Product Data Sheet # 1.0 WATT UNREGULATED SIP DC/DC CONVERTER ## HPR10XXC #### **FEATURES** - ROHS COMPLIANT - LOW COST - SINGLE-IN-LINE PACKAGE (SIP) - INTERNAL INPUT AND OUTPUT FILTERING - NON-CONDUCTIVE CASE - HIGH OUTPUT POWER DENSITY: 13 WATTS/INCH³ - EXTENDED TEMPERATURE RANGE: -25°C TO +65°C - HIGH EFFICIENCY: TO 72% (TYPICAL) #### **DESCRIPTION** The HPR10XXC Series uses advanced circuit design and packaging technology to deliver superior reliability and performance. A 170kHz push-pull oscillator is used in the input stage. Beat-frequency oscillation problems are reduced when using the HPR10XXC Series with high frequency isolation amplifiers. Reduced parts count and high efficiency add to the reliability of the HPR10XXC Series. The high efficiency of the HPR10XXC Series means less internal power dissipation, as low as 190mW. With reduced heat dissipation the HPR10XXC Series can operate at higher temperatures with no degradation. In addition, the high efficiency of the HPR10XXC Series means the series is able to offer greater than 13 W/inch³ of output power density. Operation down to no load will not impact the reliability of the series, although a 1mA minimum load is needed to realize published specifications. The HPR10XXC Series provides the user low cost without sacrificing reliability. The use of surface mounted devices and advanced manufacturing technologies make it possible to offer premium performance <u>and</u> low cost. #### **MECHANICAL** Internet: http://www.cd4power.com Power Electronics Division, United States 3400 E Britannia Drive, Tucson, Arizona 85706 Phone: 800.547.2537 Fax: 520.295.4197 **ELECTRICAL SPECIFICATIONS**Specifications typical at $T_A = +25^{\circ}C$, nominal input voltage, rated output current unless otherwise specified. | | NOMINAL
INPUT | RATED
OUTPUT | RATED
OUTPUT | INPUT CURRENT | | REFLECTED
RIPPLE | EFFICIENCY | |--|---------------------------|----------------------------|--------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------| | | VOLTAGE | VOLTAGE | CURRENT | NO LOAD | RATED LOAD | CURRENT | EFFICIENCY | | MODEL | (VDC) | (VDC) | (mA) | (mA) | (mA) | (mAp-p) | (%) | | HPR1000C
HPR1001C
HPR1002C
HPR1003C
HPR1004C | 5 5 5 5 5 5 | 5
12
15
±5
±12 | 200
83
67
±100
±42 | 33
33
33
33
33 | 290
290
285
285
285 | 8
8
8
8 | 68
69
70
70
70 | | HPR1005C
HPR1006C
HPR1007C
HPR1008C
HPR1009C | 5
12
12
12
12 | ±15
5
12
15
±5 | ±34
200
83
67
±100 | 33
18
18
18
18 | 285
110
107
107
107 | 8
10
10
10 | 70
70
71
71
71 | | HPR1010C
HPR1011C
HPR1012C
HPR1013C
HPR1014C | 12
12
15
15 | ±12
±15
5
12 | ±42
±34
200
83
67 | 18
18
15
15 | 107
107
96
94
94 | 10
10
10
10
10 | 71
71
70
70
71 | | HPR1015C
HPR1016C
HPR1017C
HPR1018C
HPR1019C | 15
15
24
24 | ±12
±15
5
12 | ±42
±34
200
83 | 15
15
12
12 | 94
94
60
60 | 10
10
15
15 | 71
71
71
71 | | HPR1020C
HPR1021C
HPR1022C
HPR1023C | 24
24
24
24 | 15
±5
±12
±15 | 67
±100
±42
±34 | 12
12
12
12
12 | 58
58
58
58 | 15
15
15
15 | 72
72
72
72 | Note: Other input to output voltages may be available. Please contact factory. | PARAMETER | CONDITIONS | MIN | ТҮР | MAX | UNITS | | | |---|--|-----------------------------|--|-----------------------------|---|--|--| | INPUT
