o
AtmeL SAMA4S Series

Atmel | SMART ARM-based Flash MCU

DATASHEET

Description

The Atmel® | SMART SAMA4S series is a member of a family of Flash
microcontrollers based on the high-performance 32-bit ARM® Cortex®-M4 RISC
processor. It operates at a maximum speed of 120 MHz and features up to
2048 Kbytes of Flash, with optional dual-bank implementation and cache
memory, and up to 160 Kbytes of SRAM. The peripheral set includes a full-speed
USB Device port with embedded transceiver, a high-speed MCI for
SDIO/SD/MMC, an External Bus Interface featuring a Static Memory Controller to
connect to SRAM, PSRAM, NOR Flash, LCD Module and NAND Flash, 2
USARTSs, 2 UARTSs, 2 TWIs, 3 SPIs, an 12S, as well as a PWM timer, two 3-
channel general-purpose 16-bit timers (with stepper motor and quadrature
decoder logic support), an RTC, a 12-bit ADC, a 12-bit DAC and an analog
comparator.

The SAMA4S series is ready for capacitive touch, offering native support for the
Atmel QTouch® library for easy implementation of buttons, wheels and sliders.

The Atmel | SMART SAMA4S devices have three software-selectable low-power
modes: Sleep, Wait and Backup. In Sleep mode, the processor is stopped while
all other functions can be kept running. In Wait mode, all clocks and functions are
stopped but some peripherals can be configured to wake up the system based on
predefined conditions. In Backup mode, only the low-power RTC and wakeup
logic are running.

The real-time event management allows peripherals to receive, react to and send
events in Active and Sleep modes without processor intervention.

The SAMA4S device is a medium-range general-purpose microcontroller with the
best ratio in terms of reduced power consumption, processing power and
peripheral set. This enables the SAM4S to sustain a wide range of applications
that includes consumer, industrial control, and PC peripherals.

SAMA4S devices operate from 1.62V to 3.6V.

The SAMA4S series is pin-to-pin compatible with the SAM3N, SAM3S series (48-,
64- and 100-pin versions), SAM4N and SAMYS legacy series (64-pin versions).

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel SHMART

Features

e Core
— ARM Cortex-M4 with 2 Kbytes of cache running at up to 120 MHz
— Memory Protection Unit (MPU)
— DSP Instruction Set
— Thumb®-2 instruction set

e Pin-to-pin compatible with SAM3N, SAM3S, SAM4N and SAMYS legacy products (64-pin version)
e Memories
— Up to 2048 Kbytes embedded Flash with optional dual-bank and cache memory, ECC, Security Bit and Lock
Bits

— Upto 160 Kbytes embedded SRAM
— 16 Kbytes ROM with embedded boot loader routines (UART, USB) and IAP routines
— 8-bit Static Memory Controller (SMC): SRAM, PSRAM, NOR and NAND Flash support
e System
— Embedded voltage regulator for single supply operation
— Power-on-Reset (POR), Brown-out Detector (BOD) and Watchdog for safe operation
— Quartz or ceramic resonator oscillators: 3 to 20 MHz main power with failure detection and optional low-power
32.768 kHz for RTC or device clock
— RTC with Gregorian and Persian calendar mode, waveform generation in low-power modes
— RTC counter calibration circuitry compensates for 32.768 kHz crystal frequency inaccuracy
— High-precision 8/12 MHz factory-trimmed internal RC oscillator with 4 MHz default frequency for device startup,
in-application trimming access for frequency adjustment
— Slow clock internal RC oscillator as permanent low-power mode device clock
— Two PLLs up to 240 MHz for device clock and for USB
— Temperature sensor
— Low-power tamper detection on two inputs, anti-tampering by immediate clear of general-purpose backup
registers (GPBR)
— Up to 22 Peripheral DMA (PDC) channels
e Low-power Modes
— Sleep, Wait and Backup modes; consumption down to 1 pA in Backup mode
e Peripherals
— USB 2.0 Device: 12 Mbps, 2668 byte FIFO, up to 8 bidirectional Endpoints, on-chip transceiver
— Up to two USARTs with 1ISO7816, IrDA®, RS-485, SPI, Manchester and Modem Mode
— Two 2-wire UARTs
— Up to two 2-Wire Interface modules (I2C-compatible), one SPI, one Serial Synchronous Controller (12S), one
high-speed Multimedia Card Interface (SDIO/SD Card/MMC)
— Two 3-channel 16-bit Timer Counters with capture, waveform, compare and PWM mode, Quadrature decoder
logic and 2-bit Gray up/down counter for stepper motor
— 4-channel 16-bit PWM with complementary output, fault input, 12-bit dead time generator counter for motor
control
— 32-bit Real-time Timer and RTC with calendar, alarm and 32 kHz trimming features
— 256-bit General Purpose Backup Registers (GPBR)
— Up to 16-channel, 1Msps ADC with differential input mode and programmable gain stage and auto calibration
— One 2-channel 12-bit 1IMsps DAC
— One Analog Comparator with flexible input selection, selectable input hysteresis
— 32-bit Cyclic Redundancy Check Calculation Unit (CRCCU) for data integrity check of off-/on-chip memories
— Register Write Protection

2 SAMA4S Series [DATASHEET] /ltmeL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

e |/O
— Upto 79 I/O lines with external interrupt capability (edge or level sensitivity), debouncing, glitch filtering and on-
die series resistor termination
— Three 32-bit Parallel Input/Output Controllers, Peripheral DMA-assisted Parallel Capture mode
e Packages
— 100-lead packages
e LQFP —14 x 14 mm, pitch 0.5 mm
e TFBGA -9 x 9 mm, pitch 0.8 mm
e VFBGA -7 x 7 mm, pitch 0.65 mm
— 64-lead packages
e LQFP -10x 10 mm, pitch 0.5 mm
e QFN -9 x9 mm, pitch 0.5 mm
e WLCSP —4.42 x 4.72 mm, pitch 0.4 mm (SAM4SD32/SAM4SD16)
e WLCSP - 4.42 x 3.42 mm, pitch 0.4 mm (SAM4S16/S8)
e WLCSP —3.32 x 3.32 mm, pitch 0.4 mm (SAM4S4/S2)
— 48-lead packages
e LQFP -7 x7 mm, pitch 0.5 mm
e QFN-—7x7mm, pitch 0.5 mm

/ItmeL SAMA4S Series [DATASHEET] 3

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Safety Features Highlight

e Flash
— Built-in ECC (hamming), single error correction
— Security bit and lock bits

4 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

1. Configuration Summary
The SAMA4S series devices differ in memory size, package and features. Table 1-1 and Table 1-2 summarize the
configurations of the device family.
Table 1-1. Configuration Summary for SAM4SD32/SD16/SA16/S16 Devices
Feature SAM4SD32C SAM4SD32B SAM4SD16C | SAM4SD16B | SAM4SA16C |SAM4SA16B| SAM4S16C SAM4S16B
Flash 2 x 1024 Kbytes | 2 x 1024 Kbytes | 2 x 512 Kbytes | 2 x 512 Kbytes | 1024 Kbytes | 1024 Kbytes | 1024 Kbytes | 1024 Kbytes
SRAM 160 Kbytes 160 Kbytes 160 Kbytes 160 Kbytes 160 Kbytes 160 Kbytes 128 Kbytes 128 Kbytes
HCACHE 2 Kbytes 2 Kbytes 2 Kbytes 2 Kbytes 2 Kbytes 2 Kbytes - -
LQFP100 LQFP64 LQFP100 LQFP64 LQFP100 LQFP64 LQFP100 LQFP64
Package TFBGA100 QFN64 TFBGA100 QFN64 TFBGA100 QFN64 TFBGA100 QFN64
VFBGA100 WLCSP64 VFBGA100 WLCSP64 VFBGA100 VFBGA100 | WLCSP64
Number of PIOs 79 47 79 47 79 47 79 47
External 8-bit data, 8-bit data, 8-bit data, 8-bit data,
Bus 4 chip selects, - 4 chip selects, - 4 chip selects, - 4 chip selects, -
Interface 24-bit address 24-bit address 24-bit address 24-bit address
12-bit ADC 16 ch.®) 11 ch.® 16 ch.®V 11 ch.® 16 ch.® 11 ch.® 16 ch.® 11 ch.®
12-bit DAC 2 ch. 2 ch. 2 ch. 2 ch. 2 ch. 2 ch. 2 ch. 2 ch.
Timer Counter 6 62 6 62 6 62 6 62
Channels
PDC Channels 22 22 22 22 22 22 22 22
USART/UART 2/2¢) 2/2¢) 2/2¢) 2/2® 2/2¢) 2/2® 2/2¢) 2/2®)
HSMCI 1 port, 4 bits 1 port, 4 bits 1 port, 4 bits 1 port, 4 bits 1 port, 4 bits | 1 port, 4 bits | 1 port, 4 bits | 1 port, 4 bits
Table 1-2. Configuration Summary for SAM4S8/S4/S2 Devices
Feature SAM4S8C SAM4S8B SAM4S4C SAM4S4B SAMAS4A SAM4S2C SAM4S2B SAM4S2A
Flash 512 Kbytes 512 Kbytes 256 Kbytes 256 Kbytes 256 Kbytes 128 Kbytes 128 Kbytes | 128 Kbytes
SRAM 128 Kbytes 128 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes
HCACHE - - - - - - - -
Package A0 | GPer | TrBoAlo | aPver | O ricao | gives | LT
VFBGA100 WLCSP64 VFBGA100 WLCSP64 VFBGA100 WLCSP64
Number of PIOs 79 47 79 47 34 79 47 34
External 8-bit data, 8-bit data, 8-bit data,
Bus 4 chip selects, - 4 chip selects, - - 4 chip selects, - -
Interface 24-bit address 24-bit address 24-bit address
12-bit ADC 16 ch.® 11 ch.® 16 ch.® 11 ch.® 8 ch. 16 ch.® 16 ch.® 8 ch
12-bit DAC 2 ch. 2 ch. 2 ch. 2 ch. - 2 ch. 2 ch. -
Timer Counter 6 62 6 62 62 6 62) 62
Channels
PDC Channels 22 22 22 22 22 22 22 22
USART/UART 2/2¢) 2/2¢) 2/2%) 2120 211 2/2¢) 2/2¢) 2/1
HSMCI 1 port, 4 bits 1 port, 4 bits 1 port, 4 bits 1 port, 4 bits - 1 port, 4 bits | 1 port, 4 bits -
Notes: 1. One channel is reserved for internal temperature sensor.
2. Three TC channels are reserved for internal use.
3. Full modem support on USART1.
/ItmeL SAMA4S Series [DATASHEET] 5

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

2. Block Diagram

Figure 2-1. SAM4SD32/SD16/SA16 100-pin Version Block Diagram
+

o
O & N
< o O
G & & o
S SEF N e
A A 4 A
TST vy
PCK[2:0] ﬁ
fd. ¢
JTAG and Serial Wire
N ~ Cortex-M4 Processor
YOUT > fuax 120 MHz
ERASE +—»|
WKUP[15:0] 4|
XIN32 4—p| AEED User
XOUT32 +—» Unique Signature
Identifier 9
VDDIO —¥ i i
VDDCORE —b| Flash
VDDPLL —| <):> 2*1024/2*512/1024 Kbytes
RTCOUTO
RTCOUT1 4-layer AHB Bus Matrix SRAM
NRST fuax 120 MHz S <):> 160 Kbytes
= | =D g
S M S 16 Kbytes
_ < S
< » A23:0]
System Controller <):> AHB_/APB < » A21/NANDALE
Br|dge < » A22/NANDCLE
< » NANDOE
< » NANDWE
A < » NWAIT
TWCKO ¢ > < » NCS[3:0]
TWDO < > < > NRD
TWCK1 ») > e
TWD1 >
UTXDO « > < » DDM
UTXD1 > < » MCCK
SCKo < . < » MCCDA
o0 < ¢ < » MCDA[3:0]
< >
Eﬁgg b < < » MISO
CTSO »> < » MOSI
< » SPCK
SCK1 »> < » NPCS[3:0]
TXD1 < >
RXD1 > < aL
RTS1 < > < » RD
CTS1 »> <« >
DTR1 > < > E;
DSR1 +« > < > TF
DCD1 > < >
RI1 > - " RE
PIODC[7:0] < »>
PIODCCLK < >
PIODCEN[2:1] < >
< » TCLK[2:0]
< > TIOA[2:0]
AD[14:0] « < > TIOB[2:0]
ADTRG +
< » TCLK[5:3]
< » TIOA[5:3]
ADVREF — < » TIOB[5:3]
DAC[1:0] + »|
“ 41—
DATRG L < » PWMH[3:0]
ADG < » PWML[3:0]
DAC —»p < » PWMFIO
Temp. Sensor
ADVREF
6 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 2-2.

SAM4SD32/SD16/SA16 64-pin Version Block Diagram

TST
PCK[2:0]

XIN <—»
XOUT <—»
ERASE 4+—b|
WKUP[15:0] 4|

XIN32 ¢—p]
XOUT32 «—b

VDDIO
VDDCORE
VDDPLL

RTCOUTO
RTCOUT1

NRST

System Controller

CIN
3\ O Q Q
O SESE KOS
A A A A
YV v Y
1 T I v
JTAG and Serial Wire
In-Circuit Emulator
Cortex-M4 Processor
fuax 120 MHz
24-bit S
Counter
FI?Sh User
I;qu."!e Signature
cMcC entifier
(2 Kbyte Cache l l
Flash
M s <):(> 2*1024/2*512/1024 Kbytes
4-layer AHB Bus Matrix SRAM
fyax 120 MHz = 160 Kbytes
s <):(> ROM
g M 3 16 Kbytes
AHB/APB
Bridge e

TWCKO

A A

TWDO

\A 4

TWCK1

A A

LA 4

TWD1

URXDO

A A

UTXDO

\A 4

URXD1

A A

\A 4

UTXD1

SCKO

TXDO

RXDO

RTSO

A A A AL

CTso
SCK1

YYVYYY

TXD1

RXD1

RTS1
CTs1

DTR1

DSR1

DCD1
RI1

A A A AAAAAS

YVYVVYVVYYYY

PIODC[7:0]
PIODCCLK

A A A

PIODCEN[2:1]

YVYYVY

ADI[9:0] «

ADTRG +«

ADVREF —
DAC[1:0] <

DATRG 4

- —

ADC

DAC —»
Temp Sensor

ADVREF

Tl e By
e

PO
] uenEE

EEET

T

A A A

YVYy

A A A A

YyYvyvyy

A A A A A A

YyVYyVYyVYYY

A A

YyvyYv

A A A

YVYy

Atmel

DDP
DDM

MCCK
MCCDA
MCDA[3:0]

MISO
MOSI
SPCK
NPCS([3:0]

™
RD
TK
RK
TF
RF

TCLK(2:0]
TIOA[2:0]
TIOB[2:0]

PWMH[3:0]
PWML(3:0]
PWMFIO

SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 2-3.

