

54mm 1U Front End AC-DC Power Supply Converter

Pictorial View Only; NTS

FEATURES

• 2	2000W continuous output power
• (Cold Redundant power management features
	EC60320-C16 connector for maximized low line
(operation
	30 Plus® Certified Platinum, HAxC models
	2V main output, 120% surge current capability
	3.3V, 5.0V & 12V Standby Output Options
	IU height: 2.15" x 12.65" x 1.57"
	> 46 Watts per cubic inch density
	N+1 redundant, Hot Swap Capable
	Active (digital) current sharing on 12V main
	output; Integral ORing /isolation provided for both
(outputs; compatible with DC input series
	nternal cooling fan (variable speed)
	Overvoltage, overcurrent, overtemperature
P	Protection
F	PMBus [™] /I ² C interface with LED status indicators
	RoHS compliant
	Two Year Warranty

For full details please visit our website: www.murata-ps.com/rohs

PRODUCT OVERVIEW

D1U54P-W-2000-12-HxxC is a series of 2000W highly efficient power factor corrected front end power supplies with a 12Vdc main output, capable of active current sharing, and a standby output. A status LED, hardware logic signals, PMBus™ digital communications and cold redundancy capability are provided. The 1U low profile > 46W/cubic inch package make this series ideal for delivering reliable, efficient power to servers, workstations, storage systems and other 12V distributed power architectures.

ORDERING GUIDE*									
Part Number		Outpu	ut power at Nomi	nal Input Vo	oltage		Main	Standby	Airflow
Fait Number	230-240 Vac	220 Vac	208 Vac	200 Vac	110-120 Vac	100Vac	Output	Output	AILIIOW
D1U54P-W-2000-12-HA3C								5Vdc	F ⇔ B
D1U54P-W-2000-12-HA4C								Svuc	B ⇔ F
D1U54P-W-2000-12-HB3C	2000W	1956W	1848W	1776W	1400W	1260W	10\/do	12Vdc	F ⇔ B B ⇔ F
D1U54P-W-2000-12-HB4C	2000	19000	104010	177000	140010	120000	12vuc	IZVUC	B ⇔ F
D1U54P-W-2000-12-HC3C								0.0V/do	F ⇔ B
D1U54P-W-2000-12-HC4C								3.3Vdc	B ⇔ F

*See www.murata.com/products/power for model-specific availability.

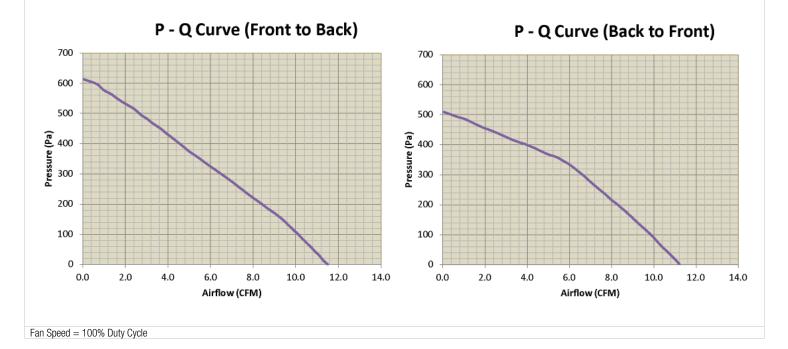
INPUT CHARACTERISTICS					
Parameter	Conditions	Min.	Nom.	Max.	Units
Input Source Voltage AC Operating Range ¹		90	100/110/240	264	Vac
Input Source Voltage DC Operating Range ^{1, 2}			240		Vdc
Input Source Frequency		47	50/60	63	Hz
Turn-on Input Voltage	Ramp up	74		84	Vac
Turn-off Input Voltage	Ramp down	70		80	Vac
Maximum current at Vin = 180Vac/60Hz	2,000W			15	Arms
Inrush Current	Cold start between 0 to 200msec, 264Vac			35	Apk
Power Factor	At 230Vac, full load		0.99		
Efficiency (230Vac), excluding fan load	20% load	90			
HaxC models 80 Plus [®] Certified Platinum	50% load	94			%
	100% load	91			

nsert power supply into mating connector prior to applying input voltage; Only for China

