Solution Using I²C Interface

In Figure 6, the system processor is an I²C master to the IAM-20381HT.

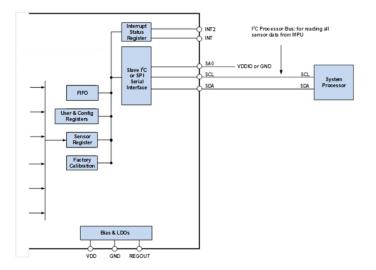
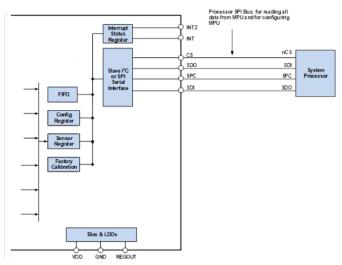



Figure 6. IAM-20381HT Solution Using I2C Interface

4.7.2 IAM-20381HT Solution Using SPI Interface

In Figure 7, the system processor is an SPI master to the IAM-20381HT. Pins 2, 3, 4, and 5 are used to support the SPC, SDI, SDO, and CS signals for SPI communications.

4.8 SELF-TEST

Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each measurement axis can be activated by means of dedicated self-test register (address 0x28 – see 9.4).

When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The output signal is used to observe the self-test response.

The self-test response is defined as follows:

SELF-TEST RESPONSE = SENSOR OUTPUT WITH SELF-TEST ENABLED – SENSOR OUTPUT WITH SELF-TEST DISABLED

When the value of the self-test response is within the specified min/max limits of the product specification, the part has passed self-test. When the self-test response exceeds the min/max values, the part is deemed to have failed self-test.

4.9 CLOCKING

The IAM-20381HT has a flexible clocking scheme, allowing a variety of internal clock sources to be used for the internal synchronous circuitry. This synchronous circuitry includes the signal conditioning and ADCs, and various control circuits and registers. An on-chip PLL provides flexibility in the allowable inputs for generating this clock.

Allowable internal sources for generating the internal clock are:

- a) An internal relaxation oscillator
- b) Auto-select between internal relaxation oscillator and MEMS oscillator to use the best available source

The only setting supporting specified performance in all modes is option "b". Option "b" is the recommended setting to be used.

4.10 SENSOR DATA REGISTERS

The sensor data registers contain the latest accelerometer and temperature measurement data. They are read-only registers and are accessed via the serial interface. Data from these registers may be read anytime.

4.11 FIFO

The IAM-20381HT contains a 4096-byte FIFO register that is accessible via the Serial Interface. The FIFO configuration register determines which data are written into the FIFO. Possible choices include accelerometer data, temperature readings and FSYNC input. A FIFO counter keeps track of how many bytes of valid data are contained in the FIFO. The FIFO register supports burst reads. The interrupt function may be used to determine when new data are available.

4.12 INTERRUPTS

Interrupt functionality is configured via the Interrupt Configuration register. Configurable items include INT pin configuration, interrupt latching and clearing method and interrupt sources. Available interrupt sources are new data available to be read (from the FIFO and Data registers), FIFO overflow and wake on motion. The interrupt status can be read from the Interrupt Status register.

4.13 DIGITAL-OUTPUT TEMPERATURE SENSOR

An on-chip temperature sensor and ADC are used to measure the IAM-20381HT die temperature. The readings from the ADC can be read from the FIFO or the Sensor Data registers.

4.14 BIAS AND LDOS

The bias and LDO section generates the internal supply and the reference voltages and currents required by the IAM-20381HT. Its two inputs are an unregulated VDD and a VDDIO logic reference supply voltage. The LDO output is bypassed by a capacitor at REGOUT. For further details on the capacitor, please refer to the Bill of Materials for External Components.

4.15 CHARGE PUMP

An on-chip charge pump generates the high voltage required for the MEMS oscillator operativity.

4.16 STANDARD POWER MODES

Table 11 lists the user-accessible power modes for IAM-20381HT.

MODE	NAME	ACCEL
1	Sleep Mode	Off
3	Accelerometer Wake-on-Motion (WoM) Mode	Duty-Cycled
4	Accelerometer Low-Noise Mode	On

Table 11. Standard Power Modes for IAM-20381HT

Notes:

1. Power consumption for individual modes can be found in section 3.2.1.

4.17 SENSOR INITIALIZATION AND BASIC CONFIGURATION

The basic configuration of the IAM-20381HT includes the following steps:

- Power-up sequence
- Sensor initialization and clock source selection
- Digital interface access test
- Output data rate (i.e. sampling frequency) selection
- Full scale range selection
- Filter frequency selection
- Power mode selection

4.17.1 Power-up sequence

When applying VDD, the power voltage ramp is detected and a power-on-reset sequence is triggered inside the component. During this phase the device starts operating and internal logic levels are defined. For proper component initialization the power-up should be performed with both CS and SCL/SPC low, ensuring that CS and SCL pins are not in an undetermined state during the VDD ramp. If starting in I²C mode (CS at logic high), power-up should be performed with SCL/SPC low. Power-up with SCL/SPC high is not a supported case and must be avoided.

It is worth noting that if the I/O pins (e.g. CS, SCL/SPC) are between V_{IL} and V_{IH} when the power-on-reset sequence is triggered, their value is undetermined and the internal logic levels may not be properly defined. It should also be noted that V_{IL} and V_{IH} are related to VDDIO and their value changes at power-up according to the applied VDDIO voltage ramp.

Power-up sequences that do not respect the conditions above may not lead to proper digital interface initialization. In this case a preliminary soft reset operation (PWR_MGMT_1 register set 0x81) must be performed to reset the digital interface, as soon as both VDD and VDDIO are stable at their final voltage. Since the digital interface may not be properly initialized, the device may not provide the acknowledge signal if the I²C protocol is used.

4.17.2 Sensor Initialization and Clock Source Selection

When power-up sequence is completed (as per section 4.17.1), a soft reset is required to initialize the sensor and let the IAM-20381HT select the best clock source. The soft reset must be performed by setting the register PWR_MGMT_1 (address 0x6B) to 0x81 (see section 9.18), prior to registers initialization.

Soft reset must be performed as first operation after the power-up sequence to ensure the proper component registers setting. Correct WHO_AM_I value is ensured only after the soft reset has been completed.

4.17.3 Digital interface access test

When soft reset is completed, make sure the component registers access can be done as expected. WHO_AM_I (address 0x75) register can be used for this purpose to verify the identity of the device.

4.17.4 Output Data Rate Selection

To set the output data rate (ODR) to the desired frequency, select the sample rate divider by setting the register SMPLRT_DIV (address 0x19) to the desired value (see section 9.2). For instance, to set the output data rate to 100 Hz, write 0x09 into SMPLRT_DIV.