TST —»|
PCK[2:0] +—»|

XIN <—»|

XOUT «—»|
ERASE +—>|
WKUP[15:0] «—»

XIN32 ¢—p|
XOUT32 «—»

VDDIO —»
VDDCORE —»
VDDPLL —|

RTCOUTO «+—»
RTCOUT1

NRST <—

TWCKO

SAM4S16/S8 100-pin Version Block Diagram

-

In-Circuit Emula

tex-M4 Processor
fyax 120 MHZ

s /D

<)\C)

KRN

L

Flash
Unique
Identifier

User
Signature

|

M M

4-layer AHB Bus Matrix
fuax 120 MHz

S M S

Flash
1024/512 Kbytes

SRAM
128 Kbytes

131

System Controller

==

TWDO

TWCK1

A A

TWD1

URXDO

A A

UTXDO

URXD1

A A

UTXD1

SCKo

TXDO

RXDO
RTSO

A A A AL

CTSO0

SCK1

TXD1
RXD1

RTS1

CTs1

DTR1

DSR1
DCD1

A A A AAAAAAL

RI1

PIODC[7:0]

PIODCCLK

A A A

PIODCEN[2:1]

YyYvYyYV9Y YYVYVVYVYVYYYY YYYYVYY Yy Yy Yy i v

AD[14:0] <

AHB/APB
Bridge

] o el
I)y
L usenlEel
T

ADTRG «

I

ADVREF

DAC[1:0]

<

<
<
<

DATRG

SAMA4S Series

A\ 4

|

ADC

DAC —p
Temp Sensor
ADVREF

!I“]

ROM
16 Kbytes

A A A A A A A A A

YVYVYVYYVYYYYY

A A

vy

A A A

vYVvy

A A A A

yvyvy

A A A A A

YYYVYYY

A A A

Yyvv

A A A

vYVvy

A A A

vYVvy

[DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

D[7:0]

A[23:0]
A21/NANDALE
A22/NANDCLE
NANDOE
NANDWE
NWAIT
NCS[3:0]

NRD

NWE

DDP
DDM

MCCK
MCCDA
MCDA[3:0]

MISO
MosI
SPCK
NPCS[3:0]

™
RD
TK
RK
TF
RF

TCLK[2:0]
TIOA[2:0]
TIOB[2:0]

TCLK[5:3]
TIOA[5:3]
TIOB[5:3]

PWMH[3:0]
PWML[3:0]
PWMFIO

Atmel

Figure 2-4. SAM4S16/S8 64-pin Version Block Diagram

-

¢}
" $
St & ® &
Yy L@ L L
QLN &
A A A A
TST YyYVvVYY
PCK([2:0] ﬁl
T v
JTAG and Serial Wire
In-Circuit Emulator
XIN Cortex-M4 Processor
YOUT 4— fuax 120 MHz
ERASE +—»
WKUP[15:0] «—» NVIC
XIN32 «—» Flash Uk
XOUT32 4+—p| Unique RS
Identifier 9
S /D l l
VDDIO —¥
VDDCORE — Flash
VDDPLL — M M s <):> 1024/512 Kbytes
RTCOUTO «+—»|
RTCOUT1 4| 4-layer AHB Bus Matrix SRAM
NRST fiuax 120 MHz S <):(> 128 Kbytes
= M 3 16 Kbytes
System Controller <\':> AHE_’/APB PDC
Bridge
TWCKO ¢ >
TWDO < > « > |« » DDP
> |¢ » DDM
TWCK1 < >
TWD1 < >
URXDO « >
UTXDO < > < » MCCK
< » MCCDA
URXD1 < > < » MCDA[3:0]
UTXD1 < >
< >
00 « 1> > miso
RXDO < > < » MOSI
RTSO < > < » SPCK
CTSO < > < » NPCS[3:0]
SCK1 >
TXD1 < > < »
RXD1 4 > « >
RTS1 < >) > RD
CTS1 < > M > TK
DTR1 4 > N > RK
DSR1 < 2 M > TF
DCD1 < > < » RF
RI1 <« >
PIODCCLK »

PIODCEN[2:1] < b «—| |« » TCLK[2:0]
< > TIOA[2:0]
< > TIOB[2:0]

ADI[9:0] «
ADTRG »
ADVREF]
DAC[1:0] 4 < » PWMH[3:0]
DATRG + 1< — < » PWML[3:0]
— «— | |« » PWMFIO
ADC >
DAC —»
Temp Sensor |
ADVREF L L
/It m eL SAMA4S Series [DATASHEET] 9

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 2-5.
TST
PCK[2:0]
XIN «—»] | >
XOUT +—» |«
ERASE <4—»

WKUP[15:0] 4—p-

XIN32 «—p|
XOUT32 +—»

VDDIO
VDDCORE
VDDPLL

RTCOUTO «+—»
RTCOUT1 +—»

NRST

TWCKO
TWDO

TWCK1
TWD1

URXDO
UTXDO

URXD1
UTXD1

SCKO
TXDO
RXDO
RTSO
CTs0

SCK1

TXD1

RXD1
RTS1

CTs1

DTR1
DSR1
DCD1
RI1

PIODC[7:0]
PIODCCLK
PIODCEN(2:1]

AD[14:0] <
ADTRG +

ADVREF —]

DAC[1:0]
DATRG

SAM4S4/S2 100-pin Version Block Diagram

© &

s ©

O S F &
QLN ¢ N

A A A A

—»
—»
—>

-«

System Controller

Y VVY

I

JTAG and Serial Wire

J 110

In-Circuit Emulator

Cortex-M4 Processor
fyax 120 MHz

24-bit SysTick
Counter

L::I'ESh User
nique .
Ider:[tli:er Signature
S I/D l l
Flash
- = S <):(> 256/128 Kbytes
4-layer AHB Bus Matrix A
fuax 120 MHz S SRAM
<# > ROM
4 . 16 Kbytes

AHB/APB

A A A A

PDC

Bridge

h

A A
A\A 4

A A
\A 4

A A
Yy

A A
Yy

A A AAra
YVVYVYY

A A A AAAALAAL
YYYYYYYYY

A A A
YyYvYyvyvy

A A
Yy

—

ADC

DAC —p
Temp Sensor
ADVREF

A A A A A

Y VYVYVYVYVyYyYVYYYY

A A

vy

A A A

Y

\ AR

A A A

yvyvy

A A A A A A

YyVYyVYyVYYY

A A A

\ AR

A A A

\ AR

A

YVvv

10 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

DI7:0]
A123:0]
A21/NANDALE
A22/NANDCLE
NANDOE
NANDWE
NWAIT
NCS[3:0]

NRD

NWE

DDP
DDM

MCCK
MCCDA
MCDA[3:0]

MISO
MOSI
SPCK
NPCSI[3:0]

TCLK[2:0]
TIOA[2:0]
TIOB[2:0]

TCLK(5:3]
TIOA[5:3]
TIOB(5:3]

PWMH[3:0]
PWML(3:0]
PWMFIO

Atmel

Figure 2-6. SAM4S4/S2 64-pin Version Block Diagram

O ¥
SO & o Oé
S S &£ Y
O SEF & &L
A A A A
TST —», Y V VY

PCK([2:0] +—»]

~—
XOUT <+,
ERASE 4+—»|

XIN «—»]
WKUP[15:0] «—b/|

1130 o

JTAG and Serial Wire

s 11

In-Circuit Emulator

Cortex-M4 Processor
fuax 120 MHz

24-bit SysTick

XIN32 «—p Flash User
XOUT32 «—» Unique .
Identifier Sgieie
s IID i i
VDDIO —»
VDDCORE —P| Flash
VDDPLL —» M M s <):> 256/128 Kbytes
RTCOUTO <—b|)
RTCOUT1 +—» 4-layer AHB Bus Matrix s SRAM
NRST fuax 120 MHz 64 Kbytes
[[| =D o
= M 16 Kbytes
AHB/APB
System Controller <):(> ’
Y Bridge PDC
va
TWCKO >
TWDO < > —» DDP
» DDM
TWCK1 < >
TWD1 + >
UTXDO < > < » MCCK
. - < » MCCDA
S | AR =) Y e
SCKO >
TXDO 2 < > MISO
RXDO < > < » MOSI
RTSO < > < » SPCK
CTSO > < » NPCS[3:0]
SCK1 « 2
TXD1 > «
RXD1 4 > D ETD
RTS1 < > < > RD
CTS1 < > * > TK
DTR1 <« > « > RK
DSR1 > < > TF
DCD1 < > “ > RF
RI1 < 2
PIODC[7:0] « >
PIODCCLK < >
PIODCEN[2:1] < > < » TCLK[2:0]
< > TIOA[2:0]
“ > TIOB[2:0]
AD[9:0] +—
ADTRG +
ADVREF]
DAC[1:0] + < » PWMH[3:0]
DATRG + — < » PWML[3:0]
< » PWMFIO
ADC
DAC —»
Temp Sensor
ADVREF
/It m eL SAMA4S Series [DATASHEET] 11

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12

Figure 2-7.

TST
PCK[2:0]

XIN >
XOUT +—»|
ERASE <—»|
WKUP[15:0] 4—|

XIN32 ¢—p|
XOUT32 ¢+—P»

-3

SAM4S4/S2 48-pin Version Block Diagram

o ¥
& $
o ®'§\®§ é/’\/ Q\O 000
QN ¥ KU
A A A A
VY _V Y A4
IEEREN
JTAG and Serial Wire
In-Circuit Emulator
Cortex-M4 Processor
fuax 120 MHz
24-bit SysTick
Counter
Flash Uk
Unique N
Identifier HgEie
Flash
<):(> 256/128 Kbytes
4-layer AHB Bus Matrix SRAM
fyax 120 MHz <):(> 64 Kbytes
< > ROM
5 M 16 Kbytes
AHB/APB
Bridge PDC

VDDIO —¥

VDDCORE —

VDDPLL —p|

RTCOUTO +—»|

RTCOUT1 4P|
NRST

System Controller

TWCKO ¢ b ole— »
TWDO < 1
TWCK1 < i
TWD1 « [
URXDO < >
UTXDO < <

URXD1 « »
UTXD1 < > <
SCKO 1
TXDO < b >
RXDO > >
RTSO + <
CTS0 < 4 »>
AD[7:0] < »
ADTRG < »
ADVREF -

ADC

DAC

Temp Sensor
ADVREF

|

A A

vyv

A A A A

\AAAL

A A A A A A

YyYVYyVYVYYVYY

A A A

\ AR

A A A

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

\ AR

DDP
DDM

MISO
MOSI
SPCK
NPCS[3:0]

TCLK[2:0]
TIOA[2:0]
TIOB[2:0]

PWMH(3:0]
PWML(3:0]
PWMFI0

Atmel

3. Signal Description

Table 3-1 gives details on signal names classified by peripheral.

Table 3-1. Signal Description List
Active Voltage
Signal Name Function Type Level | Reference | Comments
Power Supplies
VDDIO Perlphe_rals I/O Lines and USB Power B B 1.62V to 3.6V
transceiver Power Supply
Voltage Regulator Input, ADC, DAC
VDDIN and Analog Comparator Power Power - - 1.62V to 3.6V
Supply
VDDOUT Voltage Regulator Output Power - - 1.2V output
VDDPLL Oscillator and PLL Power Supply Power - - 1.08V to 1.32V
VDDCORE Power the core, the embedded Power - - 1.08V to 1.32V
memories and the peripherals
GND Ground Ground - - -
Clocks, Oscillators and PLLs
XIN Main Oscillator Input Input - Reset State:
XOuT Main Oscillator Output Output - - P10 Input
XIN32 Slow Clock Oscillator Input Input - - Internal Pull-up disabled
XOUT32 Slow Clock Oscillator Output Output - VDDIO - Schmitt Trigger enabled®)
Reset State:
- PIO Input
PCKO-PCK2 Programmable Clock Output Output -
- Internal Pull-up enabled
- Schmitt Trigger enabled™®
Real Time Clock - RTC
RTCOUTO Pr(t)gr?mmable RTC waveform Output _ Reset State:
outpu - PIO Input
VbbIo Int | Pull bled
- Internal Pull-up enable
RTCOUT1L Programmable RTC waveform Output _ A p
output - Schmitt Trigger enabled”
Serial Wire/JTAG Debug Port - SWJ-DP
TCK/SWCLK Test Clock/Serial Wire Clock Input -
DI Test Data In Input - Reset State:
- SWJ-DP Mode
Test Data Out/ Trace Asynchronous
TDO/TRACESWO Data Out Output B VDDIO - Internal pull-up disabled®
Wi - Schmitt Trigger enabled™
TMS/SWDIO Test Mode Select /Serial Wire Input / 1/0 _
Input/Output
JTAGSEL JTAG Selection Input High Permanent Intermal
pull-down

Atmel

SAM4S Series [DATASHEET] 13

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level | Reference | Comments
Flash Memory
Reset State:
lash and ") . - Erase Input
ERASE E;sseacnomNn\]/aI‘\ﬁllfon 'guration Bits Input High VDDIO | - Internal pull-down
enabled
- Schmitt Trigger enabled™
Reset/Test
NRST Synchronous Microcontroller Reset I/10 Low Permanent Internal
VDDIO pUtp
ST Test Select Input _ Permanent Internal
pull-down
Wake-up
WKUP[15:0] Wake-up Inputs Input ‘ - ‘ VDDIO -
Universal Asynchronous Receiver Transceiver - UARTx
URXDx UART Receive Data Input - - -
UTXDx UART Transmit Data Output - - -
PI1O Controller - PIOA - PIOB - PIOC
PAO-PA31 Parallel 10 Controller A /10 - Reset State:
PBO-PB14 Parallel 10 Controller B o - voplo |~ P10 or System 105
- Internal pull-up enabled
PCO-PC31 Parallel IO Controller C 1’10 - - Schmitt Trigger enabled®
PIO Controller - Parallel Capture Mode
PIODCO-PIODCY Parallel Capture Mode Data Input -
PIODCCLK Parallel Capture Mode Clock Input - VDDIO -
PIODCEN1-2 Parallel Capture Mode Enable Input -
External Bus Interface
D0-D7 Data Bus 110 - - -
A0-A23 Address Bus Output - - -
NWAIT External Wait Signal Input Low - -
Static Memory Controller - SMC
NCS0-NCS3 Chip Select Lines Output Low - -
NRD Read Signal Output Low - -
NWE Write Enable Output Low - -
NAND Flash Logic
NANDOE NAND Flash Output Enable Output Low - -
NANDWE NAND Flash Write Enable Output Low - -

14 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level | Reference | Comments
High Speed Multimedia Card Interface - HSMCI
MCCK Multimedia Card Clock Output - - -
MCCDA Multimedia Card Slot A Command I} - - -
MCDAO-MCDA3 Multimedia Card Slot A Data I} - - -

Universal Synchronous Asynchronous Receiver Transmitter - USARTX

SCKXx USARTX Serial Clock /0 - - -
TXDx USARTX Transmit Data 1/0 - - -
RXDx USARTX Receive Data Input - - -
RTSx USARTx Request To Send Output - - -
CTSx USARTX Clear To Send Input - - -
DTR1 USART1 Data Terminal Ready Output - - -
DSR1 USART1 Data Set Ready Input - - -
DCD1 USART1 Data Carrier Detect Output - - -
RI1 USART1 Ring Indicator Input - - -

Synchronous Serial Controller - SSC

TD SSC Transmit Data Output - - -
RD SSC Receive Data Input - - -
TK SSC Transmit Clock 110 - - -
RK SSC Receive Clock I/0 - - -
TF SSC Transmit Frame Sync 1/0 - - -
RF SSC Receive Frame Sync /0 - - -

Timer/Counter - TC

TCLKXx TC Channel x External Clock Input Input - - -
TIOAX TC Channel x I/O Line A /0 - - -
TIOBx TC Channel x I/O Line B 1/0 - - -

Pulse Width Modulation Controller - PWMC

PWM Waveform Output High for

PWMHXx channel x Output - - -
Only output in
PWMLx PWM Waveform Output Low for Output _ _ complement_ary _mode_ _
channel x when dead time insertion is
enabled.
PWMFI1 and PWMFI2 on
PWMFI0-2 PWM Fault Input Input - - SAM4S4/S2 only
SAMA4S Series [DATASHEET 15
Atmel [.