UII	'y	101	U	 10

OUTPUT	VOLTAGE CHARACTERISTIC	5				
Output	Parameter	Conditions	Min.	Тур.	Max.	Units
	Nominal Output Voltage			12		Vdc
	Output Set Point Accuracy	50% load; Tamb =25°C	-0.5		+0.5	
	Line and Load Regulation ²	Measured at remote sense	-1.0		+1.5	%
	Ripple Voltage & Noise ^{1,2}	20MHz Bandwidth			120	mV p-p
		2000W (207-264 Vac) Continuous ⁴	0		166.7	
12V		1956W (198-242 Vac) Continuous	0		163	
	Output Ourrent	1848W (188-228 Vac) Continuous	0		154	
	Output Current	1776W (180-220 Vac) Continuous	0		148	А
		1400W (99-132Vac) Continuous	0		116.7	
		1260W (90-110 Vac) Continuous	0		105	
	Load Capacitance				30,000	μF
	Nominal Output Voltage	50% load; Tamb =25°C		12.0		Vdc
	Line and Load Regulation ³	Measured at PSU side of connector	11.7		12.3	Vúc
12VSB	Ripple Voltage & Noise ^{1,3}	20MHz Bandwidth			120	mV p-p
	Output Current		0		3.0	А
	Load Capacitance				1500	μF
	Nominal Output Voltage	50% load; Tamb =25°C		3.30		Vdc
	Line and Load Regulation ³	Measured at PSU side of connector	3.14		3.46	Vdc
3.3VSB	Ripple Voltage & Noise ^{1,3}	20MHz Bandwidth			75	mV p-p
	Output Current		0		3.0	А
	Load Capacitance				3,000	μF
	Nominal Output Voltage	50% load; Tamb =25°C		5.0		Vdc
	Line and Load Regulation ³	Measured at PSU side of connector	4.76		5.24	Vdc
5.0VSB	Ripple Voltage & Noise ^{1,3}	20MHz Bandwidth			75	mV p-p
	Output Current		0		3.0	А
	Load Capacitance	nia conscitance and 10 uE of tentelum conscitance on each of			3,000	μF

Ripple and noise are measured with 0.1 µF of ceramic capacitance and 10 µF of tantalum capacitance on each of the power supply outputs. A short coaxial cable to the ² Minimum Load of 7A applied to meet these limits. ³ Minimum Load of 0.25A applied to meet these limits ⁴ Peak current 200A, 100ms max.


54mm 1U Front End AC-DC Power Supply Converter

muRata Power Solutions

Daramatar	Conditions	Min	Tun	Max	Unito
Parameter	Conditions	Min.	Тур.	Max.	Units
Startup Time	AC ramp up			3	S
	12V Main 10% to 60% load step (50% max load change); 1A/ $\!\mu\!s$ slew rate; 2,000 $\!\mu\!F$ load capacitance	-5		+5	% nom
Transient Response	Recovery Time to within 1% Vnom		2		ms
	VSB, 10% to 60% load step (50% max. load change); 1A/µs slew rate.	-5		+5	% nom
	Recovery Time to within 1% Vnom		2		ms
Current sharing accuracy	At 100% load	-5		+5	%
Hot Swap Transients	All outputs remain in regulation	-5		+5	%
	230-240Vac in voltage ranges, 2000W load, output dropping to 10.8V	10			ms
Holdup Time	230-240Vac in voltage ranges, 1000W load, output dropping to 10.8V	20			ms

ENVIRONMENTAL CHARACTERISTICS							
Parameter	Conditions	Mi	Тур.	Max.	Units		
Storage Temperature Range		-20		70			
Operating Temperature Pange	2000W; 230-240Vac nom.	-5		50	°C		
Operating Temperature Range	1900W @ 4000M; 220Vac, 230-240Vac	-5		40			
Operating Humidity	Noncondensing	5		90			
Storage Humidity		5		95	%		
Altitude (Derating \geq 40°C intake)				4,000	m		
Shock	30G non-operating						
Operational Vibration	Sine sweep; 5-150Hz, 2G;						
	random vibration, 5-500Hz, 1.11G						
MTBF	Per Telcordia SR-332 M1C3 @40°C	540K			hrs.		
	CAN/CSA-C22.2 No. 60950-1-07, Amendment 1:2011, Amendment 2:2014 (M ANSI/UL 60950-1-2014	OD)					
Safety Approval Standards (Planned	CSA: IEC 60950-1:2005 (Second Edition) + Am 1:2009 + Am 2:2013						
Submissions)	TUV: EN 60950-1:2006+A11:2009+A1:2010+A12:2011+A2:2013						
	BSMI: CNS14336-1 (099/09/30); CNS13438 (095/06/01)						
CQC: GB4943.1-2011; GB9254-1-2008; GB17625.1-2012							
Input Fuse	Dual 20A/420VAC/420DC fuse provided as a series protective element in both in	put "line" and	"neutral" connecti	on			
Weight	2.56 lbs. (1.16 kg)						

