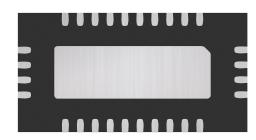
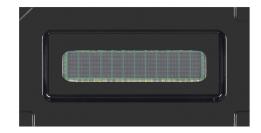


## Silicon Photomultipliers (SiPM), RDM-Series 1 x 12 Monolithic Array

## Advance Information

# ArrayRDM-0112A20-QFN


The ArrayRDM-0112A20-QFN is a monolithic  $1 \times 12$  array of Silicon Photomultiplier (SiPM) pixels based on the market-leading RDM process. The RDM process has been specifically developed to create products that give high PDE at the NIR wavelengths used for LiDAR and 3D ranging applications.


In order to meet the requirements for automotive LiDAR applications, this product is qualified to AEC-Q102 and developed in accordance with IATF 16949.

An evaluation board (ArrayRDM-0112A20-GEVB) is also available for this product.

### **KEY SENSOR AND PACKAGE SPECIFICATIONS**

| Parameter                         | Value                | Comments                                                            |  |  |
|-----------------------------------|----------------------|---------------------------------------------------------------------|--|--|
| Silicon Process                   | RDM                  |                                                                     |  |  |
| Number of Pixels                  | 12                   |                                                                     |  |  |
| Array Configuration               | 1 × 12               | Monolithic silicon array                                            |  |  |
| Pixel Size                        | 1.12 × 0.47 mm       |                                                                     |  |  |
| Pixel Pitch                       | 0.49 mm              |                                                                     |  |  |
| Microcell Size                    | 20 μm                |                                                                     |  |  |
| Number of<br>Microcells per Pixel | 806                  |                                                                     |  |  |
| Package Size                      | 5.2 × 10.0 × 1.85 mm | $W \times L \times H$ (see case outline on page 5 for more details) |  |  |
| Output Type                       | Analog               | Standard output per pixel                                           |  |  |





The ArrayRDM-0112A20-QFN28 Product Case 485FZ

### **ORDERING INFORMATION**

See detailed ordering and shipping information in the ordering information section on page 4 of this data sheet.

### PERFORMANCE SPECIFICATIONS

Typical values are measured at 21°C. Minimum and Maximum values take into account operation over the full temperature range of –40°C to 105°C. All measurements made at Vbr + 7.9 V.

| Parameter                        | Min                   | Тур                 | Max                 | Unit | Comment                                                                                                                                                                                                                                                                   |
|----------------------------------|-----------------------|---------------------|---------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PDE at 905 nm                    | 8                     | 14                  | 23                  | %    |                                                                                                                                                                                                                                                                           |
| Total Noise Rate                 | < 0.05                | 0.1                 | 40                  | Mcps | Total noise rate is the count of all noise events arising from thermal noise, crosstalk and afterpulsing. It is measured by counting distinct event peaks per unit time with no incident light and minimum threshold set just above the electronic noise floor. Per pixel |
| Optical Crosstalk                | 23                    | 28                  | 33                  | %    |                                                                                                                                                                                                                                                                           |
| Gain                             | 1.1 × 10 <sup>6</sup> | 1.2×10 <sup>6</sup> | 1.4×10 <sup>6</sup> |      |                                                                                                                                                                                                                                                                           |
| Microcell Recovery Time Constant | 24                    | 34                  | 45                  | ns   | RC time constant                                                                                                                                                                                                                                                          |
| Microcell Rise Time              | -                     | 200                 | -                   | ps   |                                                                                                                                                                                                                                                                           |
| Terminal Capacitance             | 19                    | 20                  | 22                  | pF   | Per pixel                                                                                                                                                                                                                                                                 |
| Peak Pulsed Saturation Current   | 3.2                   | -                   | 7.5                 | mA   | Per pixel                                                                                                                                                                                                                                                                 |
| Continuous Saturation Current    | 1.4                   | _                   | 3.4                 | mA   | Per pixel                                                                                                                                                                                                                                                                 |

This document contains information on a new product. Specifications and information herein are subject to change without notice.

### **BIAS PARAMETERS**

| Parameter                      | Min               | Тур  | Max  | Unit  | Comment                                                                               |
|--------------------------------|-------------------|------|------|-------|---------------------------------------------------------------------------------------|
| Breakdown Voltage (Vbr)        | 19.8              | 21.6 | 25.5 | V     | See Figure 1 for a plot of typical<br>breakdown voltages at different<br>temperatures |
| Over Voltage (Vov)             | -                 | 7.9  | 12.0 | V     | Typical values recommended for                                                        |
| Operating Bias (Vop)           | Vop = Vbr + Vov   |      |      |       | operation and used for characterization                                               |
| Temperature Coefficient of Vbr | Refer to Figure 1 |      |      | mV/°C |                                                                                       |

### **ABSOLUTE MAXIMUM RATINGS**

| Parameter                   | Value       | Unit | Comment                        |
|-----------------------------|-------------|------|--------------------------------|
| Maximum Bias                | 37.5        | V    |                                |
| Maximum Current             | 20          |      | For whole array at typical Vop |
| Maximum Storage Temperature | 125         | °C   |                                |
| Operating Temperature Range | -40 to +105 | °C   | Ambient temperature            |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