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level | Reference | Comments
Serial Peripheral Interface - SPI
MISO Master In Slave Out I/O - - -
MOSI Master Out Slave In I/0 - - -
SPCK SPI Serial Clock I/0 - - -
SPI_NPCSO SPI Peripheral Chip Select 0 I/O Low - -
SPI_NPCS1-SPI_NPCS3 | SPI Peripheral Chip Select Output Low - -
Two-Wire Interface - TWI
TWDx TWIx Two-wire Serial Data 1/0 - -
TWCKX TWIx Two-wire Serial Clock I/0 - -
Analog
ADVREE ADC, DAC and Analog Comparator Analog B B
Reference
12-bit Analog-to-Digital Converter - ADC
ADO-AD14 Analog Inputs A[;‘ig'i?;{' - -
ADTRG ADC Trigger Input - VDDIO
12-bit Digital-to-Analog Converter - DAC
DACO-DAC1 Analog output Al;gligg' - -
DACTRG DAC Trigger Input - VDDIO
Fast Flash Programming Interface - FFPI
PGMENO-PGMEN2 Programming Enabling Input - VDDIO
PGMMO0-PGMM3 Programming Mode Input -
PGMDO-PGMD15 Programming Data 1/0 -
PGMRDY Programming Ready Output High
PGMNVALID Data Direction Output Low VDDIO
PGMNOE Programming Read Input Low
PGMCK Programming Clock Input -
PGMNCMD Programming Command Input Low
USB Full Speed Device
DDM USB Full Speed Data - Reset State:
Analog, - VDDIO | - USB Mode
DDP USB Full Speed Data + Digital - Internal Pull-down®
Note: 1. Schmitt triggers can be disabled through PIO registers.
2. Some PIO lines are shared with system I/Os.
3. Refer to USB section of the product Electrical Characteristics for information on pull-down value in USB mode.
4. See “Typical Powering Schematics” section for restrictions on voltage range of analog cells.
5. TDO pin is set in input mode when the Cortex-M4 processor is not in debug mode. Thus the internal pull-up corresponding

to this PIO line must be enabled to avoid current consumption due to floating input

16 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

4. Package and Pinout

SAMA4S devices are pin-to-pin compatible with SAM3N, SAM3S products in 48-, 64- and 100-pin versions, SAM4N
and SAMYS legacy products in 64-pin versions.

4.1 100-lead Packages and Pinouts

Refer to Table 1-1 and Table 1-2 for the overview of devices available in 100-lead packages.
41.1 100-lead LQFP Package Outline

Figure 4-1. Orientation of the 100-lead LQFP Package

75 51

1 1
76 — 50

100 —
26
\ —
1] 1
1 25

4.1.2 100-ball TFBGA Package Outline

The 100-ball TFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its dimensions are 9 x 9 x
1.1 mm. Figure 4-2 shows the orientation of the 100-ball TFBGA package.

Figure 4-2. Orientation of the 100-ball TFBGA Package

TOP VIEW
10| o oo 0000000
9| o oo 0o000000
8] o oo oo o0o0o0o0o0
7] o oo 0o 000000
6] 0o oo oo0oo0o00o00O
5] o oo0oo0oo0o0o0o0o0
4] o 0o o000 o000 o0
3] o o oo o ooo oo
2] o oo 0000000
1] 0000000000
©
BALLAl_/ABCDEFGHJK
/ItmeL SAMA4S Series [DATASHEET] 17

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

4.1.3 100-ball VFBGA Package Outline

Figure 4-3. Orientation of the 100-ball VFBGA Package

PIN A1 CORNER

12 3 45:67 8 910

N e IT O TNiMmMmoO O @ >

18 SAMA4S Series [DATASHEET)]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15 /I t m e L

4.1.4 100-lead LQFP Pinout

Table 4-1. SAM4SD32/SD16/SA16/S16/S8/S4/S2 100-lead LQFP Pinout

1 ADVREF 26 GND 51 TDI/PB4 76 | TDO/TRACESWO/PB5
2 GND 27 VDDIO 52 PA6/PGMNOE 77 JTAGSEL
3 PBO/AD4 28 PA16/PGMD4 53 PA5/PGMRDY 78 PC18
4 PC29/AD13 29 PC7 54 PC28 79 TMS/SWDIO/PB6
5 PB1/AD5 30 PA15/PGMD3 55 PA4/PGMNCMD 80 PC19
6 PC30/AD14 31 PA14/PGMD2 56 VDDCORE 81 PA31
7 PB2/AD6 32 PC6 57 PA27/PGMD15 82 PC20
8 PC31 33 PA13/PGMD1 58 PC8 83 TCK/SWCLK/PB7
9 PB3/AD7 34 PA24/PGMD12 59 PA28 84 PC21
10 VDDIN 35 PC5 60 NRST 85 VDDCORE
11 VDDOUT 36 VDDCORE 61 TST 86 PC22
12 PA17/PGMD5/AD0O 37 PC4 62 PC9 87 ERASE/PB12
13 PC26 38 PA25/PGMD13 63 PA29 88 DDM/PB10
14 PA18/PGMD6/AD1 39 PA26/PGMD14 64 PA30 89 DDP/PB11
15 PA21/PGMD9/AD8 40 PC3 65 PC10 90 PC23
16 VDDCORE 41 PA12/PGMDO 66 PA3 91 VDDIO
17 PC27 42 PA11/PGMMS3 67 PA2/PGMEN2 92 PC24
18 PA19/PGMD7/AD2 43 PC2 68 PC11 93 PB13/DACO
19 PC15/AD11 44 PA10/PGMM2 69 VDDIO 94 PC25
20 PA22/PGMD10/AD9 45 GND 70 GND 95 GND
21 PC13/AD10 46 PA9/PGMM1 71 PC14 96 PB8/XOUT
22 PA23/PGMD11 47 PC1 72 PA1/PGMEN1 97 PB9/PGMCKI/XIN
23 PC12/AD12 48 | PA8/XOUT32/PGMMO 73 PC16 98 VDDIO
24 PA20/PGMD8/AD3 49 PP(? |\7/|/[i](\l/|\,i\:|3_?é) 74 PAO/PGMENO 99 PB14/DAC1
25 PCO 50 VDDIO 75 PC17 100 VDDPLL

/ItmeL SAMA4S Series [DATASHEET] 19

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

4.1.5 100-ball TFBGA Pinout

Table 4-2. SAM4SD32/SD16/SA16/S16/S8/S4/S2 100-ball TFBGA Pinout

Al PB1/AD5 C6 TCK/SWCLK/PB7 F1 PA18/PGMD6/AD1 H6 PC4
A2 PC29/AD13 c7 PC16 F2 PC26 H7 PA11/PGMM3
A3 VDDIO Cc8 PA1/PGMEN1 F3 VDDOUT H8 PC1
A4 PB9/PGMCK/XIN C9 PC17 F4 GND H9 PA6/PGMNOE
A5 PB8/XOUT C10 PAO/PGMENO F5 VDDIO H10 TDI/PB4
A6 PB13/DACO D1 PB3/AD7 F6 PA27/PGMD15 J1 PC15/AD11
A7 DDP/PB11 D2 PBO/AD4 F7 PC8 J2 PCO
A8 DDM/PB10 D3 PC24 F8 PA28 J3 PA16/PGMD4
A9 TMS/SWDIO/PB6 D4 pPC22 F9 TST Ja PC6
Al0 JTAGSEL D5 GND F10 PC9 J5 PA24/PGMD12
Bl PC30/AD14 D6 GND Gl PA21/PGMD9/AD8 J6 PA25/PGMD13
B2 ADVREF D7 VDDCORE G2 PC27 J7 PA10/PGMM2
B3 GNDANA D8 PA2/PGMEN2 G3 PA15/PGMD3 J8 GND
B4 PB14/DAC1 D9 PC11 G4 VDDCORE J9 VDDCORE
B5 PC21 D10 PC14 G5 VDDCORE J10 VDDIO
B6 PC20 El PA17/PGMD5/AD0O G6 PA26/PGMD14 K1 PA22/PGMD10/AD9
B7 PA31 E2 PC31 G7 PA12/PGMDO K2 PC13/AD10
B8 PC19 E3 VDDIN G8 PC28 K3 PC12/AD12
B9 PC18 E4 GND G9 PA4/PGMNCMD K4 PA20/PGMD8/AD3
B10 | TDO/TRACESWO/PB5 E5 GND G10 PA5/PGMRDY K5 PC5
C1 PB2/AD6 E6 NRST H1 PA19/PGMD7/AD2 K6 PC3
Cc2 VDDPLL E7 PA29 H2 PA23/PGMD11 K7 PC2
C3 PC25 E8 PA30 H3 PC7 K8 PA9/PGMM1
C4 PC23 E9 PC10 H4 PA14/PGMD2 K9 | PA8/XOUT32/PGMMO
C5 ERASE/PB12 E10 PA3 H5 PA13/PGMD1 K10 Ppéh7/|/lil(\l/’\,i\:lg_2|é)

20 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

4.1.6 100-ball VFBGA Pinout

Table 4-3. SAM4SD32/SD16/SA16/S16/S8/S4/S2 100-ball VFBGA Pinout

Al ADVREF C6 PC9 F1 VDDOUT H6 PA12/PGMDO
A2 VDDPLL c7 TMS/SWDIO/PB6 F2 PA18/PGMD6/AD1 H7 PA9/PGMM1
A3 PB9/PGMCK/XIN C8 PA1/PGMEN1 F3 PA17/PGMD5/ADO H8 VDDCORE
A4 PB8/XOUT Cc9 PAO/PGMENO F4 GND H9 PA6/PGMNOE
A5 JTAGSEL C10 PC16 F5 GND H10 PA5/PGMRDY
A6 DDP/PB11 D1 PB1/AD5 F6 PC26 J1 PA20/AD3/PGMD8
A7 DDM/PB10 D2 PC30/AD14 F7 PA4/PGMNCMD J2 PC12/AD12
A8 PC20 D3 PC31 F8 PA28 J3 PA16/PGMD4
A9 PC19 D4 pPC22 F9 TST Ja PC6

A10 | TDO/TRACESWO/PB5 D5 PC5 F10 PC8 J5 PA24/PGMD12
Bl GNDANA D6 PA29 Gl PC15/AD11 J6 PA25/PGMD13
B2 PC25 D7 PA30 G2 PA19/PGMD7/AD2 J7 PA11/PGMM3
B3 PB14/DAC1 D8 GND G3 PA21/AD8/PGMD9 J8 VDDCORE
B4 PB13/DACO D9 PC14 G4 PA15/PGMD3 J9 VDDCORE
B5 PC23 D10 PC11 G5 PC3 J10 TDI/PB4

B6 PC21 El VDDIN G6 PA10/PGMM2 K1 PA23/PGMD11
B7 TCK/SWCLK/PB7 E2 PB3/AD7 G7 PC1 K2 PCO

B8 PA31 E3 PB2/AD6 G8 PC28 K3 PC7

B9 PC18 E4 GND G9 NRST K4 PA13/PGMD1
B10 PC17 E5 GND G10 PA27/PGMD15 K5 PA26/PGMD14
C1 PBO/AD4 E6 GND H1 PC13/AD10 K6 PC2

Cc2 PC29/AD13 E7 VDDIO H2 PA22/AD9/PGMD10 K7 VDDIO

C3 PC24 E8 PC10 H3 PC27 K8 VDDIO

C4 ERASE/PB12 E9 PA2/PGMEN2 H4 PA14/PGMD2 K9 | PA8/XOUT32/PGMMO
C5 VDDCORE E10 PA3 H5 PC4 K10 ppé l\7/|/lil(\l/’\,i\:lg_zlé)

/ItmeL SAMA4S Series [DATASHEET] 21

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

4.2 64-lead Packages and Pinouts

Refer to Table 1-1 and Table 1-2 for the overview of devices available in 64-lead packages.
4.2.1 64-lead LQFP Package Outline

Figure 4-4. Orientation of the 64-lead LQFP Package

48 33
0 0
49 S D32
64 - P17
]]
1 16

4.2.2 64-lead QFN Package Outline

Figure 4-5. Orientation of the 64-lead QFN Package

64 49
vuuuuuuuyuuuuuuuu

(0]

48

uuuuuuuuuuuuuuuyu
AANANNANNNANAANNN

16 33

ANNNNNANANNNANNNQA
TOP VIEW

4.2.3 64-ball WLCSP Package Outline

Figure 4-6. Orientation of the 64-ball WLCSP Package

A1 CORNER
i 12345678

4 _|_ _______ 4

T O Mmoo @ >

22 SAMA4S Series [DATASHEET] AtmeL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

4.2.4 64-lead LQFP and QFN Pinout

Table 4-4. 64-pin SAM4SD32/SD16/SA16/S16/S8/S4/S2 Pinout

1 ADVREF 17 GND 33 TDI/PB4 49 | TDO/TRACESWO/PB5
2 GND 18 VDDIO 34 PA6/PGMNOE 50 JTAGSEL

3 PBO/AD4 19 PA16/PGMD4 35 PA5/PGMRDY 51 TMS/SWDIO/PB6
4 PB1/AD5 20 PA15/PGMD3 36 PA4/PGMNCMD 52 PA31

5 PB2/AD6 21 PA14/PGMD2 37 PA27/PGMD15 53 TCK/SWCLK/PB7
6 PB3/AD7 22 PA13/PGMD1 38 PA28 54 VDDCORE

7 VDDIN 23 PA24/PGMD12 39 NRST 55 ERASE/PB12

8 VDDOUT 24 VDDCORE 40 TST 56 DDM/PB10

9 PA17/PGMD5/AD0O 25 PA25/PGMD13 41 PA29 57 DDP/PB11
10 PA18/PGMD6/AD1 26 PA26/PGMD14 42 PA30 58 VDDIO

11 PA21/PGMD9/AD8 27 PA12/PGMDO 43 PA3 59 PB13/DACO
12 VDDCORE 28 PA11/PGMM3 44 PA2/PGMEN2 60 GND
13 PA19/PGMD7/AD2 29 PA10/PGMM2 45 VDDIO 61 XOUT/PB8
14 PA22/PGMD10/AD9 30 PA9/PGMM1 46 GND 62 XIN/PGMCK/PB9
15 PA23/PGMD11 31 | PA8/XOUT32/PGMMO 47 PA1/PGMEN1 63 PB14/DAC1
16 PA20/PGMD8/AD3 32 | PA7/XIN32/PGMNVALID 48 PAO/PGMENO 64 VDDPLL

Note: The bottom pad of the QFN package must be connected to ground.