4.17.5 Full-Scale Range Selection

To set the full-scale range (FSR) of the accelerometer, set the register ACCEL_CONFIG (address 0x1C) to the desired value (see section 9.4). For instance, to set the FSR of the accelerometer to 2g, write 0x00 into ACCEL_CONFIG.

4.17.6 Filter Selection

To set the corner frequency of the digital low-pass filter (DLPF) of the accelerometer, set the register ACCEL_CONFIG2 (address 0x1D) to the desired value (see section 9.5). For instance, to set the corner frequency of the DLPF of the accelerometer to 10.2 Hz, write 0x05 into ACCEL_CONFIG2.

5 PROGRAMMABLE INTERRUPTS

The IAM-20381HT has a programmable interrupt system which can generate an interrupt signal on the INT pin. Status flags indicate the source of an interrupt. Interrupt sources may be enabled and disabled individually.

INTERRUPT NAME	MODULE			
Motion Detection	Motion			
FIFO Overflow	FIFO			
Data Ready	Sensor Registers			

Table 12. Table of Interrupt Source

5.1 WAKE-ON-MOTION INTERRUPT

The IAM-20381HT provides motion detection capability. A qualifying motion sample is one where the high passed sample from any axis has an absolute value exceeding a user-programmable threshold. The following steps explain how to configure the Wake-on-Motion Interrupt.

Step 1: Ensure that Accelerometer is running

• In PWR_MGMT_1 register (0x6B) set ACCEL_CYCLE = 0, SLEEP = 0;

Step 2: Accelerometer Configuration

• In ACCEL_CONFIG2 register (0x1D) set ACCEL_FCHOICE_B = 0 and A_DLPF_CFG[2:0] = b111

Step 3: Enable Motion Interrupt

• In INT_ENABLE register (0x38) set WOM_INT_EN[2:0] = b111 to enable motion interrupt

Once triggered, WOM interrupt is generated on INT pin (if INT2_EN bit is set to 0) or on INT2 pin (if INT2_EN is set to 1).

Step 4: Set Motion Threshold

• Set the motion threshold in ACCEL_WOM_THR register (0x1F)

Step 5: Enable Accelerometer Hardware Intelligence

- In ACCEL_INTEL_CTRL register (0x69) set ACCEL_INTEL_EN = 1 to enable the Wake-on-Motion detection logic
- In ACCEL_INTEL_CTRL register (0x69) set ACCEL_INTEL_MODE = 1 to make the detection insensitive to the acceleration DCcomponent
- In ACCEL_INTEL_CTRL register (0x69) ensure that bit 0 is set to 0.

Step 6: Set Accelerometer WoM ODR Selection

• In LP_MODE_CFG register (0x1E) set ACCEL_WOM_ODR_CTRL[3:0] according to Table 18

Step 7: Enable Cycle Mode (Accelerometer WoM Mode)

- In PWR_MGMT_2 register (0x6C) set STBY_XA = STBY_YA = STBY_ZA = 0
- In PWR_MGMT_1 register (0x6B) set ACCEL_CYCLE = 1

6 DIGITAL INTERFACE

6.1 I²C AND SPI SERIAL INTERFACES

The internal registers and memory of the IAM-20381HT can be accessed using either I²C at 400 kHz or SPI at 8 MHz. SPI operates in four-wire mode.

PIN NUMBER	PIN NAME	PIN DESCRIPTION
1	VDDIO	Digital I/O supply voltage.
4	SA0 / SDO	I ² C Slave Address LSB (SA0); SPI serial data output (SDO)
2	SCL / SPC	I ² C serial clock (SCL); SPI serial clock (SPC)
3	SDA / SDI	I ² C serial data (SDA); SPI serial data input (SDI)

Table 13. Serial Interface

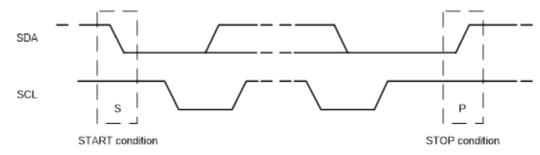
Note: To prevent switching into I²C mode when using SPI, the I²C interface should be disabled by setting the I2C_IF_DIS configuration bit. Setting this bit should be performed immediately after waiting for the time specified by the "Start-Up Time for Register Read/Write" in section 3.2.2.

For further information regarding the I2C_IF_DIS bit, please refer to sections 8 and 9 of this document.

6.2 I²C INTERFACE

 $I^{2}C$ is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are open-drain and bidirectional. In a generalized $I^{2}C$ interface implementation, attached devices can be a master or a slave. The master device puts the slave address on the bus, and the slave device with the matching address acknowledges the master.

The IAM-20381HT always operates as a slave device when communicating to the system processor, which acts as the master. SDA and SCL lines typically need pull-up resistors to VDD. The maximum bus speed is 400 kHz.


The slave address of the IAM-20381HT is b110100X which is 7 bits long. The LSB bit of the 7-bit address is determined by the logic level on pin SA0. This allows two IAM-20381HTs to be connected to the same I²C bus. When used in this configuration, the address of one of the devices should be b1101000 (pin SA0 is logic low) and the address of the other should be b1101001 (pin SA0 is logic high).

6.3 IC COMMUNICATIONS PROTOCOL

START (S) and STOP (P) Conditions

Communication on the I²C bus starts when the master puts the START condition (S) on the bus, which is defined as a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered busy until the master puts a STOP condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH (see Figure 8).

Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.

Figure 8. START and STOP Conditions

Data Format / Acknowledge

I²C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per data transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the master, while the receiver generates the actual acknowledge signal by pulling down SDA and holding it low during the HIGH portion of the acknowledge clock pulse.

If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed, it can hold SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and releases the clock line (refer to Figure 9).

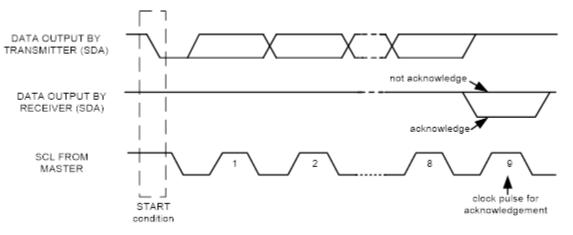
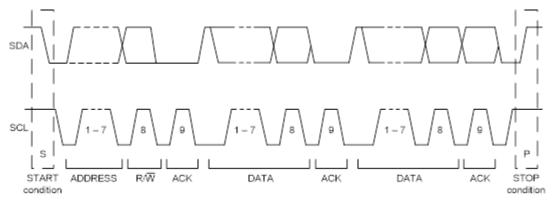



Figure 9. Acknowledge on the I²C Bus

Communications

After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by an 8th bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device. Each byte transferred must be followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of the SCL line. Data transmission is always terminated by the master with a STOP condition (P), thus freeing the communications line. However, the master can generate a repeated START condition (Sr), and address another slave without first generating a STOP condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take place when SCL is low, except for start and stop conditions.