Voltage Range | | 4.5
10.8
13.5
21.6 | 5
12
15
24 | 5.5
13.2
16.5
26.4 | VDC
VDC
VDC
VDC | | | | Voltage Rise Time | See Typical Performance Curves & Application Notes: "Capacitive Loading Effects on Start-Up of DC/DC Converters" | | | | | | | | ISOLATION Rated Voltage Test Voltage Resistance Capacitance Leakage Current | 60 Hz, 10 Seconds
V _{ISO} = 240VAC, 60Hz | 1000
1000 | 10
25
2 | 100
8.5 | Voc
Vpk
GΩ
pF
μArms | | | | OUTPUT Rated Power Voltage Setpoint Accuracy Ripple & Noise Voltage Temperature Coefficent | Rated Load, Nominal V_{IN}
BW = DC to 10MHz
BW =10Hz to 2MHz
1mA Load, V_{OUT} = 5V
1mA Load, V_{OUT} = 12V
1mA Load, V_{OUT} = 15V | | 1.0
30
.01 | ±5
100
7
15
18 | W % mV _{P-P} mVrms VDC VDC VDC %/Deg C | | | | REGULATION Line Regulation Load Regulation (5V out only) Load Regulation (All other Models) | High Line to Low Line
Rated Load to 1mA Load
Rated Load to 1mA Load | | 1
10
3 | | %/%Vin
%
% | | | | GENERAL Switching Frequency Frequency Change Package Weight MTTF per MIL-HDBK-217, Rev. E Ground Benign Fixed Ground Naval Sheltered Airborne Uninhabited Fighter | Over Line and Load Circuit Stress Method $T_A = +25^{\circ}C$ $T_A = +35^{\circ}C$ $T_A = +35^{\circ}C$ $T_A = +35^{\circ}C$ | | 170
24
2
3.8
1.4
685
211 | | kHz
%
g
MHr
MHr
kHr
kHr | | | | TEMPERATURE
Specification
Storage | | -25
-50 | +25 | +65
+110 | °C
°C | | | ^{*} For demonstrated MTTF results reference Reliability Report HPR105 Page 2 ### TYPICAL PERFORMANCE CURVES Specifications typical at T_A = +25°C, nominal input voltage, rated output current unless otherwise specified. #### THROUGH-HOLE SOLDERING INFORMATION These devices are intended for wave soldering or manual soldering. They are not intended to be subject to surface mount processes under any circumstances. The normal wave soldering process can be used with these devices where the device is subjected to a maximum wave temperature of 260°C for a period of no more than 10 seconds. Within this time and temperature range, the integrity of the device's plastic body will not be compromised and internal temperatures within the converter will not exceed 175°C. Care should be taken to control manual soldering limits identical to that of wave soldering. HPR10XXC REV A (RoHS) 04/2006 Page 3 ## SAFE OPERATING AREA Rise Time of Input Voltage (mS) #### NOTES: - When operated within the SAFE OPERATING AREA as defined by the above curves, the output voltage of Hpr10xxC devices is guaranteed to be within 95% of its steady-state value within 100 milliseconds after the input voltage has reached 95% of its steadystate value. - 2. For dual output models, total load capacitance is the sum of the capacitances on the plus and minus outputs. #### **ORDERING INFORMATION** #### **ABSOLUTE MAXIMUM RATINGS** The information provided herein is believed to be reliable; however, C&D TECHNOLOGIES assumes no responsibility for inaccuracies or omissions. C&D TECHNOLOGIES assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. C&D TECHNOLOGIES does not authorize or warrant any C&D TECHNOLOGIES product for use in life support devices/systems or in aircraft control applications. Page 4 HPR10XXC REV A (RoHS) 04/2006