/ItmeL SAMA4S Series [DATASHEET] 23

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

425 64-ball WLCSP Pinout

Table 4-5. SAM4SD32/S32/SD16/S16/S8 64-ball WLCSP Pinout

Al PA31 C1 GND El PA29 Gl PA5
A2 PB7 c2 PAl E2 TST G2 PAG
A3 VDDCORE C3 PAO E3 NRST G3 PA9
A4 PB10 C4 PB12 E4 PA28 G4 PA11
A5 VDDIO C5 ADVREF ES PA25 G5 VDDCORE
A6 GND C6 PB3 E6 PA23 G6 PAl4
A7 PB9 c7 PB1 E7 PA18 G7 PA20
A8 PB14 Cc8 PBO E8 VDDIN G8 PA19
Bl PB5 D1 VDDIO F1 PA27 H1 PA7
B2 JTAGSEL D2 PA3 F2 VDDCORE H2 PA8
B3 PB6 D3 PA30 F3 PA4 H3 PA10
B4 PB11 D4 PA2 F4 PB4 H4 PA12
B5 PB13 D5 PA13 F5 PA26 H5 PA24
B6 VDDPLL D6 PA21 F6 PA16 H6 PA15
B7 PB8 D7 PAL17 F7 PA22 H7 VDDIO
B8 GND D8 PB2 F8 VDDOUT H8 GND

Table 4-6. SAMA4S4/S2 64-ball WLCSP Pinout

Al PB5 C1 GND El PA3 Gl VDDCORE
A2 PA31 Cc2 PAO E2 PA30 G2 PA4

A3 VDDCORE C3 PB7 E3 PA29 G3 PA9

A4 VDDIO C4 PB12 E4 PA27 G4 PA11
A5 GND C5 PA10 ES5 PA24 G5 PA25
A6 PB8 C6 PBO E6 PA18 G6 PA14
A7 PB9 Cc7 PB2 E7 PAL17 G7 VDDIO
A8 ADVREF Cc8 PB1 E8 VDDIN G8 PA19
Bl PA1 D1 VDDIO F1 TST H1 PB4
B2 JTAGSEL D2 PA2 F2 NRST H2 PAT7

B3 PB10 D3 PA28 F3 PA5 H3 PA8

B4 PB11 D4 PB6 F4 PAG H4 PA12
B5 PB13 D5 PA26 F5 PA13 H5 VDDCORE
B6 VDDPLL D6 PA23 F6 PA22 H6 PA15
B7 PB14 D7 PA16 F7 PA21 H7 GND
B8 GNDANA D8 PB3 F8 VDDOUT H8 PA20

24 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

4.3 48-lead Packages and Pinouts

Refer to Table 1-1 for the overview of devices available in 48-lead packages.
4.3.1 48-lead LQFP Package Outline

Figure 4-7. Orientation of the 48-lead LQFP Package

OO AT

OO0 nnm
guudpuoud

&

ooyt

4.3.2 48-lead QFN Package Outline

Figure 4-8. Orientation of the 48-lead QFN Package

uuduuuujguuuuyu
D r N O
-] d
-] d
-] d
-] d
= (=
PNT ID P d
- (=
- (=
d
s =
-] </ d
NNNANAINANANNN
LASER MARK FOR PIN 1
IDENTIFICATION IN THIS AREA
BOTTOM VIEW TOP_VIEW

AtmeL SAMA4S Series [DATASHEET] 25

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

4.3.3 48-lead LQFP and QFN Pinout

Table 4-7. SAMA4S4/S2 48-pin LQFP and QFN Pinout

1 ADVREF 13 VDDIO 25 TDI/PB4 37 | TDO/TRACESWO/PB5
2 GND 14 PA16/PGMD4 26 PA6/PGMNOE 38 JTAGSEL

3 PBO/AD4 15 PA15/PGMD3 27 PA5/PGMRDY 39 TMS/SWDIO/PB6
4 PB1/AD5 16 PA14/PGMD2 28 PA4/PGMNCMD 40 TCK/SWCLK/PB7
5 PB2/AD6 17 PA13/PGMD1 29 NRST 41 VDDCORE

6 PB3/AD7 18 VDDCORE 30 TST 42 ERASE/PB12
7 VDDIN 19 PA12/PGMDO 31 PA3 43 DDM/PB10

8 VDDOUT 20 PA11/PGMM3 32 PA2/PGMEN2 44 DDP/PB11

9 PA17/PGMD5/AD0O 21 PA10/PGMM2 33 VDDIO 45 XOUT/PB8

10 PA18/PGMD6/AD1 22 PA9/PGMM1 34 GND 46 XIN/PB9/PGMCK
11 PA19/PGMD7/AD2 23 | PA8/XOUT32/PGMMO 35 PA1/PGMEN1 a7 VDDIO

12 PA20/AD3 24 | PA7T/XIN32/PGMNVALID 36 PAO/PGMENO 48 VDDPLL

Note: The bottom pad of the QFN package must be connected to ground.

26 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

5. Power Considerations

5.1 Power Supplies

The SAMA4S has several types of power supply pins:

e VDDCORE pins: Power the core, the first flash rail and the embedded memories and peripherals. Voltage
ranges from 1.08 to 1.32 V.

e VDDIO pins: Power the peripheral I/O lines (input/output buffers), the second Flash rail, USB transceiver,
backup part, 32 kHz crystal oscillator and oscillator pads. Voltage ranges from 1.62 to 3.6 V.

e VDDIN pin: Voltage regulator input, ADC, DAC and analog comparator power supply. Voltage ranges from
1.62t03.6 V.

e VDDPLL pin: Powers the PLLA, PLLB, the fast RC and the 3 to 20 MHz oscillator. Voltage ranges from
1.08t0 1.32 V.

5.2 Power-up Considerations

5.2.1 VDDIO Versus VDDCORE
Vppio Must always be higher than or equal to Vppcogre-

Vppio Must reach its minimum operating voltage (1.62 V) before Vppcore has reached Vppcorgmin: The minimum
slope for Vppcore is defined by (Vppcore(min - V1+) / trst-

If Vppeore rises at the same time as Vo, the Vpp g rising slope must be higher than or equal to 8.8 V/ms.
If VDDCORE is powered by the internal regulator, all power-up considerations are met.

Figure 5-1. VDDCORE and VDDIO Constraints at Startup

Supply (V) 4
VDDIO
VDDIO(min)
VDDCORE
VDDCORE(mln)
VT+
Time (t)

Core supply POR output

stex AR AR

/ItmeL SAMA4S Series [DATASHEET] 27

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

5.2.2 VDDIO Versus VDDIN
At power-up, Vpp,o Needs to reach 0.6 V before Vpp, reaches 1.0 V.
VDDIO voltage needs to be equal to or below (VDDIN voltage + 0.5 V).

5.3 Voltage Regulator
The SAM4S embeds a voltage regulator that is managed by the Supply Controller.

This internal regulator is designed to supply the internal core of SAMA4S. It features two operating modes:

e In Normal mode, the voltage regulator consumes less than 500 pA static current and draws 80 mA of output
current. Internal adaptive biasing adjusts the regulator quiescent current depending on the required load
current. In Wait mode quiescent current is only 5 pA.

e In Backup mode, the voltage regulator consumes less than 1 pA while its output (VDDOUT) is driven

internally to GND. The default output voltage is 1.20 V and the start-up time to reach Normal mode is less
than 300 ps.

For adequate input and output power supply decoupling/bypassing, refer to Table 44-4 "1.2V Voltage Regulator
Characteristics" in Section 44. “Electrical Characteristics”.

28 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

5.4 Typical Powering Schematics

The SAMA4S supports a 1.62-3.6 V single supply mode. The internal regulator input is connected to the source and
its output feeds VDDCORE. Figure 5-2 below shows the power schematics.

As VDDIN powers the voltage regulator, the ADC, DAC and the analog comparator, when the user does not want
to use the embedded voltage regulator, it can be disabled by software via the SUPC (note that this is different from
Backup mode).

Figure 5-2. Single Supply

‘VDDIO [ﬂ_ USB
) RS i Transceivers
Main Supply II' j
(1.62-3.6 V) ! ADC, DAC,
! Analog Comp.
VDDIN |—f—|
L

VDDOUT =
4[5]‘_ Voltage

Regulator
VDDCORE

™

VDDPLL I:Ej

Note: Restrictions:
For USB, VDDIO needs to be greater than 3.0V.
For ADC, DAC and Analog Comparator, VDDIN needs to be greater than 2.4V.

Figure 5-3. Core Externally Supplied

Main Supply VDDIO !
(1.62-3.6 V) N Eﬂ_ USB
J |jL| : Transceivers
Canbethe |
same supply ADC, DAC,
. Analog Comp.
ADC, DAC, Analog Y VDDIN

.

[F—+
VDDOUT |I|<— Voltage

E \

i

Comparator Supply j_
(2.4-3.6 V) 'I'

Regulator
VDDCORE Supply VDDCOR

(1.08-1.32V) T

VDDPLL

Note: Restrictions:
For USB, VDDIO needs to be greater than 3.0V.
For ADC, DAC and Analog Comparator, VDDIN needs to be greater than 2.4V.

/ItmeL SAMA4S Series [DATASHEET] 29

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 5-4 provides an example of the powering scheme when using a backup battery. Since the PIO state is
preserved when in Backup mode, any free PIO line can be used to switch off the external regulator by driving the
PIO line at low level (PIO is input, pull-up enabled after backup reset). External wake-up of the system can be from
a push button or any signal. See Section 5.7 “Wake-up Sources” for further details.

Figure 5-4. Backup Battery

‘VDDIO UsB

Transceivers

Backup

ADC, DAC,

Battery | + %I
Analog Comp.

I VDDIN i
Main Supply N out VDDOUT II' ot
3.3v 01age

LDO Regulator

VDDCORE —
ON/OFF Ilr.—’E]
VDDPLL EI

I E | P1Ox (Output)

44:;] WKUPxX
External wakeup signal T

Note: The two diodes provide a “switchover circuit” (for illustration purpose)
between the backup battery and the main supply when the system is put in
backup mode.

Note: Restrictions:
For USB, VDDIO needs to be greater than 3.0V.
For ADC, DAC and Analog Comparator, VDDIN needs to be greater than 2.4V.

5.5 Active Mode

Active mode is the normal running mode with the core clock running from the fast RC oscillator, the main crystal
oscillator or the PLLA. The Power Management Controller can be used to adapt the frequency and to disable the
peripheral clocks.

5.6 Low-power Modes

The SAMA4S has the following low-power modes: Backup mode, Wait mode and Sleep mode.

Note: The Wait For Event instruction (WFE) of the Cortex-M4 core can be used to enter any of the low-power modes, how-
ever, this may add complexity in the design of application state machines. This is due to the fact that the WFE
instruction goes along with an event flag of the Cortex core (cannot be managed by the software application). The
event flag can be set by interrupts, a debug event or an event signal from another processor. Since it is possible for an
interrupt to occur just before the execution of WFE, WFE takes into account events that happened in the past. As a
result, WFE prevents the device from entering Wait mode if an interrupt event has occurred.

Atmel has made provision to avoid using the WFE instruction. The workarounds to ease application design are as fol-
lows:

- For Backup mode, switch off the voltage regulator and configure the VROFF bit in the Supply Controller Control Reg-
ister (SUPC_CR).

- For Wait mode, configure the WAITMODE bit in the PMC Clock Generator Main Oscillator Register of the Power
Management Controller (PMC)

- For Sleep mode, use the Wait for Interrupt (WFI) instruction.

Complete information is available in Table 5-1 “Low-power Mode Configuration Summary".

30 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

5.6.1 Backup Mode

The purpose of Backup mode is to achieve the lowest power consumption possible in a system which is
performing periodic wake-ups to perform tasks but not requiring fast startup time. Total current consumption is 1
WA typical (VDDIO = 1.8V at 25°C).

The Supply Controller, zero-power power-on reset, RTT, RTC, backup registers and 32 kHz oscillator (RC or
crystal oscillator selected by software in the Supply Controller) are running. The regulator and the core supply are
off.

The SAMA4S can be woke up from this mode using the pins WKUP0-15, the supply monitor (SM), the RTT or RTC
wake-up event.

Backup mode is entered by writing a 1 to the VROFF bit of the Supply Controller Control Register (SUPC_CR) (A
key is needed to write the VROFF bit; refer to Section 18. “Supply Controller (SUPC)".) and with the SLEEPDEEP
bit in the Cortex-M4 System Control Register set to 1. (See the power management description in Section 12.
“ARM Cortex-M4 Processor”).
To enter Backup mode using the VROFF bit:
1. Write a 1 to the VROFF bit of SUPC_CR.
To enter Backup mode using the WFE instruction:
1. Write a 1to the SLEEPDEEP bit of the Cortex-M4 processor.
2. Execute the WFE instruction of the processor.
In both cases, exit from Backup mode happens if one of the following enable wake-up events occurs:
Level transition, configurable debouncing on pins WKUPENO-15
Supply Monitor alarm
RTC alarm
RTT alarm

5.6.2 Wait Mode

The purpose of Wait mode is to achieve very low power consumption while maintaining the whole device in a
powered state for a startup time of less than 10 ps. Current consumption in Wait mode is typically 32 pA (total
current consumption) if the internal voltage regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and
memories power supplies are still powered. From this mode, a fast start up is available.

This mode is entered by setting the WAITMODE bit to 1 in the PMC Clock Generator Main Oscillator Register
(CKGR_MOR) in conjunction with the Flash Low Power Mode field FLPM = 0 or FLPM = 1 in the PMC Fast Startup
Mode Register (PMC_FSMR) or by the WFE instruction.

The Cortex-M4 is able to handle external or internal events in order to wake-up the core. This is done by
configuring the external lines WKUPO-15 as fast startup wake-up pins (refer to Section 5.8 “Fast Start-up”). RTC
or RTT Alarm and USB wake-up events can be used to wake up the CPU.
To enter Wait mode with WAITMODE bit:
1. Select the 4/8/12 MHz fast RC oscillator as Main Clock.
Set the FLPM field in the PMC_FSMR.
Set Flash wait state to O.
Set the WAITMODE bit = 1 in CKGR_MOR.
Wait for Master Clock Ready MCKRDY =1 in the PMC Status Register (PMC_SR).

a s~ wbn

/ItmeL SAMA4S Series [DATASHEET] 31

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

To enter Wait mode with WFE:
1. Select the 4/8/12 MHz fast RC oscillator as Main Clock.
Set the FLPM field in the PMC_FSMR.
Set Flash wait state to 0.
Set the LPM bit in the PMC_FSMR.
Execute the Wait-For-Event (WFE) instruction of the processor.

ok N

In both cases, depending on the value of the field FLPM, the Flash enters three different modes:
e FLPM =0 in Standby mode (low consumption)
e FLPM =1 in Deep power-down mode (extra low consumption)
e FLPM =2 in Idle mode. Memory ready for Read access

Table 5-1 summarizes the power consumption, wake-up time and system state in Wait mode.

5.6.3 Sleep Mode

The purpose of Sleep mode is to optimize power consumption of the device versus response time. In this mode,
only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is
application dependent.

This mode is entered via Wait for Interrupt (WFI) or WFE instructions with bit LPM =0 in PMC_FSMR.

The processor can be woken up from an interrupt if the WFI instruction of the Cortex-M4 is used or from an event
if the WFE instruction is used.

5.6.4 Low-power Mode Summary Table

The modes detailed above are the main low-power modes. Each part can be set to on or off separately and wake-
up sources can be configured individually. Table 5-1 provides the configuration summary of the low-power modes.