To write the internal IAM-20381HT registers, the master transmits the start condition (S), followed by the I²C address and the write bit (0). At the 9th clock cycle (when the clock is high), the IAM-20381HT acknowledges the transfer. Then the master puts the register address (RA) on the bus. After the IAM-20381HT acknowledges the reception of the register address, the master puts the register data onto the bus. This is followed by the ACK signal, and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the IAM-20381HT automatically increments the register address and loads the data to the appropriate register. The following figures show single and two-byte write sequences.

Single-Byte Write Sequence

Master	S	AD+W		RA		DATA		Р
Slave			ACK		ACK		ACK	

Burst Write Sequence

N	/laster	S	AD+W		RA		DATA		DATA		Ρ
S	lave			ACK		ACK		ACK		ACK	

To read the internal IAM-20381HT registers, the master sends a start condition, followed by the I²C address and a write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the IAM-20381HT, the master transmits a start signal followed by the slave address and read bit. As a result, the IAM-20381HT sends an ACK signal and the data. The communication ends with a not acknowledge (NACK) signal and a stop bit from master. The NACK condition is defined such that the SDA line remains high at the 9th clock cycle. The following figures show single and two-byte read sequences.

Single-Byte Read Sequence

Master	S	AD+W		RA		S	AD+R			NACK	Р
Slave			ACK		ACK			ACK	DATA		

Burst Read Sequence

Master	S	AD+W		RA		S	AD+R			ACK		NACK	Ρ
Slave			ACK		АСК			ACK	DATA		DATA		

6.4 I²C TERMS

SIGNAL	DESCRIPTION
S	Start Condition: SDA goes from high to low while SCL is high
AD	Slave I ² C address
W	Write bit (0)
R	Read bit (1)
ACK	Acknowledge: SDA line is low while the SCL line is high at the 9 th clock cycle
NACK	Not-Acknowledge: SDA line stays high at the 9 th clock cycle
RA	IAM-20381HT internal register address
DATA	Transmit or received data
Р	Stop condition: SDA going from low to high while SCL is high

Table 14. I²C Terms

6.5 SPI INTERFACE

SPI is a 4-wire synchronous serial interface that uses two control lines and two data lines. The IAM-20381HT always operates as a Slave device during standard Master-Slave SPI operation.

With respect to the Master, the Serial Clock output (SPC), the Serial Data Output (SDO) and the Serial Data Input (SDI) are shared among the Slave devices. Each SPI slave device requires its own Chip Select (CS) line from the master.

CS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one CS line is active at a time, ensuring that only one slave is selected at any given time. The CS lines of the non-selected slave devices are held high, causing their SDO lines to remain in a high-impedance (high-z) state so that they do not interfere with any active devices.

SPI Operational Features

- 1. Data are delivered MSB first and LSB last
- 2. Data are latched on the rising edge of SPC
- 3. Data should be transitioned on the falling edge of SPC
- 4. The maximum frequency of SPC is 8 MHz
- 5. SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The first byte contains the SPI Address, and the following byte(s) contain(s) the SPI data. The first bit of the first byte contains the Read/Write bit and indicates the Read (1) or Write (0) operation. The following 7 bits contain the Register Address. In cases of multiple-byte Read/Writes, data are two or more bytes:
 - SPI Address format

MSB							LSB
R/W	A6	A5	A4	A3	A2	A1	A0

SPI Data format

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0

6. Supports Single or Burst Read/Writes.

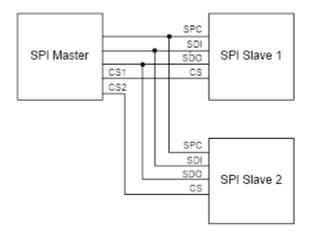


Figure 11. Typical SPI Master/Slave Configuration

7 SERIAL INTERFACE CONSIDERATIONS

7.1 IAM-20381HT SUPPORTED INTERFACES

The IAM-20381HT supports I²C communications on its serial interface.

The IAM-20381HT's I/O logic levels are set to be VDDIO.

Figure 12 depicts a sample circuit of IAM-20381HT. It shows the relevant logic levels and voltage connections.

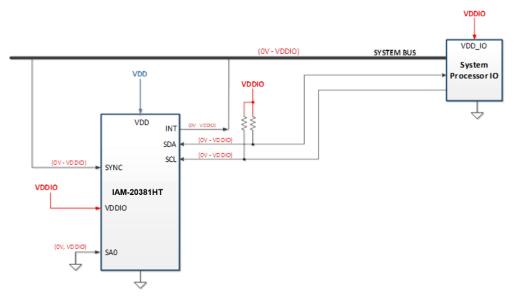


Figure 12. I/O Levels and Connections

8 REGISTER MAP

The following table lists the register map for the IAM-20381HT.

Addr (Hex)	Addr (Dec)	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0D	13	SELF_TEST_X_ACCEL	XA_ST_DATA[7:0]							
0E	14	SELF_TEST_Y_ACCEL		YA_ST_DATA[7:0]						
0F	15	SELF_TEST_Z_ACCEL		ZA_ST_DATA[7:0]						
19	25	SMPLRT_DIV				SMPLRT_I	DIV[7:0]			
1A	26	CONFIG	-	FIFO_MODE		EXT_SYNC_SET[2:0]		DLPF_CFG[2:0]]
1C	28	ACCEL_CONFIG	XA_ST	YA_ST	ZA_ST	ACCEL_F	S_SEL[1:0]			
1D	29	ACCEL_CONFIG 2	FIFO_	_SIZE[1:0]	DEC2	_CFG[1:0]	ACCEL_FCHOICE_B		A_DLPF_CFG[2:	0]
1E	30	LP_MODE_CFG	-	-	-	-		ACCEL_WOM_O	DR_CTRL [3:0]	
1F	31	ACCEL_WOM_THR				WOM_TH	IR[7:0]			
23	35	FIFO_EN	TEMP_FIFO_EN	-	-	-	ACCEL_FIFO_EN	-	-	-
36	54	FSYNC_INT	FSYNC_INT	-	-	-	-	-	-	-
37	55	INT_PIN_CFG	INT_LEVEL	INT_OPEN	LATCH_INT_EN	INT_RD_CLEAR	FSYNC_INT_LEVEL	FSYNC _INT_MODE_EN	-	INT2_EN
38	56	INT_ENABLE		WOM_INT_EN[2:0]	•	FIFO_OFLOW_EN	-		-	DATA_RDY_INT_EN
3A	58	INT_STATUS		WOM_INT[2:0]		FIFO_OFLOW_INT	-	-	-	DATA_RDY_INT
3B	59	ACCEL_XOUT_H		ACCEL_XOUT_H[15:8]						
3C	60	ACCEL_XOUT_L				ACCEL_XOU	JT_L[7:0]			
3D	61	ACCEL_YOUT_H				ACCEL_YOU	T_H[15:8]			
3E	62	ACCEL_YOUT_L				ACCEL_YOU	JT_L[7:0]			
3F	63	ACCEL_ZOUT_H				ACCEL_ZOU	T_H[15:8]			
40	64	ACCEL_ZOUT_L				ACCEL_ZOU	JT_L[7:0]			
41	65	TEMP_OUT_H				TEMP_OU	IT[15:8]			
42	66	TEMP_OUT_L				TEMP_OU	JT[7:0]			
68	104	SIGNAL_PATH_RESET	-	-	-	-	-	-	ACCEL_RST	TEMP_RST
69	105	ACCEL_INTEL_CTRL	ACCEL_INTEL_EN	ACCEL_INTEL_MODE	-	-	-	-	-	-
6A	106	USER_CTRL	-	FIFO_EN	-	I2C_IF_DIS	-	FIFO_RST	-	SIG_COND_RST
6B	107	PWR_MGMT_1	DEVICE_RESET	SLEEP	ACCEL_CYCLE		TEMP_DIS		CLKSEL[2:0]	
6C	108	PWR_MGMT_2	FIFO_LP_EN	-	STBY_XA	STBY_YA	STBY_ZA	-	-	-
72	114	FIFO_COUNTH	-	-	-		F	FIFO_COUNT[12:8]		
73	115	FIFO_COUNTL				FIFO_COU	INT[7:0]			
74	116	FIFO_R_W				FIFO_DA	TA[7:0]			
75	117	WHO_AM_I				WHOAM	11[7:0]			
77	119	XA_OFFSET_H				XA_OFFS	[14:7]			
78	120	XA_OFFSET_L				XA_OFFS [6:0]				-
7A	122	YA_OFFSET_H	YA_OFFS [14:7]							
7B	123	YA_OFFSET_L				YA_OFFS [6:0]				-
7D	125	ZA_OFFSET_H				ZA_OFFS	[14:7]			
7E	126	ZA_OFFSET_L				ZA_OFFS [6:0]				-