AIRFLOW CHARACTERISTICS

54mm 1U Front End AC-DC Power Supply Converter

PROTECTIO	N CHARACTERISTICS					
Output Voltage	Parameter	Conditions	Min.	Тур.	Max.	Units
-	Over temperature ^{2,3}	Auto restart	76	80	84	°C
	Overvoltage	Latching ¹	13.0		14.5	V
	Short-circuit	Latching ¹	200		-	
12V	Overcurrent (180-264Vac)	Hiccup mode, 5 retries before ¹ Latch-off. Protection is delayed 100mS to accommodate Peak Power	184		200	A
	Overcurrent (90-150Vac)	Hiccup mode, 5 retries before ¹ Latch-off.	110		120	А
101/00	Overvoltage	Latching ¹	13.0		14.5	V
12VSB	Overcurrent	Ніссир	3.1		4.5	А
	Overvoltage	Latching ¹	5.4		6.0	V
5.0VSB	Overcurrent	Ніссир	3.1		5.0	А
0.01/00	Overvoltage	Latching ¹	3.6		4.0	V
3.3VSB	Overcurrent	Ніссир	3.1		5.0	А

¹ Latch-off requires recycling either the AC input or PS_ON to resume operation ² Warning indication (PMbus status register bits and Amber LED status) occurs at 75°C nominal and recovers at 70°C nominal; fault indication and shutdown engages at 80 °C nominal and recovers at 75°C nominal ³ Operating the power supply above the maximum operating temperature (see "ENVIRONMENTAL CHARACTERISTICS") is considered an abnormal condition, may negatively impact power supply life and is not recommended.

ISOLATION CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
	Input to Output - Reinforced	3000			Vrms
Insulation Safety Rating / Test Voltage	Input to Chassis - Basic	1500			Vrms
Isolation	Output to Chassis	500			Vdc

EMISSIONS AND IMMUNITY		
Characteristic	Standard	Compliance
Input Current Harmonics	IEC/EN 61000-3-2	Complies with Class A limits
Voltage Fluctuation and Flicker	IEC/EN 61000-3-3	Complies
Conducted Emissions	FCC 47 CFR Part15/CISPR22/EN55032	Class A with 6dB margin
ESD Immunity	IEC/EN 61000-4-2	±8KV Contact; ±15KV air discharge; Criteria A
Radiated Field Immunity	IEC/EN 61000-4-3	3V/m, 1KHz, 80% AM, 80MHz to 1GHz Criteria A ²
Electrical Fast Transients/Burst Immunity	IEC/EN 61000-4-4	¹ Level 3 (2kV), criteria A
Surge Immunity	IEC/EN 61000-4-5	¹ Level 3 (2kV Line-Earth, 1kV Line-Line), criteria A
RF Conducted Immunity	IEC/EN 61000-4-6	Level 2 (3V/M) criteria A
Voltage Dips, Interruptions	IEC/EN 61000-4-11	230Vin, 100% load, Phase 0°, Dip 100% Duration 10ms (A) 230Vin, 50% load, Phase 0°, Dip 100% Duration 20ms (VSB:A, V1:B) 230Vin, 100% load, Phase 0°, Dip 100% Duration > 20ms (VSB, V1:B)