32 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

GT-UNC-60 199USeIRA-SYINYS-INYYLV-MO0TTT- Wiy

[L33HSV1VvA] seuas SYINYS

oWy

€e

Table 5-1. Low-power Mode Configuration Summary
SUPC, 32 kHz Osc.,
RTC, RTT, GPBR, PIO State
POR Core Memory Potential Wake Up Coreat | whilein Low- | PIO State | Consumption | Wake-up
Mode (Backup Region) | Regulator | Peripherals Mode Entry Sources Wake Up | Power Mode | at Wake Up ®@ Time®
VROFF =1 WKUPO-15 pins PIOA &
Backu OFF or SM alarm Previous state PIOB &
P ON OFF Reset PIOC 1 pA typ® <1ms
Mode (Not powered) | \WFE + RTC alarm saved Inputs with
SLEEPDEEP =1 | RTT alarm pull ups
WAITMODE =1
+FLPM =0 Any Event from:
Wait Mode or Fast startup through
w/Flash in Powered WKUPO-15 pins Clocked Previous state ®)
Standby ON ON (Not clocked) WFE + _ RTC alarm back saved Unchanged | 32.2 pA <10ps
Mode SLEEPDEEP =0 | 1T glarm
+LPM=1 USB wake-up
+FLPM =0
WAITMODE =1
+FLPM =1 Any Event from:
Wait Mode or Fast startup through
w/Flash in Powered WKUPO-15 pins Clocked Previous state
Deep Power ON ON (Not clocked) WFE + _ RTC alarm back saved Unchanged | 27.6 uA <100 ps
Down Mode SLEEPDEEP =0 | 1T glarm
+LPM=1 USB wake-up
+FLPM =1
Entry mode =WFI
Interrupt Only;
Entry mode =WFE
WFE Any Enabled Interrupt
or and/or Any Event .
©)
Sleep Mode ON ON Powered WEI + from: Clocked Previous state Unchanged | @
(Not clocked) back saved
SLEEPDEEP = 0 | Fast start-up through
_ WKUPO0-15 pins
*LPM=0 RTC alarm
RTT alarm
USB wake-up
Notes: 1. The external loads on PIOs are not taken into account in the calculation.

2. Supply Monitor current consumption is not included.

3. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works with the 4/8/12 MHz fast RC
oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up time is defined as the time taken for wake up until the first
instruction is fetched.

4. Total consumption 1 pA typ to 1.8V on VDDIO at 25°C.

5. 20.4 pA on VDDCORE, 32.2 pA for total current consumption.

6. Depends on MCK frequency.

7. Depends on MCK frequency. In this mode, the core is supplied but some peripherals can be clocked.

5.7 Wake-up Sources

The wake-up events allow the device to exit the Backup mode. When a wake-up event is detected, the Supply
Controller performs a sequence which automatically reenables the core power supply and the SRAM power
supply, if they are not already enabled.

5.8 Fast Start-up

The SAMA4S allows the processor to restart in a few microseconds while the processor is in Wait mode. A fast
start-up can occur upon detection of a low level on one of the 19 wake-up inputs (WKUPO to 15 + USB + RTC +
RTT).

The fast restart circuitry is fully asynchronous and provides a fast start-up signal to the Power Management
Controller. As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded
4/8/12 MHz Fast RC oscillator, switches the master clock on this 4 MHz clock and reenables the processor clock.

34 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

6. Input/Output Lines

The SAMA4S has several kinds of input/output (I/O) lines such as general purpose 1/0Os (GPIO) and system 1/Os.
GPIOs can have alternate functionality due to multiplexing capabilities of the PIO controllers. The same PIO line
can be used whether in I/O mode or by the multiplexed peripheral. System 1/Os include pins such as test pins,
oscillators, erase or analog inputs.

6.1 General Purpose I/O Lines

GPIO Lines are managed by PIO controllers. All I/Os have several input or output modes such as pull-up or pull-
down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change interrupt.
Programming of these modes is performed independently for each 1/O line through the PIO controller user
interface. For more details, refer to Section 31. “Parallel Input/Output Controller (PI1O)”.

Some GPIOs can have alternate function as analog input. When the GPIO is set in analog mode, all digital
features of the I/O are disabled.

The input/output buffers of the PIO lines are supplied through VDDIO power supply rail.

The SAM4S embeds high-speed pads able to handle up to 70 MHz for HSMCI (MCK/2), 70 MHz for SPI clock
lines and 46 MHz on other lines. See Section 44.12 “AC Characteristics” for more details. Typical pull-up and pull-
down value is 100 kQ for all I/Os.

Each 1/O line also embeds an ODT (On-Die Termination), (see Figure 6-1). It consists of an internal series resistor
termination scheme for impedance matching between the driver output (SAM4S) and the PCB trace impedance
preventing signal reflection. The series resistor helps to reduce 10s switching current (di/dt) thereby reducing in
turn, EMI. It also decreases overshoot and undershoot (ringing) due to inductance of interconnect between
devices or between boards. In conclusion ODT helps diminish signal integrity issues.

Figure 6-1. On-Die Termination

E"_________________--_--_--_"E ZO~ZO+RODT

1 1

| oDT |

i 36 Q Typ. !

! i

A S VYV « T E _____

E RQDT 1 1 1

i i Receiver
! SAM4 Driver with ! PCB Trace

i Zo~100Q i 20~500Q

/ItmeL SAMA4S Series [DATASHEET] 35

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

6.2 System I/O Lines

System 1/O lines are pins used by oscillators, test mode, reset and JTAG. Table 6-1 provides the SAM4S system
I/O lines shared with PIO lines.

These pins are software configurable as general-purpose 1/0O or system pins. At startup, the default function of
these pins is always used.

Table 6-1. System I/O Configuration Pin List
SYSTEM_IO Default Function Constraints For
Bit Number After Reset Other Function Normal Start Configuration
12 ERASE PB12 Low Level at
startup
10 DDM PB10 -
11 DDP PB11 - In Matrix User Interface Registers
B (Refer to the System I/O Configuration Register
’ TCKISWCLK PB7 in Section 25. “Bus Matrix (MATRIX)".)
6 TMS/SWDIO PB6 -
5 TDO/TRACESWO PB5 -
4 TDI PB4 -
- PA7 XIN32 -
@)
- PA8 XOUT32 -
- PB9 XIN -
3
- PB8 XOUT -

Notes: 1. If PB12is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the
user application sets PB12 into PIO mode,

2. Refer to “Slow Clock Generator” in Section 18. “Supply Controller (SUPC)".
3. Refer to the 3 to 20 MHZ crystal oscillator information in Section 29. “Power Management Controller (PMC)".

6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on a standard 20-pin
JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 3-1 on
page 13.

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Please refer
to Section 13. “Debug and Test Features”.

SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins when the debug port
is not needed in the end application. Mode selection between SWJ-DP mode (System IO mode) and general 10
mode is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad
for pull-up, triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAG pin and PA7 pin are used to select the JTAG Boundary Scan when asserted JTAGSEL at a high level
and PA7 at low level. It integrates a permanent pull-down resistor of about 15 kQ to GND, so that it can be left
unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it
must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and
enables the SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be
used with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, please refer to
Section 13. “Debug and Test Features”.

36 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

6.3 Test Pin

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the SAM4S
series. The TST pin integrates a permanent pull-down resistor of about 15 kQ to GND, so that it can be left
unconnected for normal operations. To enter fast programming mode, see Section 21. “Fast Flash Programming
Interface (FFPI)”. For more on the manufacturing and test mode, refer to Section 13. “Debug and Test Features”.

6.4 NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset
signal to the external components or asserted low externally to reset the microcontroller. It will reset the Core and
the peripherals except the Backup region (RTC, RTT and Supply Controller). There is no constraint on the length
of the reset pulse and the reset controller can guarantee a minimum pulse length. The NRST pin integrates a
permanent pull-up resistor to VDDIO of about 100 kQ. By default, the NRST pin is configured as an input.

6.5 ERASE Pin

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read
as logic level 1). The ERASE pin and the ROM code ensure an in-situ reprogrammability of the Flash content
without the use of a debug tool. When the security bit is activated, the ERASE pin provides the capability to repro-
gram the Flash content. It integrates a pull-down resistor of about 100 kQ to GND, so that it can be left
unconnected for normal operations.

This pin is debounced by SCLK to improve the glitch tolerance. To avoid unexpected erase at power-up, a
minimum ERASE pin assertion time is required. This time is defined in Table 44-74 “AC Flash Characteristics”.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE pin is not configured
as a PIO pin. If the ERASE pin is used as a standard I/O, startup level of this pin must be low to prevent unwanted
erasing. Refer to Section 11.2 “Peripheral Signal Multiplexing on 1/0O Lines” on page 51. Also, if the ERASE pin is
used as a standard 1/O output, asserting the pin to low does not erase the Flash.

6.6 Anti-tamper Pins/Low-power Tamper Detection

WKUPO and WKUP1 generic wake-up pins can be used as anti-tamper pins. Anti-tamper pins detect intrusion, for
example, into a housing box. Upon detection through a tamper switch, automatic, asynchronous and immediate
clear of registers in the backup area will be performed. Anti-tamper pins can be used in all power modes (Back-
up/Wait/Sleep/Active). Anti-tampering events can be programmed so that half of the General Purpose Backup
Registers (GPBR) are erased automatically. See "Supply Controller" section for further description.

RTCOUTO and RTCOUT1 pins can be used to generate waveforms from the RTC in order to take advantage of
the RTC inherent prescalers while the RTC is the only powered circuitry (low-power mode, Backup mode) or in any
active mode. Entering backup or low-power modes does not affect the waveform generation outputs. Anti-
tampering pin detection can be synchronized with this signal.

AtmeL SAMA4S Series [DATASHEET] 37

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Product Mapping

Figure 7-1. SAMA4S Product Mapping
Code
0x00000000
Boot Memory
0x00400000
Internal Flash
0x00800000
Internal ROM
0x00C00000
Reserved
0x1FFFFFFF
External RAM
0x60000000
SMC Chip Select 0
0x61000000
SMC Chip Select 1|
0x62000000
SMC Chip Select 2|
0x63000000
SMC Chip Select 3|
0x64000000
Reserved
Ox9FFFFFFF

offset

blo

ck
peripheral
D

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Address memory space

[
[}
[
[
[}
[
[
[}
[
[
[y
)
[
[
[
[
[
[
[
)
[

02200000000
Code
,?0x20000000
\Oxz_qwé(;oo SRAM
i " 0%20400000 === === m-m- oo
Undefined
0%22000000
32 Mbytes
0%x24000000 bit band alias
Undefined
0x40000000
Peripherals
0x606:000000 4
External SRAM
0xA0000006
’,"' Reserved
v" ’
“0xE0000000
System
O0XFFFFFFFF
0%400E0000 System Controller
SMC
0x400E0200 10
MATRIX
0x400E0400
PMC
0x400E0600
UARTO
0x400E0740
CHIPID
0x400E0800
UART1
0x400E0A00
EEFCO
0x400E0C00
EEFC1
0x400EQE00
PIOA
0x400E1000 11
PIOB
0x400E1200 12
PIOC
0x400E1400 13
RSTC
+0x10
SUPC
+0x30
RTT
+0x50
WDT
+0x60
RTC
+0x90
GPBR
0x400E1600
Reserved
0x4007FFFF

'

Peripherals
0x40000000, .
.’ HsMCI .
0x400040100 81
ssc
040008000 221
/. SPI i
0%4000C000 21
',' Reserved H
. 0x40010000 B
. TCO Lo \
+0x40 23 H
O e |
+0x80 24 '
e TC2 B
0x40014000 25 '
™, '
+0x40 26 |
TC1 TCa ‘I‘
+0x80 27 |
T 1es |
0x40018000 28 v
TWIO H
0x4001C000 19 '
TWIL .
0x40020000 20
PWM
0x40024000 31
USARTO .
0x40028000 14 !
‘ USARTL :
0x4002C000 :
B Reserved N
\ 0540030000 :
ol Reserved N
‘-‘Ox‘4‘0034000 .
NN UDP K
03(‘4b‘038000 33 :'
W ADC ;
0x40§3€000 22 :
kN DACC !
0x4od%oooo 30 :
1\ ACC !
0x40044000 34 .
" CRCCU :
0x400484080 =EE
‘-‘“‘ Reserved :'
0x400E0040 :
i System Controller N
0x4OOE260(‘!' :
Bt Reserved !
0x40100960
',' Reserved
0x42000000
S 32 Mbytes
0x ;‘3FFFFFF bit band alias
,'l Reserved
,/0x60000000

Atmel

'
1 Mbyte
bit band
regiion

8. Memories

8.1 Embedded Memories

8.1.1 Internal SRAM
The following table shows the amount of high-speed SRAM embedded in the SAM4Sx devices.

Table 8-1. Embedded High-speed SRAM per Device

Device Flash Total Embedded High-speed SRAM
SAM4SD32 2 x 1024 Kbytes 160 Kbytes

SAM4SD16 2 x 512 Kbytes 160 Kbytes

SAM4SA16 1024 Kbytes 160 Kbytes

SAM4S16 1024 Kbytes 128 Kbytes

SAM4S8 512 Kbytes 128 Kbytes

SAM4S4 256 Kbytes 64 Kbytes

SAM4S2 128 Kbytes 64 Kbytes

The SRAM is accessible over system Cortex-M4 bus at address 0x2000 0000.
The SRAM is in the bit band region. The bit band alias region is from 0x2200 0000 to Ox23FF FFFF.

8.1.2 Internal ROM

The SAM4S embeds an internal ROM, which contains the SAM boot assistant (SAM-BA®), In-Application
Programming (IAP) routines and Fast Flash Programming Interface (FFPI).

At any time, the ROM is mapped at address 0x0080 0000.

8.1.3 Embedded Flash

8.1.3.1 Flash Overview

The memory is organized in sectors. Each sector has a size of 64 Kbytes. The first sector of 64 Kbytes is divided
into three smaller sectors.

The three smaller sectors are organized to consist of two sectors of 8 Kbytes and one sector of 48 Kbytes. Refer to
Figure 8-1, "Global Flash Organization".

/ItmeL SAMA4S Series [DATASHEET] 39

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 8-1. Global Flash Organization

Sector size Sector name

8 Kbytes Small Sector 0

8 Kbytes Small Sector 1 | sector 0
48 Kbytes Larger Sector

64 Kbytes Sector 1

64 Kbytes Sector n

Each sector is organized in pages of 512 bytes.

For sector O:
e The smaller sector 0 has 16 pages of 512 bytes
e The smaller sector 1 has 16 pages of 512 bytes
e The larger sector has 96 pages of 512 bytes

From Sector 1 to n:

The rest of the array is composed of 64-Kbyte sectors of 128 pages, each page of 512 bytes. Refer to Figure 8-2,
"Flash Sector Organization”.

40 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 8-2. Flash Sector Organization

A sector size is 64 Kbytes

16 pages of 512 bytes Smaller sector 0

Sector 0 16 pages of 512 bytes Smaller sector 1

96 pages of 512 bytes Larger sector

Sector 1 128 pages of 512 bytes

Sector n 128 pages of 512 bytes

Flash size varies by product:
e SAMA4S2: the Flash size is 128 Kbytes in a single plane
e SAM4S4: the Flash size is 256 Kbytes in a single plane
e SAMA4S8/S16: the Flash size is 512 Kbytes in a single plane
— Internal Flash address is 0x0040_0000
e SAMA4SD16/SA16: the Flash size is 2 x 512 Kbytes
— Internal FlashO address is 0x0040_0000
— Internal Flash1 address is 0x0048 0000
e SAM4SD32: the Flash size is 2 x 1024 Kbytes
— Internal FlashO address is 0x0040_0000
— Internal Flash1 address is 0x0050_0000

Refer to Figure 8-3, "Flash Size" for the organization of the Flash depending on its size.

