

Wireless Single Push Button User Guide

VERSION 1.0 APRIL 2018

TABLE OF CONTENTS

1.	QUICK START	2
2.	OVERVIEW	2
2.1.	Sensor Overview	.2
2.2.	Revision History	.3
2.3.	Document Conventions	.3
2.4.	Part Numbers	.3
3.	TECHNICAL SPECIFICATIONS	3
3.1.	Absolute Maximum Ratings	.3
4.	BATTERY LIFE	4
5.	RESET	5
6.	MESSAGE PROTOCOL	5
6.1.	Common Messages	.5
6.2.	Uplink Messages	.6
6.3.	Downlink Messages	.6
7.	TRADEMARKS AND COPYRIGHT	8
8.	DISCLAIMERS, WARRANTY, AND CUSTOMER SUPPORT	8
8.1.	Disclaimers	.8
8.2.	Warranty	.8
8.3.	Customer Support	.8

1. QUICK START

To start using your sensor, simply go to:

https://console.radiobridge.com

From here you can register your device and immediately start receiving messages from the sensor.

The sensor configuration, message monitoring, and setting up alerts is usually self-explanatory through the user interface. For further explanations of any sensor features, you may refer to this user guide.

2. OVERVIEW

2.1. Sensor Overview

The wireless sensors designed and manufactured by Radio Bridge provide full sensor to cloud solutions for Internet of Things (IoT) applications. The wireless single push button sensor can be used as a panic button, PERS, remote control, or other remote push button applications. When the button is pressed, a message is sent over the wireless network. Versions of the sensor support the major LPWAN standards such as Sigfox, LoRa/LoRaWAN, and SubGig.

Features include:

- Built-in radio that talks directly with the wireless network. Standards include:
 - Sigfox
 - LoRa/LoRaWAN
 - SubGig[®]
- 20,000-1M+ transmissions on a single battery and a 5-10 year battery life depending on usage (see Battery section)
- Fully integrated internal antenna
- Over the air sensor configuration in the field
- Automatic low battery reporting and supervisory messages

2.2. Revision History

Table 1 Revision History

Revision	Date	Description
1.0	April 2018	Initial release of the document

2.3. Document Conventions

Table 2 Document Conventions

Font / Icon	Meaning
	Important notes
A	Warnings and cautions

2.4. Part Numbers

Table 3 Part Numbers

Part Number	Wireless Standard	Region
RBS104-1-RCZ2	Sigfox	North America
RBS204-1-315	SubGig	North America
RBS304-1-US	LoRa	North America

3. TECHNICAL SPECIFICATIONS

3.1. Absolute Maximum Ratings

Table 4 Absolute Maximum Ratings

Parameter	Rating	Units
Operating ambient temperature	-30 to +70	°C
Storage ambient temperature	-40 to +100	°C

4. BATTERY LIFE

The sensor uses a lithium non-rechargeable battery and is capable of 20,000 to 1,000,000+ total messages depending on the wireless standard and usage. For an accurate estimate of battery life, please refer to the "Sensor Battery Estimator.xlsx" spreadsheet on the Radio Bridge website. This spreadsheet combines usage information such as average number of messages per day and estimates the battery life for a particular sensor.

Refer to the spreadsheet "Sensor Battery Estimator.xlsx" on the Radio Bridge website for specific battery life estimates.

The power required for a message transmission is much greater than the "sleep current" (the power consumed when the sensor is inactive) for high power radio technologies such as Sigfox and LoRaWAN. This means that the battery life for most sensors is primarily dependent on the number of transmissions per day.

Different battery types will deplete over time with different voltage profiles. For instance, a lithium battery will maintain a relatively high voltage for the life of the battery and then experience a rapid drop near the end, whereas an alkaline battery will experience a more gradual reduction in voltage over time. Radio Bridge sensors are shipped with lithium batteries, and these are recommended when the battery needs to be eventually replaced.

Temperature also plays a role in battery life. The battery life estimates in the online spreadsheet assume room temperature, but temperatures close to the maximum and minimum ratings will have a negative impact on battery life. For example, battery voltage tends to be lower in cold temperatures and the internal circuitry needs a certain minimum voltage to operate properly before it will shut down. Thus, battery life will tend to be shorter when running the sensor in cold environments.

Battery voltage will be lower in cold temperatures and thus battery life will be reduced in cold environments.

The battery voltage is reported by the supervisory messages as well as a low battery indicator. See the section on Message Protocol for more detail.

5. RESET

To reset the push button sensor, hold the button down for 10 seconds or more and then release. The reset will initiate a downlink message (see the section Downlink Messages) which means that the push button can be reconfigured with a press and hold and doesn't require disassembly for battery replacement.

6. MESSAGE PROTOCOL

This section defines the protocol and message definitions for the sensor.

Radio Bridge provides a web-based console at console.radiobridge.com to configure and monitor sensors. Usage of this console is highly recommended for most customers rather than implementing the protocols defined in this section.

If the standard Radio Bridge console (console.radiobridge.com) is not used, refer to this section to decode the sensor data and configure the sensor through downlink messages.

6.1. Common Messages

There are common messages across all Sigfox sensors that are defined in the document "Common Messages for Sigfox Sensors" which is available on the Radio Bridge website.

Refer to the document "Common Messages for Sigfox Sensors" for definitions of all common messages. Common messages are not defined in this document.

Common messages include basic error messages, tamper, supervisory, and downlink ack. It is important to refer to that document prior to decoding the messages defined in this section.

6.2. Uplink Messages

The uplink message (sensor to web application) specific to the RBS104-1 is defined in following table. The common uplink messages are not included in this section (see common messages document).

Button IDEvent PayloadDescription0x030x00Button pressed0x030x01Button released0x030x02Button held

Table 5 Uplink Message 0x06: Push Button Event

The first byte is the button identifier and always 0x03 for the single push button.

6.3. Downlink Messages

The downlink message (web application to sensor) specific to the RBS104-1 configuration is defined in following table. The common downlink messages are not included in this section (see common messages document).

Byte Description

O Disable events (see table Disable Event Bit Definitions)

1 Hold delay

Table 6 Downlink Configuration Message 0x06

The hold delay defines the amount of time the button must be held before a button held event is sent. The field can range from 0-20 in 250ms increments (0-5 seconds). If set to 0 then the hold delay will not send an event message.

The disable event bit definitions are shown in the following table.

Bits	Description
7:3	Unused
2	Disable button hold event. Set to disable, clear to enable.
1	Disable button released event. Set to disable, clear to enable.
0	Disable button pressed event. Set to disable, clear to enable.

7. TRADEMARKS AND COPYRIGHT

Radio Bridge™, SubGig®, and BridgeBee® are trademarks of Radio Bridge Inc in the United States.

© 2018 Radio Bridge Inc. All rights reserved.

8. DISCLAIMERS, WARRANTY, AND CUSTOMER SUPPORT

8.1. Disclaimers

Information in this document is subject to change without notice and does not represent a commitment on the part of Radio Bridge. Radio Bridge provides this document "as is," without warranty of any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or merchantability for a particular purpose. Radio Bridge may make improvements and/or changes in this manual or in the product(s) and/or the software described in this manual at any time.

8.2. Warranty

To view product warranty information, go to the following website: www.radiobridge.com

8.3. Customer Support

Radio Bridge offers free technical support at:

www.radiobridge.com/forums

Radio Bridge also offers technical support plans and service packages to help our customers get the most out of their Radio Bridge products.

For information on Technical Support plans and pricing, visit us at www.radiobridge.com.