Table 15. Register map

Note: Register Names ending in _H and _L contain the high and low bytes, respectively, of an internal register value.

In the detailed register tables that follow, register names are in capital letters, while register values are in capital letters and italicized. For example, the ACCEL_XOUT_H register (Register 59) contains the 8 most significant bits, ACCEL_XOUT[15:8], of the 16-bit X-Axis accelerometer measurement, ACCEL_XOUT. The reset value is 0x00 for all registers other than the registers below:

- Self-test registers 0, 1, 2, 13, 14, 15 contain pre-programmed values
- Register 107, PWR_MGMT_1 = 0x01
- Register 117, WHO_AM_I: (default value is reported in section 9.22)
- Registers 119, 120, 122, 123, 125, 126 contain pre-programmed offset cancellation values

9 REGISTER DESCRIPTIONS

This section describes the function and contents of each register within the IAM-20381HT.

Note: The device will come up in 6-Axis Low-Noise Mode upon power-up.

9.1 REGISTERS 13 TO 15 – ACCELEROMETER SELF-TEST REGISTERS

Register Name: SELF_TEST_X_ACCEL, SELF_TEST_Y_ACCEL, SELF_TEST_Z_ACCEL

Type: READ/WRITE

Register Address: 13, 14, 15 (Decimal); 0D, 0E, 0F (Hex)

REGISTER	BIT	NAME	FUNCTION
SELF_TEST_X_ACCEL	[7:0]	XA_ST_DATA[7:0]	The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user.
SELF_TEST_Y_ACCEL	[7:0]	YA_ST_DATA[7:0]	The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user.
SELF_TEST_Z_ACCEL	[7:0]	ZA_ST_DATA[7:0]	The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user.

The equation to convert self-test codes in OTP to factory self-test measurement is:

$$ST _OTP = (2620/2^{FS}) * 1.01^{(ST_code=1)}$$
 (lsb)

where ST_OTP is the value that is stored in OTP of the device, FS is the Full Scale value, and ST_code is based on the Self-Test value (ST_FAC) determined in InvenSense's factory final test and calculated based on the following equation:

$$ST_code = round(\frac{\log(ST_FAC/(2620/2^{FS}))}{\log(1.01)}) + 1$$

9.2 REGISTER 25 – SAMPLE RATE DIVIDER

Register Name: SMPLRT_DIV

Register Type: READ/WRITE

Register Address: 25 (Decimal); 19 (Hex)

BIT	NAME	FUNCTION
[7:0]	SMPLRT_DIV[7:0]	Divides the internal sample rate (see register CONFIG) to generate the sample rate that controls sensor data
		output rate, FIFO sample rate.
		Note: This register is only effective when FCHOICE_B register bits are 2'b00, and (0 < DLPF_CFG < 7).
		This is the update rate of the sensor register:
		SAMPLE_RATE = INTERNAL_SAMPLE_RATE / (1 + SMPLRT_DIV)
		Where INTERNAL_SAMPLE_RATE = 1 kHz

9.3 REGISTER 26 – CONFIGURATION

Register Name: CONFIG

Register Type: READ/WRITE

Register Address: 26 (Decimal); 1A (Hex)

BIT	NAME	FUNCTION
[7]	-	Always set to 0
[6]	FIFO_MODE	When set to '1', when the FIFO is full, additional writes will not be written to FIFO. When set to '0', when the FIFO is full, additional writes will be written to the FIFO, replacing the oldest data.

BIT	NAME		FUNC	TION
[5:3]	EXT_SYNC_SET[2:0]	Enables the FSYNC pin dat	a to be sampled.	
		EXT_SYNC_SET	FSYNC bit location	
		0	function disabled	
		1	TEMP_OUT_L[0]	
		2	Reserved	
		3	Reserved	
		4	Reserved	
		5	ACCEL_XOUT_L[0]	
		6	ACCEL_YOUT_L[0]	
		7	ACCEL_ZOUT_L[0]	
			•	be done such that if FSYNC toggles, the latched value ue is captured by the sample rate strobe.
[2:0]	DLPF_CFG[2:0]	For the DLPF to be used, F See Table 16.	CHOICE_B[1:0] is 2'b00.	

The DLPF is configured by $DLPF_CFG$, when $FCHOICE_B$ [1:0] = 2b'00. Temperature sensor data is filtered according to the value of $DLPF_CFG$ and $FCHOICE_B$ as shown in Table 16.