SAMA4S Series [DATASHEET] 41
/I t m eL Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 8-3. Flash Size

Flash 1 Mbytes Flash 512 Kbytes Flash 256 Kbytes
2 * 8 Kbytes 2 * 8 Kbytes 2 * 8 Kbytes
1* 48 Kbytes 1* 48 Kbytes 1* 48 Kbytes

3 * 64 Kbytes
7 * 64 Kbytes

15 * 64 Kbytes

The following erase commands can be used depending on the sector size:
e 8 Kbyte small sector
— Erase and write page (EWP)
— Erase and write page and lock (EWPL)
— Erase sector (ES) with FARG set to a page number in the sector to erase

— Erase pages (EPA) with FARG [1:0] = O to erase four pages or FARG [1:0] = 1 to erase eight pages.
FARG [1:0] = 2 and FARG [1:0] = 3 must not be used.

e 48 Kbyte and 64 Kbyte sectors
— One block of 8 pages inside any sector, with the command Erase pages (EPA) with FARG[1:0] = 1
— One block of 16 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 2
— One block of 32 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 3

— One sector with the command Erase sector (ES) and FARG set to a page number in the sector to
erase

e Entire memory plane
— The entire Flash, with the command Erase all (EA)

The Write commands of the Flash cannot be used under 330 kHz.

8.1.3.2 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller manages accesses performed by the masters of the system. It enables
reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block.
It manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash
organization, thus making the software generic.

8.1.3.3 Flash Speed
The user must set the number of wait states depending on the frequency used.
For more details, refer to Section 44.12 “AC Characteristics”.

42 SAMA4S Series [DATASHEET] /ItmeL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

8.1.3.4 Error Code Correction (ECC)

The Flash embeds an ECC module with 8 parity bits for each 64 data bits. The ECC is able to correct one unique
error. The errors are detected while a read access is performed into memory array. The ECC (Hamming Algorithm)
is a mechanism that encodes data in a manner that makes possible the identification and correction of certain
errors in data. The ECC is capable of single bit error correction.

8.1.35 Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of
several consecutive pages, and each lock region has its associated lock bit.

Table 8-2. Lock Bit Number

Product Number of Lock Bits Lock Region Size

SAM4SD32 256 (128 + 128) 8 Kbytes

SAM4SD16 128 (64 + 64) 8 Kbytes

SAMA4S16/SA16 128 8 Kbytes

SAM4S8 64 8 Kbytes

SAM4S54 32 8 Kbytes

SAM4S2 16 8 Kbytes

If a locked region erase or program command occurs, the command is aborted and the EEFC triggers an interrupt.

The lock bits are software programmable through the EEFC User Interface. The command “Set Lock Bit” enables
the protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

8.1.3.6 Security Bit

The SAM4SD32/SD16/S16/SA16/S8/S4/S2 feature one security bit based on a specific General Purpose NVM bit
(GPNVM bit 0). When the security bit is enabled, any access to the Flash, SRAM, core registers and internal
peripherals through the ICE interface or through the Fast Flash Programming Interface, is forbidden. This ensures
the confidentiality of the code programmed in the Flash.

This security bit can only be enabled through the command “Set General Purpose NVM Bit 0” of the EEFC User
Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash
erase is performed. When the security bit is deactivated, all accesses to the Flash, SRAM, Core registers, Internal
Peripherals are permitted.

The ERASE pin integrates a permanent pull-down. Consequently, it can be left unconnected during normal
operation. However, it is recommended, in harsh environment, to connect it directly to GND if the erase operation
is not used in the application.

To avoid unexpected erase at power-up, a minimum ERASE pin assertion time is required. This time is defined in
Table 44-74 “AC Flash Characteristics”.

The erase operation is not performed when the system is in Wait mode with the Flash in deep-power-down mode.

To make sure that the erase operation is performed after power-up, the system must not reconfigure the ERASE
pin as GPIO or enter Wait mode with Flash in Deep-power-down mode before the ERASE pin assertion time has
elapsed.
The following sequence ensures the erase operation in all cases:

1. Assert the ERASE pin (High)

2. Assert the NRST pin (Low)

3. Power cycle the device

SAM4S Series [DATASHEET] 43

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

4. Maintain the ERASE pin high for at least the minimum assertion time.

8.1.3.7 Calibration Bits
NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured
and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

8.1.3.8 Unique Identifier

Each device integrates its own 128-bit unique identifier. These bits are factory-configured and cannot be changed
by the user. The ERASE pin has no effect on the unique identifier.

8.1.3.9 User Signature

Each device contains a user signature of 512 bytes. It can be used by the user to store user information such as
trimming, keys, etc., that the customer does not want to be erased by asserting the ERASE pin or by software
ERASE command. Read, write and erase of this area is allowed.

8.1.3.10 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through a multiplexed fully-handshaked
parallel port. It allows gang programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

8.1.3.11 SAM-BA Boot

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the on-chip Flash
memory.

The SAM-BA Boot Assistant supports serial communication via the UART and USB.
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).
The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.

8.1.3.12 GPNVM Bits
The SAM4S16/S8/S4/S2 feature two GPNVM bits.

The SAM4SA16/SD32/SD16 feature three GPNVM bits, coming from Flash 0, that can be cleared or set,
respectively, through the "Clear GPNVM Bit" and "Set GPNVM Bit" commands of the EEFCO User Interface.

There is no GPNVM bit on Flash 1.
The GPNVMO is the security bit.
The GPNVML1 is used to select the boot mode (boot always at 0x00) on ROM or Flash.

The SAM4SD32/16 embeds an additional GPNVM bit, GPNVM2. GPNVM2 is used only to swap the Flash 0 and
Flash 1. If GPNVM2 is ENABLE, the Flash 1 is mapped at address 0x0040_0000 (Flash 1 and Flash 0 are

44 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

continuous). If GPNVM2 is DISABLE, the Flash 0 is mapped at address 0x0040_0000 (Flash 0 and Flash 1 are
continuous).

Table 8-3. General-purpose Non-volatile Memory Bits
Device Name GPNVMO GPNVM1 GPNVM2

SAM4SD32
SAM4SD16
SAM4SA16
SAM4S16 Security Bit Boot Mode Selection
SAMA4S8
SAM4S4
SAM4S2

Flash Selection
(Flash 0 or Flash 1)

Not available

8.1.4 Boot Strategies

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory layout can be
changed using GPNVM bits.

A general-purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.

The GPNVM bit can be cleared or set respectively through the commands “Clear GPNVM Bit” and “Set GPNVM
Bit” of the EEFC User Interface.

Setting GPNVML1 selects the boot from the Flash. Clearing it selects the boot from the ROM. Asserting ERASE
clears the GPNVM1 and thus selects the boot from the ROM by default.

Setting the GPNVM2 selects Flash 1, clearing it selects the boot from Flash 0. Asserting ERASE clears GPNVM2
and thus selects the boot from Flash 0 by default. GPNVM2 is available only on SAM4SD32/SD16/SA16.

8.2 External Memories

The SAMA4S features one External Bus Interface to provide an interface to a wide range of external memories and
to any parallel peripheral.

/ItmeL SAMA4S Series [DATASHEET] 45

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Real Time Event Management

9.1

46

The events generated by peripherals are designed to be directly routed to peripherals managing/using these
events without processor intervention. Peripherals receiving events contain logic by which to select the one
required.

Embedded Characteristics

Timers, PWM, IO peripherals generate event triggers which are directly routed to event managers such as
ADC or DACC, for example, to start measurement/conversion without processor intervention.

UART, USART, SPI, TWI, SSC, PWM, HSMCI, ADC, DACC, PIO also generate event triggers directly
connected to Peripheral DMA Controller (PDC) for data transfer without processor intervention.

Parallel capture logic is directly embedded in PIO and generates trigger event to PDC to capture data
without processor intervention.

PWM security events (faults) are in combinational form and directly routed from event generators (ADC,
ACC, PMC, TIMER) to PWM module.

PMC security event (clock failure detection) can be programmed to switch the MCK on reliable main RC
internal clock without processor intervention.

SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

9.2 Real Time Event Mapping List
Table 9-1. Real-time Event Mapping List
Function Application Description Event Source Event Destination
. Immediate GPBR clear (asynchronous) on Parallel Input/Out;?ut General Pur_pose
Security General-purpose Tamper detection throuah WKUPO/1 10 pins Controller (P10): Backup Registers
P 9 P WKUPO/1 (GPBR)
General-purpose Automatic Switch to reliable main RC oscillator Power Management PMC
purp in case of Main Crystal Clock Failure Controller (PMC)
urG:sneerﬂ;)tor Puts the PWM Outputs in Safe Mode (Main PMC
purpose, Crystal Clock Failure Detection) @)
control
Puts the PWM Outputs in Safe Mode Analog Comparator
(Overcurrent sensor, ...) ©® Controller (ACC)
Safety Puts the PWM Outputs in Safe Mode Analog-Front-End- Pulse Width
i 3)6)
Motor control (Overspeed, Overcurrent detection ...) Controller (ADC) Modulation (PWM)
Puts the PWM Outputs in Safe Mode
(Overspeed detection through TIMER Timer Counter (TC)
Quadrature Decoder) ®)©)
General- Puts the PWM Outputs in Safe Mode (General
purpose, motor @) PIO
Purpose Fault Inputs)
control
Image Low-costimage | PC is embedded in PIO (Capture Image from
: o) PIO PDC
capture sensor Sensor directly to System Memory)
PIO (ADTRG)
) o TC Output 0
General-purpose | Trigger source selection in ADC ©
Measurement TC Output 1
. ADC
trigger TC Output 2
ADC-PWM synchronization (% PWM Event Line 0
Motor control) o
Trigger source selection in ADC © PWM Event Line 1
PWM Output
Compare Line 0 TC Input (A/B) 0
Delay Propagation delay of external components (10s, PWM Output
measurement Motor control power transistor bridge driver, etc.) (2 Compare Line 1 TC Input (A/B) 1
PWM Output
Compare Line 2 TC Input (A/B) 2
PIO DATRG
TC Output O
. TC Output 1 Digital-Analog
Cotrr1iver::on General-purpose | Trigger source selection in DACC %) Converter
99 TC Output 2 Controller (DACC)
PWM Event Line 0 ‘%
PWM Event Line 1 ‘9
Notes: 1. Referto “Low-power Tamper Detection and Anti-Tampering” in Section 18. “Supply Controller (SUPC)” and “General

Purpose Backup Register x” in “General Purpose Backup Registers (GPBR)” .
2. Refer to “Main Clock Failure Detector” in Section 29. “Power Management Controller (PMC)".
3. Refer to “Fault Inputs” and “Fault Protection” in “Pulse Width Modulation Controller (PWM)” .

SAM4S Series [DATASHEET] 47

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

4. Refer to “Fault Mode” in “Analog Comparator Controller (ACC)” .

5. Refer to “Fault Output” in Section 42. “Analog-to-Digital Converter (ADC)".

6. Refer to “Fault Mode” in Section 37. “Timer Counter (TC)".

7. Refer to “Parallel Capture Mode” in “Parallel Input/Output Controller (P10)” .

8. Refer to “Conversion Triggers” and the ADC Mode Register (ADC_MR) in Section 42., “Analog-to-Digital Converter (ADC)”.
9. Refer to PWM Comparison Value Register (PWM_CMPV) in Section 39. “Pulse Width Modulation Controller (PWM)".

10. Refer to “PWM Comparison Units” and “PWM Event Lines” in Section 39. “Pulse Width Modulation Controller (PWM)".

11. Refer to Section 39.6.2.2 “Comparator” in Section 39. “Pulse Width Modulation Controller (PWM)”.

12. Refer to Section 37. “Timer Counter (TC)"=

13. Refer to DACC Trigger Register (DACC_TRIGR) in Section 43. “Digital-to-Analog Converter Controller (DACC)”".

48 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

10. System Controller

The System Controller is a set of peripherals which allows handling of key elements of the system, such as power,
resets, clocks, time, interrupts, watchdog, etc.

10.1 System Controller and Peripheral Mapping
Refer to Figure 7-1, "SAM4S Product Mapping".
All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power-on-Reset, Brownout and Supply Monitor

The SAM4S embeds three features to monitor, warn and/or reset the chip:
e Power-on-Reset on VDDIO
e Brownout Detector on VDDCORE
e Supply Monitor on VDDIO

10.2.1 Power-on-Reset

The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but also during power
down. If VDDIO goes below the threshold voltage, the entire chip is reset. For more information, refer to Section
44. “Electrical Characteristics”.

10.2.2 Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the
Supply Controller Mode Register (SUPC_MR). It is especially recommended to disable it during low-power modes
such as Wait or Sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more information, refer to
Section 18. “Supply Controller (SUPC)” and Section 44. “Electrical Characteristics”.

10.2.3 Supply Monitor on VDDIO

The Supply Monitor monitors VDDIO. It is not active by default. It can be activated by software and is fully
programmable with 16 steps for the threshold (between 1.6V to 3.4V). It is controlled by the Supply Controller
(SUPC). A sample mode is possible. It allows to divide the supply monitor power consumption by a factor of up to
2048. For more information, refer to Section 18. “Supply Controller (SUPC)” and Section 44. “Electrical
Characteristics”.

/ItmeL SAMA4S Series [DATASHEET] 49

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

11. Peripherals

11.1 Peripheral Identifiers

Table 11-1 defines the Peripheral Identifiers of the SAM4S. A peripheral identifier is required for the control of the
peripheral interrupt with the Nested Vectored Interrupt Controller and control of the peripheral clock with the Power
Management Controller.

Table 11-1. Peripheral Identifiers

Instance ID Instance Name NVIC Interrupt PMC Clock Control | Instance Description
0 SUPC X Supply Controller
1 RSTC X Reset Controller
2 RTC X Real-Time Clock
3 RTT X Real-Time Timer
4 WDT X Watchdog Timer
5 PMC X Power Management Controller
6 EEFCO X Enhanced Embedded Flash Controller O
7 EEFC1 - Enhanced Embedded Flash Controller 1
8 UARTO X X ;ngz::ﬁl:eﬁsbynchronous Receiver
9 UART1 X X ?g\éz::ﬁ\tleﬁslynchronous Receiver
10 SMC - X Static Memory Controller
11 PIOA X X Parallel I/O Controller A
12 P1OB X X Parallel 1/0 Controller B
13 PIOC X X Parallel I/O Controller C
W usarm . K| o sy et
s usarn : K e yvonous Asnconous
16 - - - Reserved
17 - - - Reserved
18 HSMCI X X Multimedia Card Interface
19 TWIO X X Two-Wire Interface O
20 TWIL1 X X Two-Wire Interface 1
21 SPI X X Serial Peripheral Interface
22 SsC X X Synchronous Serial Controller
23 TCO X X Timer/Counter 0
24 TC1 X X Timer/Counter 1
25 TC2 X X Timer/Counter 2
26 TC3 X X Timer/Counter 3
27 TC4 X X Timer/Counter 4
28 TC5 X X Timer/Counter 5

50 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 11-1. Peripheral Identifiers (Continued)

Instance ID Instance Name NVIC Interrupt PMC Clock Control | Instance Description
29 ADC X X Analog-to-Digital Converter
30 DACC X Digital-to-Analog Converter Controller
31 PWM X X Pulse Width Modulation
32 CRCCU X X CRC Calculation Unit
33 ACC X X Analog Comparator Controller
34 UDP X X USB Device Port

11.2 Peripheral Signal Multiplexing on I/O Lines

The SAMA4S features two PIO controllers on 64-pin versions (PIOA and PIOB) or three PIO controllers on the 100-
pin version (PIOA, PIOB and PIOC), that multiplex the 1/O lines of the peripheral set.