¹ measured at power supply's AC input connector 2 installed in system

² Contingent upon final system design

STATUS INDICATOR (BICOLOUR LED)	
Condition	LED Status
Standby - ON; Main output - OFF; AC PRESENT	Blinking green 1Hz
Standby - ON; Main output – ON; No faults detected	Solid green
Fault Detected ;Main output, VSB output, Fan, overtemperature, input OVP (Note: coincides with the PMBus [™] Status_Register bit flags)	Solid Amber
AC input power absent or no I ² C slave address detected (See ADDR signal for configuration details); VSB OVP	Off
Power Supply Warning Event	Blinking Amber
Cold Redundant mode - "COLD_STANDBY" / "FORCED STANDBY" MODE	Blinking green 2Hz

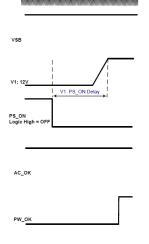
ADDR ADDRESS SELECTION		
ADDR pin (D2) resistor to GND	Power Supply Main Controller	Power Supply External EEPROM
(K-ohm)*	(Serial Communications Slave Address)	(Serial Communications Slave Address)
0.82	0xB0	0xA0
2.7	0xB2	0xA2
5.6	0xB4	0xA4
8.2	0xB6	0xA6
15	0xB8	0xA8
27	OxBA	0xAA
56	OxBC	OxAC
180	OxBE	OxAE
OPEN/PS_INHIBIT	0x80	0xA0
* The register shall be 1 / 50/ telerance or k	aattar	