### PACKAGE SPECIFICATIONS

| Parameter         | Value | Unit | Comment              |
|-------------------|-------|------|----------------------|
| ESD - HBM         | 1     | kV   | Class 1C             |
| ESD - CDM         | 500   | V    | Class 4C             |
| $\theta_{\sf JC}$ | 4     | °C/W |                      |
| $\theta_{\sf JA}$ | 150   | °C/W |                      |
| MSL               | 3     |      | For all part numbers |

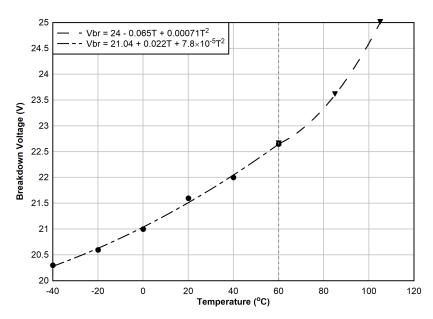
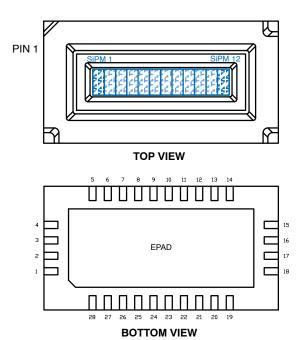




Figure 1. Breakdown Voltage vs Temperature

### **PIN ASSIGNMENT**



| Pin # | Pin Name   | Pin Function            |  |  |
|-------|------------|-------------------------|--|--|
| 1     | Cathode 1  | SiPM 1 standard output  |  |  |
| 28    | Cathode 2  | SiPM 2 standard output  |  |  |
| 27    | Cathode 3  | SiPM 3 standard output  |  |  |
| 26    | Cathode 4  | SiPM 4 standard output  |  |  |
| 25    | Cathode 5  | SiPM 5 standard output  |  |  |
| 24    | Cathode 6  | SiPM 6 standard output  |  |  |
| 23    | Cathode 7  | SiPM 7 standard output  |  |  |
| 22    | Cathode 8  | SiPM 8 standard output  |  |  |
| 21    | Cathode 9  | SiPM 9 standard output  |  |  |
| 20    | Cathode 10 | SiPM 10 standard output |  |  |
| 19    | Cathode 11 | SiPM 11 standard output |  |  |
| 18    | Cathode 12 | SiPM 12 standard output |  |  |
| EPAD  | Anode      | Common Anode            |  |  |
| 2–17  | NC         | No Connect              |  |  |

### **APPLICATION ADVICE**

The ArrayRDM-0112A20-QFN is formed of a linear array of 12 SiPM pixels. The QFN package provides a connection to each pixel cathode (for access to the individual signals) and a common anode. The common anode allows the provision of a single bias supply for all 12 pixels. The recommended test connections and biasing are as per the evaluation board that is detailed in the following section.

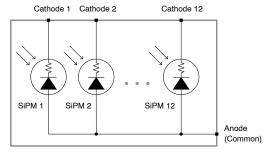



Figure 2. Array Schematic Showing Pixel Connections

### **EVALUATION BOARD**

The ArrayRDM-0112A20-GEVB evaluation board consists of:

- ArrayRDM-0112A20-DFN SiPM array
- 12 U.FL connectors for access to each pixel cathode for signal readout
- An SMA connector for applying the bias to the common anode
- Bias filtering circuit
- Decoupling capacitors (12 x 10 nF and 4 x 100 nF decoupling capacitors from anode to ground – not shown)

This product allows users to quickly and easily set up an evaluation of the array product.

Note that a negative bias supply should be suppled via the SMA connector (J13) and the U.FL connectors (J1 to J12) should be 50  $\Omega$  terminated.

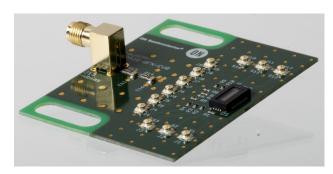



Figure 3. ArrayRDM-0112A20-GEVB Top Side View Showing the 1x12 Sensor

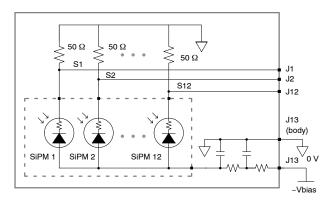
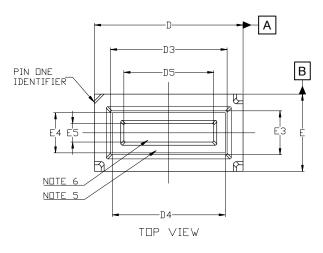
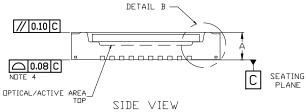
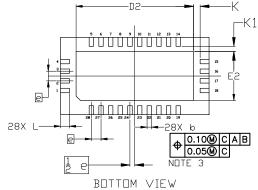