FCHO	ICE_B	DLPF_CFG	Temperature Sensor
<1>	<1> <0>		3-dB BW (Hz)
х	1	х	4000
1	0	х	4000
0	0	0	4000
0	0	1	188
0	0	2	98
0	0	3	42
0	0	4	20
0	0	5	10
0	0	6	5
0	0	7	4000

Table 16. Temperature Sensor bandwidth configuration

9.4 REGISTER 28 – ACCELEROMETER CONFIGURATION

Register Name: ACCEL_CONFIG

Register Type: READ/WRITE

Register Address: 28 (Decimal); 1C (Hex)

BIT	NAME	FUNCTION
[7]	XA_ST	X Accel self-test
[6]	YA_ST	Y Accel self-test
[5]	ZA_ST	Z Accel self-test
[4:3]	ACCEL FS SEL[1:0]	Accel Full Scale Select:
[4.5]	ACCEL_FS_SEL[1.0]	±2g (00), ±4g (01), ±8g (10), ±16g (11)
[2:0]	-	Reserved

9.5 REGISTER 29 – ACCELEROMETER CONFIGURATION 2

Register Name: ACCEL_CONFIG2

Register Type: READ/WRITE

Register Address: 29 (Decimal); 1D (Hex)

BIT	NAME	FUNCTION
		Specifies FIFO size according to the following:
		0 = 512 Byte
[7:6]	FIFO_SIZE[1:0]	1 = 1 kByte
		2 = 2 kByte
		3 = 4 kByte
		Averaging filter settings for WoM Accelerometer Mode:
		0 = Average 4 samples
[5:4]	DEC2_CFG[1:0]	1 = Average 8 samples
		2 = Average 16 samples
		3 = Average 32 samples
[3]	ACCEL_FCHOICE_B	Used to bypass DLPF as shown in the table below.
[2:0]	A_DLPF_CFG	Accelerometer low pass filter setting as shown in the table below.

		A	ccelerometer	
ACCEL_FCHOICE_B	A_DLPF_CFG	3-dB BW (Hz)	Noise BW (Hz)	Rate (kHz)
1	Х	1046.0	1100.0	4
0	0	218.1	235.0	1
0	1	218.1	235.0	1
0	2	99.0	121.3	1
0	3	44.8	61.5	1
0	4	21.2	31.0	1
0	5	10.2	15.5	1
0	6	5.1	7.8	1
0	7	420.0	441.6	1

Table 17. Accelerometer Data Rates and Bandwidths (Low-Noise Mode)

The data output rate of the DLPF filter block can be further reduced by a factor of 1/(1+SMPLRT_DIV), where SMPLRT_DIV is an 8-bit integer. Following is a small subset of ODRs that are configurable for the accelerometer in Low-Noise (Hz): 3.91, 7.81, 15.63, 31.25, 62.50, 125, 250, 500, 1K.

Table 18 lists the accelerometer filter bandwidths and noise available in the WoM mode of operation. In the WoM mode of operation, the accelerometer is duty-cycled.

To operate in accelerometer WoM mode, ACCEL_CYCLE must be set to '1' in PWR_MGMT_1 (address 0x6B).

			1			
ACCEL_FCHOICE_B	1	0	0	0	0	
A_DLPF_CFG		х	7	7	7	7
DEC2_CFG		х	0	1	2	3
Averages		1x	4x	8x	16x	32x
Ton (ms)		1.084	1.84	2.84	4.84	8.84
Noise BW (Hz)		1100.0	441.6	235.4	121.3	61.5
Noise (mg rms) TYP Based on 250 μ g/ \sqrt{Hz}		8.3	5.3	3.8	2.8	2.0
ACCEL_WOM_ODR_CTRL ODR (Hz)			Current C	Consumption	(µA) TYP 1	
4	3.9	8.4	9.4	10.8	13.6	19.2
5	7.8	9.8	11.9	14.7	20.3	31.4
6	15.6	12.8	17.0	22.5	33.7	55.9
7	31.3	18.7	27.1	38.2	60.4	104.9
8	62.5	30.4	47.2	69.4	113.9	202.8
9 125.0		57.4	87.5	132.0	220.9	N/A
10 250.0		100.9	168.1	257.0	N,	/A
11 500.0		194.9	329.3		N/A	

 Table 18. Example Configurations for Accelerometer WoM Mode

9.6 REGISTER 30 – LOW POWER MODE CONFIGURATION

Register Name: LP_MODE_CFG

Register Type: READ/WRITE

Register Address: 30 (Decimal); 1E (Hex)

BIT	NAME	FUNCTION
[7:4]	G_AVGCFG[3:0]	Reserved
[3:0]	ACCEL_WOM_ODR_CT RL[3:0]	Accelerometer WoM Mode ODR configuration. ACCEL_WOM_ODR_CTRL is effective only when ACCEL_CYCLE is set to '1': 0 to 3 = RESERVED 4 = 3.9 Hz 5 = 7.8 Hz 6 = 15.6 Hz 7 = 31.3 Hz 8 = 62.5 Hz 9 = 125 Hz 10 = 250 Hz 11 = 500 Hz 12 to 15 = RESERVED

9.7 REGISTER 31 – WAKE-ON MOTION THRESHOLD (ACCELEROMETER)

Register Name: ACCEL_WOM_THR

Register Type: READ/WRITE

Register Address: 31 (Decimal); 1F (Hex)

BIT	NAME	FUNCTION
[7:0]	WOM_THR[7:0]	This register holds the threshold value for the Wake on Motion Interrupt for accelerometer. Wake on motion threshold resolution is 4 mg/LSB regardless the selected full scale.

9.8 REGISTER 35 – FIFO ENABLE

Register Name: FIFO_EN

Register Type: READ/WRITE

Register Address: 35 (Decimal); 23 (Hex)

BIT	NAME	FUNCTION
[7]	TEMP FIFO EN	1 – Write TEMP_OUT_H and TEMP_OUT_L to the FIFO at the sample rate; If enabled, buffering of data occurs even if data path is in standby.
[,]		0 – Function is disabled.
[6:4]	-	Reserved.
		1 – Write ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H, ACCEL_YOUT_L, ACCEL_ZOUT_H, and
[3]	ACCEL_FIFO_EN	ACCEL_ZOUT_L to the FIFO at the sample rate;
		0 – Function is disabled.
[2:0]	-	Reserved.

9.9 REGISTER 54 – FSYNC INTERRUPT STATUS

Register Name: FSYNC_INT

Register Type: READ to CLEAR

Register Address: 54 (Decimal); 36 (Hex)

BIT	NAME	FUNCTION
[7]	[7] FSYNC INT	This bit automatically sets to 1 when a FSYNC interrupt has been generated. The bit clears to 0 after the
[,]	ionic_iii	register has been read.