The SAM4S 64-pin and 100-pin PIO controllers control up to 32 lines. Each line can be assigned to one of three
peripheral functions: A, B or C. The multiplexing tables in the following tables define how the I/O lines of the
peripherals A, B and C are multiplexed on the P1O Controllers. The column “Comments” has been inserted in this
table for the user’'s own comments; it may be used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

/ItmeL SAMA4S Series [DATASHEET] 51

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

11.2.1 PIO Controller A Multiplexing

Table 11-2. Multiplexing on PIO Controller A (PIOA)

I/O Line | Peripheral A | Peripheral B | Peripheral C | Peripheral D® Extra Function Fsu)gsétei:)nn Comments

PAO PWMHO TIOAO Al7 WKUPO®
PA1 PWMH1 TIOBO A18 WKUP1®)
PA2 PWMH2 SCKO DATRG WKUP2®)
PA3 TWDO NPCS3
PA4 TWCKO TCLKO WKUP3®
PAS RXDO NPCS3 WKUP4®
PA6 TXDO PCKO
PA7 RTSO PWMH3 XIN32®)
PA8 CTSO ADTRG WKUP5®) XouT32®)
PA9 URXDO NPCS1 PWMFIO WKUP6®)
PA10 UTXDO NPCS2 PWMFI1®
PA11 NPCSO0 PWMHO WKUP7®
PA12 MISO PWMH1
PA13 MOSI PWMH2
PA14 SPCK PWMH3 WKUP8®?
PA15 TF TIOAL PWML3 WKUP14/PIODCEN1®
PA16 TK TIOB1 PWML2 WKUP15/PIODCEN2®
PA17 D PCK1 PWMH3 ADO®)
PA18 RD PCK2 Al4 PWMFI2® AD1®)
PA19 RK PWMLO A15 AD2/WKUP9®
PA20 RF PWML1 A16 AD3/WKUP10®)
PA21 RXD1 PCK1 AD8®) 64-/100-pin versions
PA22 TXD1 NPCS3 NCS2 AD9®) 64-/100-pin versions
PA23 SCK1 PWMHO A19 PIODCCLK® 64-/100-pin versions
PA24 RTS1 PWMH1 A20 PIODCO 64-/100-pin versions
PA25 CTS1 PWMH2 A23 PIODC1 64-/100-pin versions
PA26 DCD1 TIOA2 MCDA2 PIODC2 64-/100-pin versions
PA27 DTR1 TIOB2 MCDA3 PIODC3 64-/100-pin versions
PA28 DSR1 TCLK1 MCCDA PIODC4 64-/100-pin versions
PA29 RI1 TCLK2 MCCK PIODC5 64-/100-pin versions
PA30 PWML2 NPCS2 MCDAO WKUP11@/PIODC6 64-/100-pin versions
PA31 NPCS1 PCK2 MCDAL1 PIODC7 64-/100-pin versions

Notes: 1. Only available in SAM4S4x and SAM4S2x.

52

2. WKUPx can be used if PIO controller defines the 1/O line as "input".
3. Refer to Section 6.2 “System I/O Lines”.

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

4. PIODCENXx/PIODCXx has priority over WKUPx. Refer to Section 31.5.13 “Parallel Capture Mode”.
5. To select this extra function, refer to Section 42.5.3 “Analog Inputs”.
6. To select this extra function, refer to “Section 31.5.13 “Parallel Capture Mode”.

11.2.2 PIO Controller B Multiplexing

Table 11-3. Multiplexing on PIO Controller B (PIOB)

:_/gle Peripheral A Peripheral B Peripheral C Extra Function System Function Comments
PBO PWMHO AD4/RTCOUTOM
PB1 PWMH1 AD5/RTCOUT1®
PB2 URXD1 NPCS2 ADB/WKUP12?
PB3 UTXD1 PCK2 AD7®)
PB4 TWD1 PWMH2 TDI®
PB5 TWCK1 PWMLO WKUP13® TDO/TRACESWO®
PB6 TMS/SWDIO®
PB7 TCK/SWCLK®
PBS XOUT®
PB9 XIN®
PB10 DDM
PB11 DDP
PB12 PWML1 ERASE®
PB13 PWML2 PCKO DACO® 64-/100-pin versions
PB14 NPCS1 PWMH3 DAC1® 64-/100-pin versions
Notes: 1. Analog input has priority over RTCOUTX pin. See Section 16.5.8 “Waveform Generation”.
2. WKUPx can be used if P1O controller defines the 1/O line as "input".
3. To select this extra function, refer to Section 42.5.3 “Analog Inputs”.
4. Referto Section 6.2 “System |/O Lines”.
5. DACO is selected when DACC_CHER.CHO is set. DAC1 is selected when DACC_CHER.CHL1 is set. See Section 43.7.3
“DACC Channel Enable Register”.
/ItmeL SAMA4S Series [DATASHEET] 53

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

11.2.3 PIO Controller C Multiplexing

Table 11-4. Multiplexing on PIO Controller C (PIOC)
Extra System
1/0 Line Peripheral A Peripheral B Peripheral C Function Function Comments
PCO DO PWMLO 100-pin version
PC1 D1 PWML1 100-pin version
PC2 D2 PWML2 100-pin version
PC3 D3 PWML3 100-pin version
PC4 D4 NPCS1 100-pin version
PC5 D5 100-pin version
PC6 D6 100-pin version
PC7 D7 100-pin version
PC8 NWE 100-pin version
PC9 NANDOE 100-pin version
PC10 NANDWE 100-pin version
PC11 NRD 100-pin version
PC12 NCS3 AD12® 100-pin version
PC13 NWAIT PWMLO AD10W 100-pin version
PC14 NCSO 100-pin version
PC15 NCS1 PWML1 AD11W 100-pin version
PC16 A21/NANDALE 100-pin version
PC17 A22/NANDCLE 100-pin version
PC18 AO PWMHO 100-pin version
PC19 Al PWMH1 100-pin version
PC20 A2 PWMH2 100-pin version
PC21 A3 PWMH3 100-pin version
PC22 A4 PWML3 100-pin version
PC23 A5 TIOA3 100-pin version
PC24 A6 TIOB3 100-pin version
PC25 A7 TCLK3 100-pin version
PC26 A8 TIOA4 100-pin version
pPC27 A9 TIOB4 100-pin version
PC28 Al0 TCLK4 100-pin version
PC29 All TIOA5 AD13W 100-pin version
PC30 Al12 TIOB5 AD14W 100-pin version
PC31 Al13 TCLK5 100-pin version

Note: 1. To select this extra function, refer to Section 42.5.3 “Analog Inputs”.

54 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

12. ARM Cortex-M4 Processor

12.1 Description

The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers
significant benefits to developers, including outstanding processing performance combined with fast interrupt
handling, enhanced system debug with extensive breakpoint and trace capabilities, efficient processor core,
system and memories, ultra-low power consumption with integrated sleep modes, and platform security
robustness, with integrated memory protection unit (MPU).

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard
architecture, making it ideal for demanding embedded applications. The processor delivers exceptional power
efficiency through an efficient instruction set and extensively optimized design, providing high-end processing
hardware including a range of single-cycle and SIMD multiplication and multiply-with-accumulate capabilities,
saturating arithmetic and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements tightly-coupled system
components that reduce processor area while significantly improving interrupt handling and system debug
capabilities. The Cortex-M4 processor implements a version of the Thumb® instruction set based on Thumb-2
technology, ensuring high code density and reduced program memory requirements. The Cortex-M4 instruction
set provides the exceptional performance expected of a modern 32-bit architecture, with the high code density of
8-bit and 16-bit microcontrollers.

The Cortex-M4 processor closely integrates a configurable NVIC, to deliver industry-leading interrupt
performance. The NVIC includes a hon-maskable interrupt (NMI), and provides up to 256 interrupt priority levels.
The tight integration of the processor core and NVIC provides fast execution of interrupt service routines (ISRs),
dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the
ability to suspend load-multiple and store-multiple operations. Interrupt handlers do not require wrapping in
assembler code, removing any code overhead from the ISRs. A tail-chain optimization also significantly reduces
the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that
enables the entire device to be rapidly powered down while still retaining program state.

12.1.1 System Level Interface

The Cortex-M4 processor provides multiple interfaces using AMBA® technology to provide high speed, low latency
memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables
faster peripheral controls, system spinlocks and thread-safe Boolean data handling.

The Cortex-M4 processor has a Memory Protection Unit (MPU) that provides fine grain memory control, enabling
applications to utilize multiple privilege levels, separating and protecting code, data and stack on a task-by-task
basis. Such requirements are becoming critical in many embedded applications such as automotive.

12.1.2 Integrated Configurable Debug

The Cortex-M4 processor implements a complete hardware debug solution. This provides high system visibility of
the processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is
ideal for microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints
and a profiling unit. To enable simple and cost-effective profiling of the system events these generate, a Serial
Wire Viewer (SWV) can export a stream of software-generated messages, data trace, and profiling information
through a single pin.

The Flash Patch and Breakpoint Unit (FPB) provides up to eight hardware breakpoint comparators that debuggers
can use. The comparators in the FPB also provide remap functions of up to eight words in the program code in the

/ItmeL SAMA4S Series [DATASHEET] 55

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

CODE memory region. This enables applications stored on a non-erasable, ROM-based microcontroller to be
patched if a small programmable memory, for example flash, is available in the device. During initialization, the
application in ROM detects, from the programmable memory, whether a patch is required. If a patch is required,
the application programs the FPB to remap a number of addresses. When those addresses are accessed, the
accesses are redirected to a remap table specified in the FPB configuration, which means the program in the non-
modifiable ROM can be patched.

12.2 Embedded Characteristics

e Tight integration of system peripherals reduces area and development costs
Thumb instruction set combines high code density with 32-bit performance
Code-patch ability for ROM system updates
Power control optimization of system components
Integrated sleep modes for low power consumption
Fast code execution permits slower processor clock or increases sleep mode time
Hardware division and fast digital-signal-processing oriented multiply accumulate
Saturating arithmetic for signal processing
Deterministic, high-performance interrupt handling for time-critical applications
Memory Protection Unit (MPU) for safety-critical applications
Extensive debug and trace capabilities:

— Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging, tracing,
and code profiling.

12.3 Block Diagram

Figure 12-1. Typical Cortex-M4 Implementation

Cortex-M4
Processor
NVIC [«
Processor
Core
v v
Debug Memo Serial
4P Access Protectior:y Unit Wire >
Port t ¢ Viewer
Flash Data
Patch \Watchpoints
Bus Matrix
Code SRAM and
Interface Peripheral Interface
A A
v 4

56 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.4 Cortex-M4 Models

12.4.1 Programmers Model

This section describes the Cortex-M4 programmers model. In addition to the individual core register descriptions, it
contains information about the processor modes and privilege levels for software execution and stacks.

12.4.1.1 Processor Modes and Privilege Levels for Software Execution

The processor modes are:
e Thread mode
Used to execute application software. The processor enters the Thread mode when it comes out of reset.
e Handler mode

Used to handle exceptions. The processor returns to the Thread mode when it has finished exception
processing.

The privilege levels for software execution are:
e Unprivileged
The software:
— Has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
— Cannot access the System Timer, NVIC, or System Control Block
— Might have a restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level.
e Privileged

The software can use all the instructions and has access to all resources. Privileged software executes at
the privileged level.

In Thread mode, the Control Register controls whether the software execution is privileged or unprivileged, see
“Control Register” . In Handler mode, software execution is always privileged.

Only privileged software can write to the Control Register to change the privilege level for software execution in
Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to
privileged software.

12.4.1.2 Stacks

The processor uses a full descending stack. This means the stack pointer holds the address of the last stacked
item in memory When the processor pushes a new item onto the stack, it decrements the stack pointer and then
writes the item to the new memory location. The processor implements two stacks, the main stack and the process
stack, with a pointer for each held in independent registers, see “Stack Pointer” .

In Thread mode, the Control Register controls whether the processor uses the main stack or the process stack,
see “Control Register” .

In Handler mode, the processor always uses the main stack.
The options for processor operations are:

Table 12-1. Summary of processor mode, execution privilege level, and stack use options

Processor Privilege Level for

Mode Used to Execute Software Execution Stack Used

Thread Applications Privileged or unprivileged™ | Main stack or process stack"
Handler Exception handlers Always privileged Main stack

Note: 1. See “Control Register”.

/ItmeL SAMA4S Series [DATASHEET] 57

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.4.1.3 Core Registers
Figure 12-2. Processor Core Registers
e N
RO
R1
R2
R3
Low registers
R4
R5
R6 General-purpose registers
R7
>_
R8
R9
High registers R10
R11
R12
. N— —
Stack Pointer SP (R13) PsP* || wmsP* *Banked version of SP
Link Register LR (R14)
Program Counter PC (R15)
PSR Program status register
PRIMASK
FAULTMASK Exception mask registers Special registers
BASEPRI
CONTROL CONTROL register
Table 12-2. Core Processor Registers
Register Name Access® Required Privilege® Reset
General-purpose registers RO-R12 Read/Write Either Unknown
Stack Pointer MSP Read/Write Privileged See description
Stack Pointer PSP Read/Write Either Unknown
Link Register LR Read/Write Either OXFFFFFFFF
Program Counter PC Read/Write Either See description
Program Status Register PSR Read/Write Privileged 0x01000000
Application Program Status Register APSR Read/Write Either 0x00000000
Interrupt Program Status Register IPSR Read-only Privileged 0x00000000
Execution Program Status Register EPSR Read-only Privileged 0x01000000
Priority Mask Register PRIMASK Read/Write Privileged 0x00000000
Fault Mask Register FAULTMASK Read/Write Privileged 0x00000000
Base Priority Mask Register BASEPRI Read/Write Privileged 0x00000000
Control Register CONTROL Read/Write Privileged 0x00000000

Notes: 1. Describes access type during program execution in thread mode and Handler mode. Debug access can differ.

2. An entry of Either means privileged and unprivileged software can access the register.

58 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

12.4.1.4 General-purpose Registers
RO0-R12 are 32-bit general-purpose registers for data operations.

12.4.1.5 Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the Control Register indicates the stack pointer to
use:

e 0= Main Stack Pointer (MSP). This is the reset value.
e 1= Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

12.4.1.6 Link Register
The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and
exceptions. On reset, the processor loads the LR value OXFFFFFFFF.

12.4.1.7 Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads
the PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the
EPSR T-bit at reset and must be 1.

/ItmeL SAMA4S Series [DATASHEET] 59

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.4.1.8 Program Status Register

Name: PSR

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| N | Z | C \Y | Q | ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICIIT - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The Program Status Register (PSR) combines:
* Application Program Status Register (APSR)
* Interrupt Program Status Register (IPSR)
» Execution Program Status Register (EPSR).
These registers are mutually exclusive bitfields in the 32-bit PSR.

The PSR accesses these registers individually or as a combination of any two or all three registers, using the register
name as an argument to the MSR or MRS instructions. For example:

* Read of all the registers using PSR with the MRS instruction
» Write to the APSR N, Z, C, V and Q bits using APSR_nzcvg with the MSR instruction.
The PSR combinations and attributes are:

Name Access Combination

PSR Read/Write™® APSR, EPSR, and IPSR
IEPSR Read-only EPSR and IPSR

IAPSR Read/Write™ APSR and IPSR
EAPSR Read/Write®® APSR and EPSR

Notes: 1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

See the instruction descriptions “MRS” and “MSR” for more information about how to access the program status registers.

60 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.4.1.9 Application Program Status Register

Name: APSR

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

I N I z [¢c v [| - |
23 22 21 20 19 18 17 16

| - | GE[3:0] |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

The APSR contains the current state of the condition flags from previous instruction executions.