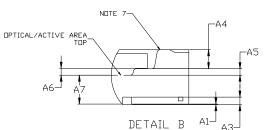

Figure 4. ArrayRDM-0112A20-GEVB Board Schematic

| Connector | Style                                  |
|-----------|----------------------------------------|
| J1–J12    | U.FL Receptacle<br>(Hirose U.FL-R-SMT) |
| J13       | SMA Jack (F)                           |


### **ORDERING INFORMATION**


| Part Number               | Product Description                                                                                                                            | Shipping Format                |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|
| ArrayRDM-0112A20-QFN-TR   | Monolithic 1 $\times$ 12 array of NiR sensitive SiPM pixels formed using the RDM process. Individual cathode connection per pixel and a common | Tape and Reel                  |  |
| ArrayRDM-0112A20-QFN-TR1  | anode available via the 28-pin QFN package.                                                                                                    | Cut Tape                       |  |
| ArrayRDM-0112A20-QFN-TR-E | Unqualified prototype part of the ArrayRDM-0112A20-QFN-TR                                                                                      | Depends on<br>Quantity Ordered |  |
| ArrayRDM-0112A20-GEVB     | Evaluation board consisting of an ArrayRDM-0112A20-QFN mounted onto PCB.                                                                       | ESD Package                    |  |
|                           | A U.FL connector gives access to each pixel output (cathode). The bias is supplied via an SMA connector to the common anode.                   |                                |  |


### PACKAGE DIMENSIONS

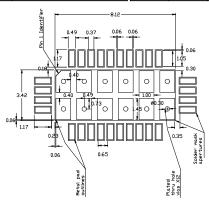

### QFN28 10x5.2, 0.65P

CASE 485FZ ISSUE D





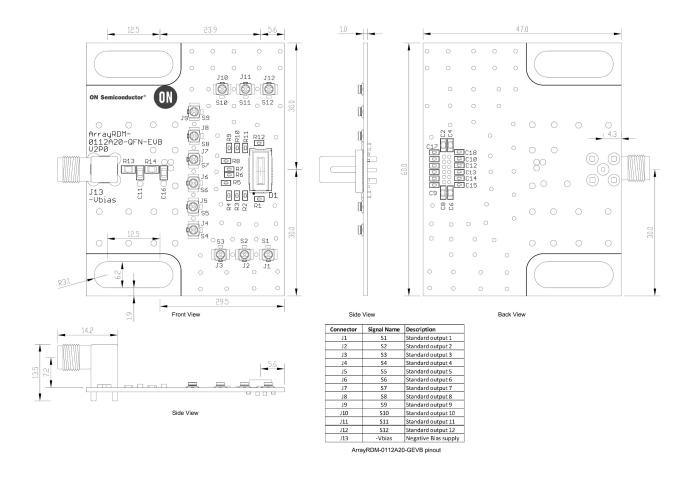





#### NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. CONTROLLING DIMENSION: MILLIMETERS DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP.
  COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
  GLASS LID AREA, 0.4mm THICKNESS. DEFINED BY D4 & E4.
  OPTICAL/ACTIVE AREA IS CENTERED.
  ALIGNMENT TO PACKAGE CENTER: +/- 0.05 mm ROTATION ALLOWED: +/- 0.5\*
  MOLD INNER CAVITY RADIUS AT 0.1mm AT 10\* DRAFT ANGLE.
  DIMENSION A6 MEASURES THE BOTTOM OF THE GLASS TO TOP OF DIE.

- DIMENSION AT MEASURES THE BOTTOM OF THE PACKAGE TO


|     | MILLIMETERS |         |       |                | MI             | LLIMETE | RS   |
|-----|-------------|---------|-------|----------------|----------------|---------|------|
| DIM | MIN.        | N□M.    | MAX.  | DIM            | MIN.           | N□M.    | MAX. |
| Α   | 1.75        | 1.85    | 1.95  | D4             | 7.32 REF       |         |      |
| A1  | 0.00        |         | 0.05  | D5             | 6.40 REF       |         |      |
| A3  | 0           | .254 RE | ۲.    | E              | 5.10 5.20 5.30 |         |      |
| A4  | 0.594 REF   |         | E2    | 3.20 3.30 3.40 |                |         |      |
| A5  | 0.256 REF   |         |       | E3             | 2.67 REF       |         |      |
| A6  | 0.28 REF    |         |       | E4             | 2.42 REF       |         | -    |
| A7  | 0.969       | 1.004   | 1.029 | E5             | 1.50 REF       |         |      |
| b   | 0.25        | 0.30    | 0.35  | e              | 0.65 BSC       |         |      |
| D   | 9.90        | 10.00   | 10.10 | К              | 0.45 REF       |         |      |
| D2  | 7.80        | 7.90    | 8.00  | K1             | 0.35 REF       |         |      |
| D3  | 7.57 REF    |         |       | L              | 0.55           | 0.60    | 0.65 |



## RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

#### **EVALUATION BOARD DRAWING**



SensL is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "sa-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative