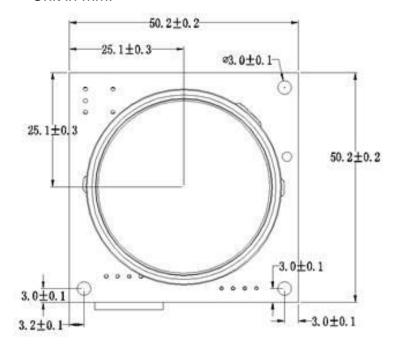
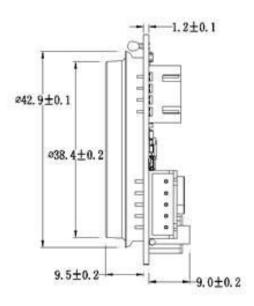
Product introduction Summary

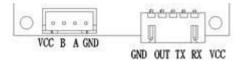
DHR_1 module is a high-performance ranging module featuring Pro-Wave's 500ES430 electrostatic transducer at its core. DHR_1 can detect plane object between 100mm and 8000mm, and can detect the human body between 100mm and 3000mm. The module also offers precise temperature output (UART/RS485 output models) and temperature compensation function (except PWM live output model). It is a high-performance and high reliability commercial functional module specially developed for height measurement.

Device Characteristics


Description	Value	Unit
Input voltage	5~12	V_{DC}
Average current ¹	<10	mA
Peak current	≤100	mA
Detection Range ²	100~8000	mm
Detection accuracy ³	Refer to note 3	mm
Cycling Time ⁴	Refer to note 4	ms
ESD ⁵	±4 / ±8	KV


Notes:

- 1. Measured with 12V input and 500ms cycle time. For RS485 model, typical current is less than 25mA.
- 2. Data measured by detection of a 50cm * 60cm plate at room temperature. For human body, the detection range will be 100~3000 mm.
- 3. H is the distance measurement. For PWM model, the accuracy is $\pm (8+H^*0.2\%)$. All other models: $\pm (5+H^*0.2\%)$
- 4. Cycle time is >75 for PWM and >160 for PWM with processed value output.
- 5. In accordance with IEC61000-4-2


Dimensions

Unit in mm.

Pin definition

Name	Description
VCC	Power Input
RX	UART/PWM Input
TX	UART/PWM Output
OUT	Reserved
GND	Ground
Α	RS485 data +
В	RS485 data -

Absolute Maximum Ratings

Environmental Condition Ratings

Description	Min	Max	Unit
Storage temperature	-20	65	$^{\circ}$
Storage humidity		90%	RH
Operation			
temperature	-10	50	$^{\circ}\!\mathbb{C}$
Operation humidity		80%	RH

Electrical Condition Ratings

oti iodi Gorialilori italingo					
Description	Max	Unit			
Input voltage	12	V			
Output current	100	mA			
Input ripple	50	mV			
Input noise	100	mV			

Output format

Four output formats are supported: UART, RS485, PWM-Processed, and PWM-Live. Only one output format can be supported with each model. UART and RS485 support user input control and temperature reading. PWM-Live does not support temperature compensation.

UART / RS485

UART supports full duplex communication. RS485 supports half duplex communication with Pro-Wave protocol.

Frame format

Start bit	Data bits	Stop bit	Parity Check	Baud rate
1	8	1	None	9600

Operation Codes

Jointh Godoo	
Description	Op Code
Report real time distance value; unit: 1 mm	0x01
Report temperature; unit: 0.1℃	0x02
Update slave address 0x03	
Report processed distance value; unit: 1 mm	0x05

Data Packet Structure

Frame Data	Description	Length
Header	0x55	1byte
Header	0xAA	1byte
Slave Address	0x01	1byte
Operation Codes	Control Command	1byte
Data_H	Upper byte of the data	1byte
Data_L	Lower byte of the data	1byte
Check Sum	Check Sum	1byte

Operation Example: Report temperature

	Не	Header Slav		Op Code	Data		Checksum
Host	0x55	0XAA	0x01	0x02			0x02 ¹
Slave	0x55	0XAA	0x01	0x02	0x01 ²	0x23	0x25

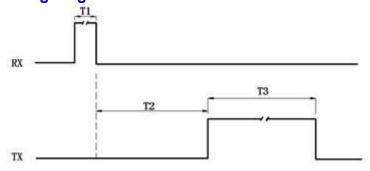
Notes:

- 1. Checksum = (Header + slave address + op code) & 0x00ff = (0x55+0xaa+0x01+0x02) &0x00ff = 0x02
- 2. MSB in Data_H is used to denote positive or negative.

Example (Data_H Data_L): $0x01 0x23 = +29.1^{\circ}$ C

 $0x81\ 0x23 = -29.1^{\circ}C$

Modify slave address from 0x01 (default) to 0x05


	Fram	e head	address	instructions	data	Checksum
Host	0x55	0XAA	05	0x03		0x07
Slave	0x55	0XAA	05	0x03		0x07

PWM

Two models are supported for PWM, processed output or live output. For processed output, DHR_1 samples the distance to the object five times, discards the first and last reading, and reports the average value of the readback values on TX. For live output, DHR_1 will simply report the value it reads.

Falling edge on "RX" will trigger a one-time operation from the module. A new trigger can be initiated after the cycle time of 160ms for processed output and 75ms for live output model. If no object is detected, output pulse width will be 65ms.

Timing diagram

Note: For processed output: T1 = 0.1-5ms; T2 \geq 75ms; T3 = 0.6-65ms For live output: T1 = 0.1-10ms; T2 = 4.5-6.0ms; T3 = 0.55-65ms

Output Calculation Example

The pulse width on TX represents the time the DHR_1 took to detect an object. Distance to the object follows D = (v * t) / 2

- D: Distance to the object
- V: Velocity of sound speed. 343m/s or 0.343 mm/µs at room temperature.
- T: Time the soundwave travel.
- /2: Sound wave travels to the object and returns to the transducer; therefore, the distance needs to be divided by 2.

Assuming the width of the high pulse is $10,000\mu s$, the equation is as follow. D= $(0.343 mm/\mu s*10,000\mu s)/2=1715 mm$

Model selection

Part Name	Feature
DHR_1U	UART
DHR_18	RS485
DHR_1V	PWM live output
DHR_1P	PWM process output

Reliability Tests

Test items	Test environment
High temp environmental test	60°C, 85%RH,5V _{IN} for 72hrs
Low temp environmental test	-20°C, 5V _{IN} for 72hrs
High temp storage	80℃, 80%RH for 72hrs
Low temp storage	-30°C for 72hrs
Vibration test	10-200hz, 15min, 2.0g, on XYZ axes for 30 min
Drop test	1.2m free fall on wood surface, repeated 5 times.

Notes: 3 samples are tested for each test items with performance degradation less than 10%.

Revision History

Date	Version	Description
12/01/2019	1.0	Initial Pro-Wave release.

Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Pro-Wave products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Pro-Wave hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Pro-Wave shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Pro-Wave had been advised of the possibility of the same. Pro-Wave assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Pro-Wave's limited warranty. Pro-Wave products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Pro-Wave products in such critical applications. This document contains preliminary information and is subject to change without notice. Information provided herein relates to products and/or services not yet available for sale, and provided solely for information purposes and are not intended, or to be construed, as an offer for sale or an attempted commercialization of the products and/or services referred to herein.