9.10 REGISTER 55 - INT/INT2 PIN / BYPASS ENABLE CONFIGURATION

Register Name: INT_PIN_CFG

Register Type: READ/WRITE

Register Address: 55 (Decimal); 37 (Hex)

BIT	NAME	FUNCTION
[7]	INT_LEVEL	1 – The logic level for INT/INT2 pin is active low.
[7]		0 – The logic level for INT/INT2 pin is active high.
[6]	INT OPEN	1 – INT/INT2 pin is configured as open drain.
[0]		0 – INT/INT2 pin is configured as push-pull.
[5]	LATCH INT EN	1 – INT/INT2 pin level held until interrupt status is cleared.
[5]		0 – INT/INT2 pin indicates interrupt pulse's width is 50 μs.
[4]		1 – Interrupt status is cleared if any read operation is performed.
[4]	INT_RD_CLEAR	0 – Interrupt status is cleared only by reading INT_STATUS register
[3]		1 – The logic level for the FSYNC pin as an interrupt is active low.
[5]	FSYNC_INT_LEVEL	0 – The logic level for the FSYNC pin as an interrupt is active high.
[2]	FSYNC INT MODE EN	When this bit is equal to 1, the FSYNC pin will trigger an interrupt when it transitions to the level specified by
[2]		FSYNC_INT_LEVEL. When this bit is equal to 0, the FSYNC pin is disabled from causing an interrupt.
[1]	-	Reserved.
		When INT2_EN = 0, all of the interrupts appear on the INT pin, and INT2 interrupt pin is unused. When
[0]	INT2_EN	INT2_EN = 1, all interrupts except for data ready appear on the INT2 pin, and data ready interrupt appears on
		the INT interrupt pin.

9.11 REGISTER 56 - INTERRUPT ENABLE

Register Name: INT_ENABLE

Register Type: READ/WRITE

Register Address: 56 (Decimal); 38 (Hex)

BIT	NAME	FUNCTION
[7:5]	WOM_INT_EN[2:0]	111 – Enable WoM interrupt on accelerometer.000 – Disable WoM interrupt on accelerometer.
[4]	FIFO_OFLOW_EN	 1 – Enables a FIFO buffer overflow to generate an interrupt. 0 – Function is disabled.
[3:1]	-	Reserved.
[0]	DATA_RDY_INT_EN	Data ready interrupt enable.

Data ready interrupt is always generated on INT pin. All the other interrupts signals are generated on INT pin if INT2_EN bit is set to 0 or on INT2 pin if INT2_EN bit is set to 1.

9.12 REGISTER 58 – INTERRUPT STATUS

Register Name: INT_STATUS

Register Type: READ to CLEAR

Register Address: 58 (Decimal); 3A (Hex)

BIT	NAME	FUNCTION
[7:5]	WOM_INT[2:0]	Accelerometer WoM interrupt status. Cleared on Read. 111 – WoM interrupt on accelerometer
[4]	FIFO_OFLOW_INT	This bit automatically sets to 1 when a FIFO buffer overflow has been generated. The bit clears to 0 after the register has been read.
[3:1]	-	Reserved.
[0]	DATA_RDY_INT	This bit automatically sets to 1 when a Data Ready interrupt is generated. The bit clears to 0 after the register has been read.

9.13 REGISTERS 59 TO 64 – ACCELEROMETER MEASUREMENTS

Register Name: ACCEL_XOUT_H

Register Type: READ only

Register Address: 59 (Decimal); 3B (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_XOUT_H[15:8]	High byte of accelerometer x-axis data.

Register Name: ACCEL_XOUT_L

Register Type: READ only

Register Address: 60 (Decimal); 3C (Hex)

BIT	NAME	FUNCTION	
[7:0]	ACCEL_XOUT_L[7:0]	Low byte of accelerometer x-axis data.	

Register Name: ACCEL_YOUT_H

Register Type: READ only

Register Address: 61 (Decimal); 3D (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_YOUT_H[15:8]	High byte of accelerometer y-axis data.
Register Name: ACCEL VOLIT L		

Register Name: ACCEL_YOUT_L

Register Type: READ only

Register Address: 62 (Decimal); 3E (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_YOUT_L[7:0]	Low byte of accelerometer y-axis data.

Register Name: ACCEL_ZOUT_H

Register Type: READ only

Register Address: 63 (Decimal); 3F (Hex)

BIT	NAME	FUNCTION	
[7:0]	ACCEL_ZOUT_H[15:8]	High byte of accelerometer z-axis data.	

Register Name: ACCEL_ZOUT_L

Register Type: READ only

Register Address: 64 (Decimal); 40 (Hex)

BIT	NAME	FUNCTION	
[7:0]	ACCEL_ZOUT_L[7:0]	Low byte of accelerometer z-axis data.	

9.14 REGISTERS 65 AND 66 - TEMPERATURE MEASUREMENT

Register Name: TEMP_OUT_H

Register Type: READ only

Register Address: 65 (Decimal); 41 (Hex)

BIT	NAME	FUNCTION	
[7:0]	TEMP_OUT[15:8]	High byte of the temperature sensor output.	

Register Name: TEMP_OUT_L

Register Type: READ only

Register Address: 66 (Decimal); 42 (Hex)

BIT	NAME	FUNCTION		
	TEMP_OUT[7:0]	Low byte of the tem	perature sensor output	
[7:0]		TEMP_degC	= ((TEMP_OUT –	
			RoomTemp_Offset)/Temp_Sensitivity) + 25degC	

9.15 REGISTER 104 - SIGNAL PATH RESET

Register Name: SIGNAL_PATH_RESET

Register Type: READ/WRITE

Register Address: 104 (Decimal); 68 (Hex)

BIT	NAME	FUNCTION	
[7:2]	-	Reserved.	
[1]	ACCEL RST	Reset accel digital signal path.	
[-]	ACCEL_IGI	Note: Sensor registers are not cleared. Use SIG_COND_RST to clear sensor registers.	
[0]	TEMP RST	Reset temp digital signal path.	
[0]		Note: Sensor registers are not cleared. Use SIG_COND_RST to clear sensor registers.	

9.16 REGISTER 105 – ACCELEROMETER INTELLIGENCE CONTROL

Register Name: ACCEL_INTEL_CTRL

Register Type: READ/WRITE

Register Address: 105 (Decimal); 69 (Hex)

BIT	NAME FUNCTION	
[7]	ACCEL_INTEL_EN This bit enables the Wake-on-Motion detection logic.	
[6]	ACCEL_INTEL_MODE	 0 – Compares the current sample to the first sample taken when entering in WoM mode. 1 – Compare the current sample with the previous sample.
[5:1]	-	Reserved.
[0]	-	Reserved, must be set to 0 when WoM is activated. Please refer to section 5.1

9.17 REGISTER 106 - USER CONTROL

Register Name: USER_CTRL

Register Type: READ/WRITE

Register Address: 106 (Decimal); 6A (Hex)

BIT	NAME	FUNCTION	
[7]	-	Reserved.	
[6]	FIFO_EN	1 – Enable FIFO operation mode. 0 – Disable FIFO access from serial interface. To disable FIFO writes by DMA, use FIFO EN register.	
[5]	-	Reserved.	
[4]	I2C_IF_DIS	1 – Disable I ² C Slave module and put the serial interface in SPI mode only.	
[3]	-	Reserved.	
[2]	FIFO_RST	1 – Reset FIFO module. Reset is asynchronous. This bit auto clears after one clock cycle of the internal 20 MHz clock.	
[1]	-	Reserved.	
[0]	SIG_COND_RST	1 – Reset all accel digital signal path and temp digital signal path. This bit also clears all the sensor registers.	