* The resistor shall be +/-5% tolerance or better

54mm 1U Front End AC-DC Power Supply Converter

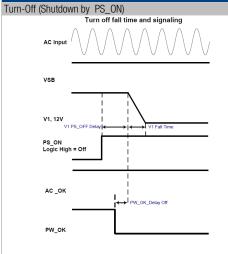
muRata Power Solutions


STATUS AND CONTROL	SIGNALS		
Signal Name	I/O	Description	Interface Details
AC_OK/RAPID_ON Link to: <u>Pin_Table</u>	Output	 This multi-function signal and is configured as one of the following: AC_OK (Default setting at initial power up): Output is driven high when input source is available and within acceptable limits. The output is driven low to indicate loss of input power. This signal de-asserts a minimum of 5ms before loss of main output and provides an accurate indication of loss of AC input voltage. RAPID_ON_ is a two state analog signal forms the cold redundant bus with up to four (4) load connected PSUs. This signal is used exclusively by the PSU for cold redundant mode operation, and is configured via PMBus[™]; see ACAN-80 and 81 for details. Rapid_ON signal/bus provides these three functions: Pull-up bus voltage: Bus pull-up is provided by the single PSU or the first PSU assigned the roll of "ACTIVE & MASTER" aka "COLD_REDUNDANT ACTIVE". More than one PSU can be assigned as "ACTIVE" only the first PSU assigned this roll provides the pull-up path and is why this PSU is referred to as the "Master". Each bus connected PSU drives the Rapid_ON bus low when any fault is detected. Each bus connected PSU powers on its main output rapidly within 100µS after detection of LOW state. Note: "Rapid_ON" pin configuration is retained once setup via PMBusTM, even if AC power is recycled and remains the new default setting until commanded to INPUT_OK via PMBusTM. 	Bus voltage reduces with the QTY of bus connected power supplies
PW_OK (Output OK) Link to: <u>Pin_Table</u>	Output	The signal is asserted, driven high, by the power supply to indicate 12V main output is valid. Should a 12v main output fault occur, the PW_OK signal will de-assert + driven low. PW_OK output is driven low to indicate that the main output is outside of lower limit of regulation.	Pulled up internally via 10K to VDD ¹ . A logic high >2.0Vdc A logic low <0.8Vdc Driven low by internal CMOS buffer (open drain output).
SMB_ALERT (FAULT) Link to: <u>Pin_Table</u>	Output	The signal output is driven low to indicate that the power supply has detected a fault / status register bits (except Status_CML) and is intended to alert the system. This output must be driven high when the power is operating correctly (within specified limits). The signal will revert to a high level when the fault stimulus (that caused the alert) is removed. The LED Status (Fault) reflects the status of SMB_ALERT signal	Pulled up internally via 10K to VDD ¹ . A logic high >2.0Vdc A logic low <0.8Vdc Driven low by internal CMOS buffer (open drain output).
PRESENT_L (Power Supply Absent) Link to: <u>Pin_Table</u>	Output	The signal is used to detect the presence (installed) of a PSU by the host system. The signal is connected to PSU logic SGND within the power module.	Passive connection to +VSB_Return. A logic low <0.8Vdc
PS_ON (Main Out Enable/Disable) Link to:	Input	This signal is pulled up, within the power supply, to the internal housekeeping supply. The power supply main 12Vdc output will be enabled when this signal is pulled low (to output return). In the low state the signal input shall not source more than 1mA of current. The 12Vdc output will be disabled when the input is driven higher than 2.4V, or open circuited. Cycling this signal shall clear latched fault conditions.	Pulled up internally via 10K to VDD ¹ . A logic high >2.0Vdc A logic low <0.8Vdc Input is via CMOS Schmitt trigger buffer.
ADDR (Address Select) / PS_INHIBIT Link to: <u>Pin_Table</u> <u>LED Table</u>	Input	A multi-function signal used to detect presence in the system and also to set the slave device address. When this pin is left open all power module operation will be inhibited and a default slave address will be assigned (0x80h) to allow communication with slave devices. When the power module is inserted into a system this pin will be pulled (via a suitable external select resistor to +VSB_Return, and in conjunction with an internal resistor divider chain, shall configure the required slave (EEPROM and microprocessor) address used for digital communications. Note: An external pulldown resistor is required from ADDR to +VSB_Return for operation of the main output, ≤180K.	DC voltage between the limits of 0 and +3.3Vdc. System side pull-down resistor required, ≤180K
SCL (Serial Clock) Link to Pin Table: Link to: <u>Pin_Table</u>	Both	A serial clock line compatible with PMBus [™] Power Systems Management Protocol Part 1 – General Requirements Rev 1.2. No additional internal capacitance is added that would affect the speed of the bus. The signal is provided with a series isolator device to disconnect the internal power supply bus in the event that the power module is unpowered.	VIL is 0.8V maximum VOL is 0.4V maximum when sinking 3mA VIH is 2.1V minimum
SDA (Serial Data) Link to: <u>Pin_Table</u>	Both	A serial data line compatible with PMBus [™] Power Systems Management Protocol Part 1 – General Requirements Rev 1.2. The signal is provided with a series isolator device to disconnect the internal power supply bus in the event that the power module is unpowered.	VIL is 0.8V maximum VOL is 0.4V maximum when sinking 3mA VIH is 2.1V minimum
V1_SENSE & V1SENSE_RTN Link to: <u>Pin_Table</u> <u>Pin_Table</u>	Input	Remote sense connections intended to be connected at and sense the voltage at the point of load. The voltage sense will interact with the internal module regulation loop to compensate for voltage drops due to connection resistance between the output connector and the load. If remote sense compensation is not required then the voltage can be configured for local sense by: 1. V1_SENSE directly connected to main output 2. V1_SENSE_RTN directly connected to main output RTN	Compensation for up to 0.12Vdc total connection drop (output and return connections).
ISHARE Link to: <u>Pin_table</u>	Both	This signal is connected between sharing units forming an ISHARE bus. It is a bi-directional analog bus voltage controls the current share between sharing units. PSU responds to change in bus voltage and also can change the bus voltage based on the load drawn from it. For single PSU, the voltage on the pin/ISHARE bus would read approximately 8VDC at 100% load. For two identical units sharing the same 100% load this would read approximately 4VDC for perfect current sharing (i.e. 50% module load capability per unit). This signal is also used by cold redundant enabled power supplies to determine Main output on/off state. Refer to <u>ACAN-81</u> for details.	Analogue voltage: +8V maximum; 10K to +12V_RTN


^{1.} VDD is an internal voltage rail derived from VSB and an internal housekeeping rail ("diode ORed") and is compatible with the voltage levels of TTL and CMOS logic families.