9.18 REGISTER 107 – POWER MANAGEMENT 1

Register Name: PWR_MGMT_1

Register Type: READ/WRITE

Register Address: 107 (Decimal); 6B (Hex)

BIT	NAME	FUNCTION		
[7]	DEVICE_RESET	1 – Reset the internal registers and restores the default settings. The bit automatically clears to 0 once the reset is done.		
[6]	SLEEP	When s	et to 1, the chip is set to sleep mode. Default setting is 0.	
[5]	ACCEL_CYCLE	When set to 1, and SLEEP and STANDBY are not set to 1, the chip will cycle between sleep and taking a single accelerometer sample. Note: When all accelerometer axes are disabled via PWR_MGMT_2 register bits and cycle is enabled, the chip will wake up at the rate determined by the respective registers above, but will not take any samples.		
[4]	-	Reserved.		
[3]	TEMP_DIS	When set to 1, this bit disables the temperature sensor.		
[2:0]	CLKSEL[2:0]	Code 0 1 2 3 4 5 6 7	Clock Source Internal 20 MHz oscillator. Auto selects the best available clock source – PLL if ready, else use the Internal oscillator Auto selects the best available clock source – PLL if ready, else use the Internal oscillator Auto selects the best available clock source – PLL if ready, else use the Internal oscillator Auto selects the best available clock source – PLL if ready, else use the Internal oscillator Auto selects the best available clock source – PLL if ready, else use the Internal oscillator Auto selects the best available clock source – PLL if ready, else use the Internal oscillator Internal 20 MHz oscillator. Stops the clock and keeps timing generator in reset.	

Note: The default value of CLKSEL[2:0] is 001.

9.19 REGISTER 108 – POWER MANAGEMENT 2

Register Name: PWR_MGMT_2

Register Type: READ/WRITE

Register Address: 108 (Decimal); 6C (Hex)

BIT	NAME	FUNCTION	
[7]	FIFO_LP_EN	1 – Enable FIFO in Accelerometer WoM mode. Default setting is 0.	
[6]	-	Reserved.	
[5]	STBY_XA	1 – X accelerometer is disabled.	
[5]		0 – X accelerometer is on.	
[4]	STBY_YA	1 – Y accelerometer is disabled.	
[4]		0 – Y accelerometer is on.	
[2]	ΣΤΟΥ 7 Δ	1 – Z accelerometer is disabled.	
[3]	STBY_ZA	0 – Z accelerometer is on.	
[2:0]	-	Reserved.	

9.20 REGISTERS 114 AND 115 - FIFO COUNT REGISTERS

Register Name: FIFO_COUNTH

Register Type: READ Only

Register Address: 114 (Decimal); 72 (Hex)

BIT	NAME	FUNCTION
[7:5]	-	Reserved.
[4:0]	[4:0] FIFO_COUNT[12:8] High Bits; count indicates the number of written bytes in the FIFO. Reading this byte latches the data for both FIFO_COUNTH, and FIFO_COUNTL.	

Register Name: FIFO_COUNTL

Register Type: READ Only

Register Address: 115 (Decimal); 73 (Hex)

BIT	NAME	FUNCTION	
[7:0]	FIFO COUNT[7:0]	Low Bits; count indicates the number of written bytes in the FIFO.	
[7:0]		Note: Must read FIFO_COUNTH to latch new data for both FIFO_COUNTH and FIFO_COUNTL.	

9.21 REGISTER 116 – FIFO READ WRITE

Register Name: FIFO_R_W

Register Type: READ/WRITE

Register Address: 116 (Decimal); 74 (Hex)

BIT	NAME	FUNCTION
[7:0]	FIFO_DATA[7:0]	Read/Write command provides Read or Write operation for the FIFO.

Description:

This register is used to read and write data from the FIFO buffer.

Data are written to the FIFO in order of register number (from lowest to highest). If all the FIFO enable flags (see below) are enabled, the contents of registers 59 through 66 will be written in order at the Sample Rate.

The contents of the sensor data registers (Registers 59 to 66) are written into the FIFO buffer when their corresponding FIFO enable flags are set to 1 in FIFO_EN (Register 35).

If the FIFO buffer has overflowed, the status bit *FIFO_OFLOW_INT* is automatically set to 1. This bit is in INT_STATUS (Register 58). When the FIFO buffer has overflowed, the oldest data will be lost and new data will be written to the FIFO unless register 26 CONFIG, bit[6] FIFO_MODE = 1.

If the FIFO buffer is empty, reading register FIFO_DATA will return a unique value of 0xFF until new data are available. Normal data are precluded from ever indicating 0xFF, so 0xFF gives a trustworthy indication of FIFO empty.

9.22 REGISTER 117 - WHO AM I

Register Name: WHO_AM_I

Register Type: READ only

Register Address: 117 (Decimal); 75 (Hex)

BIT	NAME	FUNCTION
[7:0]	WHOAMI	Register to indicate to user which device is being accessed.

This register is used to verify the identity of the device. The contents of *WHOAMI* is an 8-bit device ID. The default value of the register is 0xB7 This is different from the I^2C address of the device as seen on the slave I^2C controller by the applications processor. The I^2C address of the IAM-20381HT is 0x68 or 0x69 depending upon the value driven on AD0 pin.

9.23 REGISTERS 119, 120, 122, 123, 125, 126 ACCELEROMETER OFFSET REGISTERS

Register Name: XA_OFFSET_H

Register Type: READ/WRITE

Register Address: 119 (Decimal); 77 (Hex)

BIT	NAME	FUNCTION
[7:0]	XA_OFFS[14:7]	Bits 14 to 7 of the 15-bit of the X accelerometer offset cancellation (2's complement).
		±16g Offset cancellation in all Full-Scale modes, 15 bit 0.98-mg steps.

Register Name: XA_OFFSET_L

Register Type: READ/WRITE

Register Address: 120 (Decimal); 78 (Hex)

BIT	NAME	FUNCTION
[7:1]	XA_OFFS[6:0]	Bits 6 to 0 of the 15-bit of the X accelerometer offset cancellation (2's complement). ±16g Offset cancellation in all Full-Scale modes, 15 bit 0.98-mg steps.
[0]	- Reserved. This bit is set during factory calibration and the value must be kept unchanged.	

Register Name: YA_OFFSET_H

Register Type: READ/WRITE

Register Address: 122 (Decimal); 7A (Hex)

BIT	NAME	FUNCTION
[7:0]	YA_OFFS[14:7]	Bits 14 to 7 of the 15-bit of the Y accelerometer offset cancellation (2's complement).
		±16g Offset cancellation in all Full-Scale modes, 15 bit 0.98-mg steps.

Register Name: YA_OFFSET_L

Register Type: READ/WRITE

Register Address: 123 (Decimal); 7B (Hex)

BIT	NAME	FUNCTION
[7:1]	YA_OFFS[6:0]	Bits 6 to 0 of the 15-bit of the Y accelerometer offset cancellation (2's complement). ±16g Offset cancellation in all Full-Scale modes, 15 bit 0.98-mg steps.
[0]	-	Reserved. This bit is set during factory calibration and the value must be kept unchanged.

Register Name: ZA_OFFSET_H

Register Type: READ/WRITE

Register Address: 125 (Decimal); 7D (Hex)

BIT	NAME	FUNCTION
[7:0]	ZA_OFFS[14:7]	Bits 14 to 7 of the 15-bit of the Z accelerometer offset cancellation (2's complement).
		±16g Offset cancellation in all Full-Scale modes, 15 bit 0.98-mg steps.

Register Name: ZA_OFFSET_L

Register Type: READ/WRITE

Register Address: 126 (Decimal); 7E (Hex)

BIT	NAME	FUNCTION
[7:1]	ZA_OFFS[6:0] Bits 6 to 0 of the 15-bit of the Z accelerometer offset cancellation (2's complement). ±16g Offset cancellation in all Full-Scale modes, 15 bit 0.98-mg steps.	
[0]	-	Reserved. This bit is set during factory calibration and the value must be kept unchanged.

10 ASSEMBLY

This section provides general guidelines for assembling TDK-InvenSense Micro Electro-Mechanical Systems (MEMS) accelerometers packaged in LGA package.

10.1 ORIENTATION OF AXES

Figure 13 below shows the orientation of the axes of sensitivity. Note the pin 1 identifier (•) in the figure.

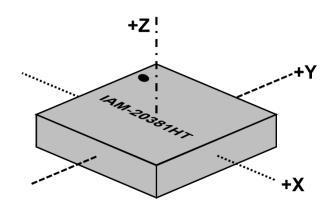


Figure 13. Orientation of Axes of Sensitivity

10.2 PACKAGE DIMENSIONS

16 Lead LGA 3x3x0.75 mm³ NiAu pad finish.

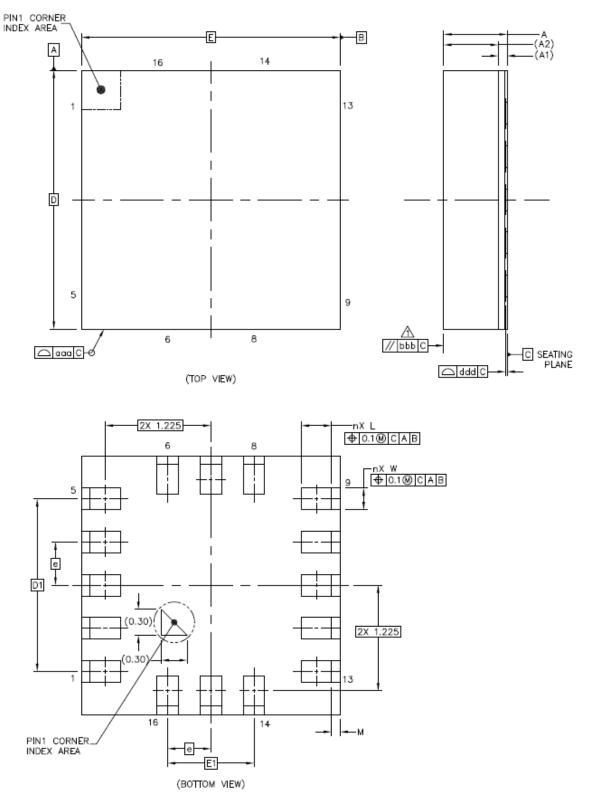


Figure 14. Package Dimensions

IAM-20381HT

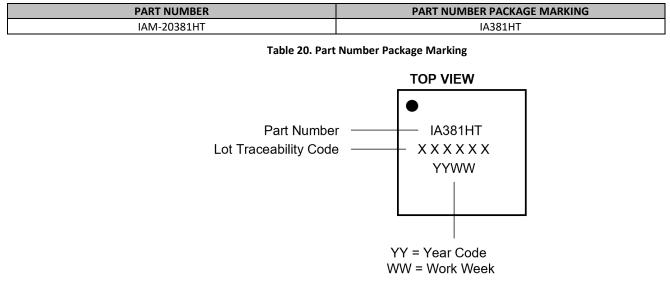

		DIME	INSIONS IN MILLIM	ETERS
	SYMBOLS	MIN	NOM	MAX
Total Thickness	Α	0.7	0.75	0.8
Substrate Thickness	A1		0.105	REF
Mold Thickness	A2		0.63	REF
Body Size	D	2.9	3	3.1
body Size	E	2.9	3	3.1
Lead Width	W	0.2	0.25	0.3
Lead Length	L	0.3	0.35	0.4
Lead Pitch	е		0.5	BSC
Lead Count	n		16	
Edge Ball Center to Center	D1		2	BSC
	E1		1	BSC
Body Center to Contact Ball	SD			BSC
Body Center to Contact Ban	SE			BSC
Ball Width	b			
Ball Diameter				
Ball Opening				
Ball Pitch	e1			
Ball Count	n1			
Pre-Solder				
Package Edge Tolerance	ааа		0.1	
Mold Flatness	bbb		0.2	
Coplanarity ddd 0.08		0.08		
Ball Offset (Package)	eee			
Ball Offset (Ball)	fff			
Lead Edge to Package Edge	М	0.05	0.1	0.15

Table 19. Package Dimensions

11 PART NUMBER PACKAGE MARKING

The part number package marking for IAM-20381HT devices is summarized below:

Figure 15. Part Number Package Marking

Samples with Part Number Package Marking "IA381HT E" are engineering samples and may have deviations with respect to the specifications reported in the datasheet. Engineering samples are not production-intent parts.

12 REFERENCE

Please refer to "InvenSense MEMS Motion Handling and Assembly Guide (AN-IVS-0002A-00)" for the following information:

- Manufacturing Recommendations
 - Assembly Guidelines and Recommendations
 - PCB Design Guidelines and Recommendations
 - MEMS Handling Instructions
 - ESD Considerations
 - o Reflow Specification
 - Storage Specifications
 - Package Marking Specification
 - Tape & Reel Specification
 - Reel & Pizza Box Label
 - Packaging
 - Representative Shipping Carton Label
- Compliance
 - o Environmental Compliance
 - o DRC Compliance
 - Compliance Declaration Disclaimer

13 REVISION HISTORY

REVISION DATE	REVISION	DESCRIPTION
11/24/2023	1.0	Initial revision

This information furnished by InvenSense, Inc. ("InvenSense") is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.

Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.

©2017—2023 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR, and the InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and product names may be trademarks of the respective companies with which they are associated.

©2017—2023 InvenSense. All rights reserved.