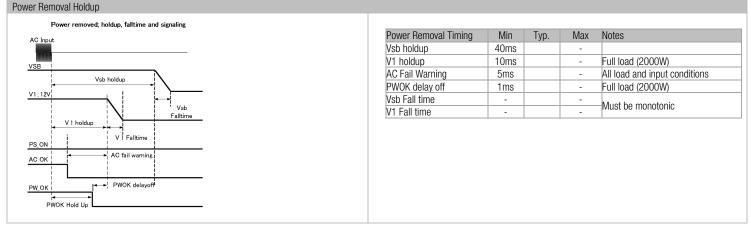
54mm 1U Front End AC-DC Power Supply Converter

TIMING SPECIFICATIONS



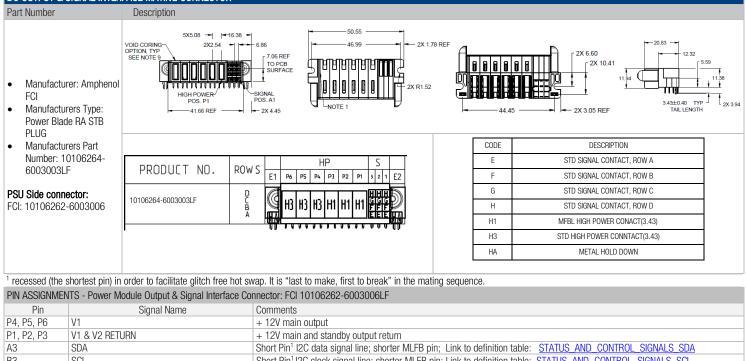
V1 PS_ON Delay

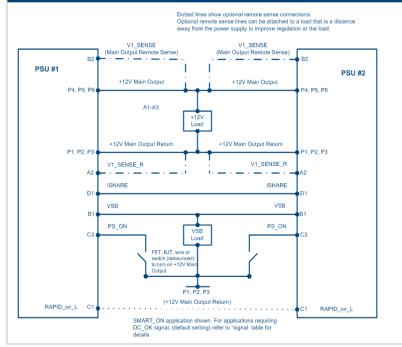
n no de la desta de la des Constante de la desta de la


Time	Min	Max
3.3 Vsb Rise time ¹	3.9ms	4.8ms
5 Vsb Rise time ¹	6.8ms	8.3ms
12 Vsb Rise time ¹	7.2ms	8.8ms
V1 Rise time	7ms	15ms
Vsb Power-on-delay		2700ms
V1 Power-on-delay		3000ms
V1 PS_ON delay	100ms	150ms
V1 PWOK delay	100ms	400ms
ACOK detect	250ms	1500ms
¹ The output rise times shall be	e measured from 1	0% of the
nominal output to the lower lin	mit of the regulatio	n band as
defined in the following tables	5.	

TIMING SPECIFICATIONS

Turn-Off Timing	Min	Max	Notes
V1 Fall time	-	-	Must be monotonic
V1 PS_OFF delay	Oms	5ms	
PW_OK delay off	0.5ms		

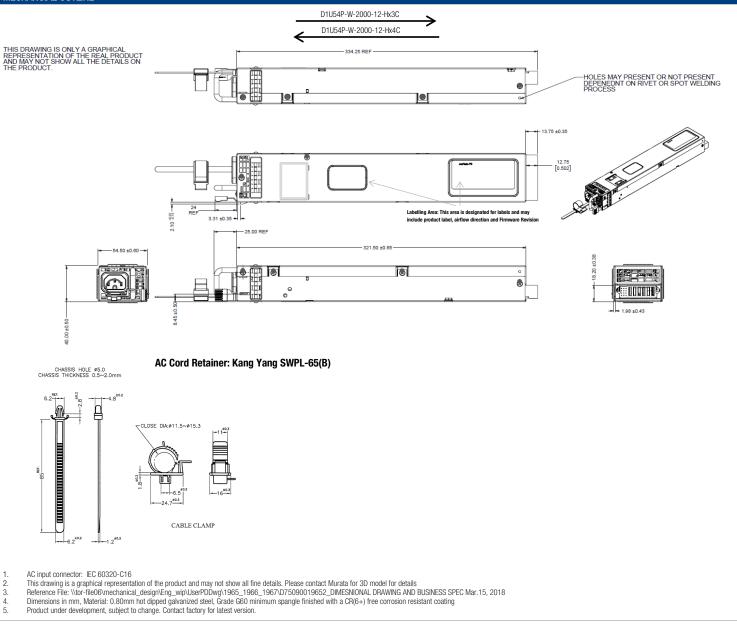

TIMING SPECIFICATIONS


54mm 1U Front End AC-DC Power Supply Converter

DC OUTPUT & SIGNAL INTERFACE MATING CONNECTOR

A3	SDA	Short Pin ¹ I2C data signal line; shorter MLFB pin; Link to definition table: <u>STATUS_AND_CONTROL_SIGNALS_SDA</u>
B3	SCL	Short Pin ¹ I2C clock signal line; shorter MLFB pin; Link to definition table: STATUS AND CONTROL SIGNALS SCL
C3	PS_ON	Short Pin ¹ Remote on/off Short; shorter MLFB pin
D3	SMB_ALERT	Short Pin ¹ 2C alert signal; shorter MLFB pin; Link to definition table: <u>STATUS_AND_CONTROL_SIGNALS_SMB_ALERT</u>
A2	V1_SENSE_R	- Remote Sense/ return; Link to definition table: STATUS AND CONTROL SIGNALS V Sense
B2	V1_SENSE	+ Remote Sense; Link to definition table: <u>STATUS_AND_CONTROL_SIGNALS_V_Sense</u>
C2	PW_0K	Power OK; Link to definition table: STATUS AND CONTROL SIGNALS SMB PW OK
D2	ADDR	Address Selection (select by external pull down resistor); Link to selection table Address Selection Table; Link to definition table
		STATUS AND CONTROL SIGNALS ADDR
A1	PRESENT_L	PS Present; Link to definition table STATUS AND CONTROL SIGNALS Present
B1	VSB	Standby output
C1	AC_OK/ RAPID_ON_L	Default: AC_OK; Selectable via PMBus [™] ; Link to definition table <u>STATUS AND CONTROL SIGNALS AC OK/RAPID_ON</u>
D1	ISHARE	Current share bus: Link to definition table STATUS AND CONTROL SIGNALS ISHARE

WIRING DIAGRAM


CURRENT SHARING NOTES

- 1. Main Output current sharing is achieved using the active current share method.
- 2. Current sharing can be achieved with or without the remote (V_SENSE) connected to the common load.
- +VSB Outputs can be tied together for redundancy but total combined output power must not exceed the rated standby power of a single unit. The +VSB output has an internal ORING MOSFET for additional redundancy/internal short protection.
- Main output power of units sharing must not exceed the rated power of a single unit during power up.
- 5. The current sharing pin D1 is connected between sharing units (forming an ISHARE bus). It is an input and/or an output (bi-directional analog bus) as the voltage on the line controls the current share between sharing units. A power supply will respond to a change in this voltage but a power supply can also change the voltage depending on the load drawn from it. On a single unit the voltage on the pin (and the common ISHARE bus would read approximately 8VDC at 100% load (power module capability). For two units sharing the same load this would read approximately 4VDC for perfect current sharing (i.e. 50% power capability per unit).
- 6. The load for both the main 12V and the VSB outputs at initial startup shall not be allowed to exceed the capability of a single unit. The load can be increased after a delay of 3 sec (minimum), to allow all sharing units to achieve steady state regulation

54mm 1U Front End AC-DC Power Supply Converter

MECHANCIAL OUTLINE

Description	Part Number		
Connector Card	D1U54P-12-CONC2K		
APPLICATION NOTES			
Document Number	Description	URL Link to Document	
ACAN-82	D1U54P-12-CONC2K, Output Connector Card	Click to open ACAN-82	
ACAN-81	D1U54P-W-2000-12-HxxTC PMBus [™] Protocol	Click to open ACAN-81	
ACAN-80	Cold Redundancy; RAPID ON	Click to open ACAN-80	

Murata Power Solutions, Inc. 129 Flanders Rd. Westborough, Ma 01581, USA. ISO 9001 and 14001 REGISTERED

This product is subject to the following operating requirements and the Life and Safety Critical

Application Sales Policy. Refer to: https://www.murata-ps.com/requirements/ Nurala Power Solutions, inc. (Nural") makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infininge upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Buyer represents and agrees that it has all the necessary operates to create and implement safeguards that anticipate diagravics unsequences of failures, monther failures and their consequences, lessent the likelihood of failures that might cause harm, and take appropriate remedial actions. Buyer will huly indemnify Murata, its affiliated companies, and its representatives against any damages arising out of the use of any Murata products in safety-ortical adjectators. Societations are sub-their to choose without on the conapplications. Specifications are subject to change without notice. © 2020 Murata Power Solutions, Inc.