* N: Negative Flag
0: Operation result was positive, zero, greater than, or equal
1: Operation result was negative or less than.

e Z: Zero Flag
0: Operation result was not zero
1: Operation result was zero.

e C: Carry or Borrow Flag

Carry or borrow flag:

0: Add operation did not result in a carry bit or subtract operation resulted in a borrow bit
1: Add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

* V: Overflow Flag
0: Operation did not result in an overflow
1: Operation resulted in an overflow.

¢ Q: DSP Overflow and Saturation Flag

Sticky saturation flag:

0: Indicates that saturation has not occurred since reset or since the bit was last cleared to zero
1: Indicates when an SSAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRS instruction.

* GE[19:16]: Greater Than or Equal Flags
See “SEL” for more information.

/ItmeL SAMA4S Series [DATASHEET] 61

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.4.1.10 Interrupt Program Status Register

Name: IPSR
Access: Read/Write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).

* ISR_NUMBER: Number of the Current Exception
0 = Thread mode

1 = Reserved

2 =NMI

3 = Hard fault

4 = Memory management fault
5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SVCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQO

49 = IRQ34

See “Exception Types” for more information.

62 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.4.1.11 Execution Program Status Register

Name: EPSR

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| - ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICINT - |
7 6 5 4 3 2 1 0

The EPSR contains the Thumb state bit, and the execution state bits for either the If-Then (IT) instruction, or the Interrupt-
ible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction.

Attempts to read the EPSR directly through application software using the MSR instruction always return zero. Attempts to
write the EPSR using the MSR instruction in the application software are ignored. Fault handlers can examine the EPSR
value in the stacked PSR to indicate the operation that is at fault. See “Exception Entry and Return” .

* ICI: Interruptible-continuable Instruction

When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH, or VPOP instruction,
the processor:

— Stops the load multiple or store multiple instruction operation temporarily

— Stores the next register operand in the multiple operation to EPSR bits[15:12].
After servicing the interrupt, the processor:

— Returns to the register pointed to by bits[15:12]

— Resumes the execution of the multiple load or store instruction.
When the EPSR holds the ICI execution state, bits[26:25,11:10] are zero.

e |T: If-Then Instruction
Indicates the execution state bits of the IT instruction.

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is conditional.
The conditions for the instructions are either all the same, or some can be the inverse of others. See “IT” for more
information.

e T. Thumb State

The Cortex-M4 processor only supports the execution of instructions in Thumb state. The following can clear the T bit to O:
— Instructions BLX, BX and POP{PC}
— Restoration from the stacked xPSR value on an exception return
— Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is O results in a fault or lockup. See “Lockup” for more information.

/ItmeL SAMA4S Series [DATASHEET] 63

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.4.1.12

Exception Mask Registers

The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they

might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the
value of PRIMASK or FAULTMASK. See “MRS” , “MSR” , and “CPS” for more information.

12.4.1.13 Priority Mask Register
Name: PRIMASK
Access: Read/Write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
- PRIMASK |

The PRIMASK register prevents the activation of all exceptions with a configurable priority.

* PRIMASK
0: No effect
1: Prevents the activation of all exceptions with a configurable priority.

64

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

12.4.1.14 Fault Mask Register

Name: FAULTMASK
Access: Read/Write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | FAULTMASK |

The FAULTMASK register prevents the activation of all exceptions except for Non-Maskable Interrupt (NMI).

*+ FAULTMASK

0: No effect.

1: Prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

/ItmeL SAMA4S Series [DATASHEET] 65

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.4.1.15 Base Priority Mask Register

Name: BASEPRI
Access: Read/Write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| BASEPRI |

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero value, it
prevents the activation of all exceptions with same or lower priority level as the BASEPRI value.

* BASEPRI

Priority mask bits:

0x0000: No effect

Nonzero: Defines the base priority for exception processing

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this
field, bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” for more information. Remember that
higher priority field values correspond to lower exception priorities.

66 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.4.1.16 Control Register

Name: CONTROL
Access: Read/Write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | - | SPSEL | nPRIV |

The Control Register controls the stack used and the privilege level for software execution when the processor is in Thread
mode.

» SPSEL: Active Stack Pointer
Defines the current stack:

0: MSP is the current stack pointer.
1: PSP is the current stack pointer.

In Handler mode, this bit reads as zero and ignores writes. The Cortex-M4 updates this bit automatically on exception
return.

» nPRIV: Thread Mode Privilege Level

Defines the Thread mode privilege level:

0: Privileged.

1: Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the Control

Register when in Handler mode. The exception entry and return mechanisms update the Control Register based on the
EXC_RETURN value.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack, and the kernel and
exception handlers use the main stack.

By default, the Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, either:
» Use the MSR instruction to set the Active stack pointer bit to 1, see “MSR”, or
* Perform an exception return to Thread mode with the appropriate EXC_RETURN value, see Table 12-10.

Note: When changing the stack pointer, the software must use an ISB instruction immediately after the MSR instruction. This ensures
that instructions after the ISB execute using the new stack pointer. See “ISB” .

/ItmeL SAMA4S Series [DATASHEET] 67

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.4.1.17 Exceptions and Interrupts

The Cortex-M4 processor supports interrupts and system exceptions. The processor and the Nested Vectored
Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software
control. The processor uses the Handler mode to handle all exceptions except for reset. See “Exception Entry”
and “Exception Return” for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller (NVIC)” for more
information.

12.4.1.18 Data Types

The processor supports the following data types:
e 32-bit words
e 16-bit halfwords
e 8-bit bytes
e The processor manages all data memory accesses as little-endian. Instruction memory and Private

Peripheral Bus (PPB) accesses are always little-endian. See “Memory Regions, Types and Attributes” for
more information.

12.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)

For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:
e A common way to:
— Access peripheral registers
— Define exception vectors
e The names of:
— The registers of the core peripherals
— The core exception vectors
e A device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M4 processor.

The CMSIS simplifies the software development by enabling the reuse of template code and the combination of
CMSIS-compliant software components from various middleware vendors. Software vendors can expand the
CMSIS to include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS
functions that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the architectural
short names that might be used in other documents.

The following sections give more information about the CMSIS:
e Section 12.5.3 "Power Management Programming Hints”
e Section 12.6.2 "CMSIS Functions”

e Section 12.8.2.1 "NVIC Programming Hints”.

68 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.4.2 Memory Model

This section describes the processor memory map, the behavior of memory accesses, and the bit-banding
features. The processor has a fixed memory map that provides up to 4 GB of addressable memory.

Figure 12-3. Memory Map

OXFFFFFFFF
Vendor-specific 511 MB
memory
0xE0100000
i i OXEOOFFFFF
Prlvatebpue;rlpheral 1.0 MB
0xEO000 0000
Ox DFFFFFFF
External device 1.0 GB
0xA0000000
OX9FFFFFFF
32 MB Bit-band alias
0x60000000
0x42000000 OX5FFFFFFF
Ox400FFFFF — Peripheral 0.5GB
it-band region
0x40000000 0x40000000
O0x23FFFFFF Ox3FFFFFFF
32 MB Bit-band alias SRAM 0.56B
0x20000000
0x22000000 Ox1FFFFFFF
Code 0.5GB
0x200FFFFF - -
0x20000000 L MB Bitband region | 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit
data, see “Bit-banding” .

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers.

This memory mapping is generic to ARM Cortex-M4 products. To get the specific memory mapping of this product,
refer to the Memories section of the datasheet.

124.2.1 Memory Regions, Types and Attributes

The memory map and the programming of the MPU split the memory map into regions. Each region has a defined
memory type, and some regions have additional memory attributes. The memory type and attributes determine the
behavior of accesses to the region.

/ItmeL SAMA4S Series [DATASHEET] 69

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Memory Types
e Normal
The processor can re-order transactions for efficiency, or perform speculative reads.
e Device
The processor preserves transaction order relative to other transactions to Device or Strongly-ordered
memory.

e Strongly-ordered
The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can
buffer a write to Device memory, but must not buffer a write to Strongly-ordered memory.

Additional Memory Attributes

e Shareable
For a shareable memory region, the memory system provides data synchronization between bus masters in
a system with multiple bus masters, for example, a processor with a DMA controller.
Strongly-ordered memory is always shareable.
If multiple bus masters can access a non-shareable memory region, the software must ensure data
coherency between the bus masters.

e Execute Never (XN)
Means the processor prevents instruction accesses. A fault exception is generated only on execution of an
instruction executed from an XN region.

12.4.2.2 Memory System Ordering of Memory Accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not
guarantee that the order in which the accesses complete matches the program order of the instructions, providing
this does not affect the behavior of the instruction sequence. Normally, if correct program execution depends on
two memory accesses completing in program order, the software must insert a memory barrier instruction between
the memory access instructions, see “Software Ordering of Memory Accesses” .

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered
memory. For two memory access instructions Al and A2, if A1 occurs before A2 in program order, the ordering of
the memory accesses is described below.

Table 12-3. Ordering of the Memory Accesses Caused by Two Instructions
A2 Device Access
Strongly-

Normal Non- ordered
Al Access shareable Shareable Access
Normal Access - - - —
Device access, non-shareable - < - <
Device access, shareable - — < <
Strongly-ordered access - < < <

Where:
- Means that the memory system does not guarantee the ordering of the accesses.

< Means that accesses are observed in program order, that is, Al is always observed
before A2.

12.4.2.3 Behavior of Memory Accesses

The following table describes the behavior of accesses to each region in the memory map.

70 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 12-4. Memory Access Behavior
Memory
Address Range Memory Region Type XN | Description
OX00000000—OX1EEFEEFE | Code Normal® B Executable region for program code. Data can also be

put here.

Executable region for data. Code can also be put here.
0x20000000-0x3FFFFFFF SRAM Normal ® — This region includes bit band and bit band alias areas,
see Table 12-6.

This region includes bit band and bit band alias areas,

0x40000000-0x5FFFFFFF | Peripheral Device™ | XN see Table 12-6.

0x60000000—0x9FFFFFFF | External RAM Normal ™ — | Executable region for data

0xA0000000-0xDFFFFFFF | External device Device™® XN | External Device memory

OXE0000000—0XEQOFFFFF | Private Peripheral Bus i::g;gg(_l) XN Igri]str:)elg;ﬁ)”di('?c'”des the NVIC, system timer, and system
OXE0100000-OxFFFFFFFF | Reserved Device™ | XN | Reserved

Note: 1. See “Memory Regions, Types and Attributes” for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends that programs
always use the Code region. This is because the processor has separate buses that enable instruction fetches and
data accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see
“Memory Protection Unit (MPU)” .

Additional Memory Access Constraints For Caches and Shared Memory

When a system includes caches or shared memory, some memory regions have additional access constraints,
and some regions are subdivided, as Table 12-5 shows.

Table 12-5. Memory Region Shareability and Cache Policies

Address Range Memory Region Memory Type Shareability Cache Policy
0x00000000—0x1FFFFFFF Code Normal ™ - WT®
0x20000000—0x3FFFFFFF SRAM Normal ™ - WBWA®
0x40000000—-0x5FFFFFFF Peripheral Device® - -
0x60000000—0x7FFFFFFF WBWA®

External RAM Normal® -
0x80000000—-0x9FFFFFFF WT®
0xA0000000—-0xBFFFFFFF Shareable™

External device Device ™ -
0xC0000000-0XDFFFFFFF Non-shareable ")
0xE0000000—0XEOOFFFFF EE\;ate Peripheral Strongly-ordered® Shareable™ -
OXE0100000—0XFFFFFFFF vendor-specific Device ") - -

device

Notes: 1. See “Memory Regions, Types and Attributes” for more information.
2. WT = Write through, no write allocate. WBWA = Write back, write allocate. See the “Glossary” for more information.
Instruction Prefetch and Branch Prediction

The Cortex-M4 processor:

/ItmeL SAMA4S Series [DATASHEET] 71

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

e Prefetches instructions ahead of execution
e Speculatively prefetches from branch target addresses.

12.4.2.4 Software Ordering of Memory Accesses
The order of instructions in the program flow does not always guarantee the order of the corresponding memory
transactions. This is because:

e The processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence.

e The processor has multiple bus interfaces

e Memory or devices in the memory map have different wait states

e Some memory accesses are buffered or speculative.
“Memory System Ordering of Memory Accesses” describes the cases where the memory system guarantees the
order of memory accesses. Otherwise, if the order of memory accesses is critical, the software must include

memory barrier instructions to force that ordering. The processor provides the following memory barrier
instructions:

DMB

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before
subsequent memory transactions. See “DMB” .

DSB
The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete
before subsequent instructions execute. See “DSB” .

ISB
The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is
recognizable by subsequent instructions. See “ISB” .

MPU Programming

Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration is used by
subsequent instructions.

12.4.2.5 Bit-banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band
regions occupy the lowest 1 MB of the SRAM and peripheral memory regions.
The memory map has two 32 MB alias regions that map to two 1 MB bit-band regions:

e Accesses to the 32 MB SRAM alias region map to the 1 MB SRAM bit-band region, as shown in Table 12-6.

e Accesses to the 32 MB peripheral alias region map to the 1 MB peripheral bit-band region, as shown in
Table 12-7.

Table 12-6. SRAM Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses

Direct accesses to this memory range behave as SRAM memory accesses,

0x20000000-0x200FFFFF | SRAM bit-band region but this region is also bit-addressable through bit-band alias.

Data accesses to this region are remapped to bit-band region. A write
0x22000000-0x23FFFFFF | SRAM bit-band alias operation is performed as read-modify-write. Instruction accesses are not
remapped.

72 SAMA4S Series [DATASHEET] /ItmeL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 12-7. Peripheral Memory Bit-banding Regions

Address Range

Memory Region

Instruction and Data Accesses

0x40000000—-0x400FFFFF

Peripheral bit-band alias

Direct accesses to this memory range behave as peripheral memory
accesses, but this region is also bit-addressable through bit-band alias.

0x42000000—-0x43FFFFFF

Peripheral bit-band region

Data accesses to this region are remapped to bit-band region. A write
operation is performed as read-modify-write. Instruction accesses are not
permitted.

Notes: 1. A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM or peripheral bit-band

region.

2. Bit-band accesses can use byte, halfword, or word transfers. The bit-band transfer size matches the transfer size of the
instruction making the bit-band access.

The following formula shows how the alias region maps onto the bit-band region:

bit _word_of fset

= (byte_offset x 32) + (bit_nunber x 4)

bit_word_addr = bit_band_base + bit_word_of fset

where:

e Bit word offset is the position of the target bit in the bit-band memory region.

Bit _word_addr is the address of the word in the alias memory region that maps to the targeted bit.
Bi t band_base is the starting address of the alias region.

Byt e_of f set is the number of the byte in the bit-band region that contains the targeted bit.

Bi t _nunber is the bit position, 0-7, of the targeted bit.

Figure 12-4 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-

band region:

e The alias word at 0x23FFFFEQO maps to bit[0] of the bit-band byte at 0x200FFFFF: Ox23FFFFEOQ =
0x22000000 + (OXFFFFF*32) + (0*4).
e The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at Ox200FFFFF: 0x23FFFFFC =
0x22000000 + (OXFFFFF*32) + (7*4).
e The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 =
0x22000000 + (0*32) + (0*4).
e The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C =
0x22000000+ (0*32) + (7*4).

Atmel

SAM4S Series [DATASHEET] 73

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 12-4. Bit-band Mapping

32 MB alias region

I 0x23FFFFFC I O0x23FFFFF8 " Ox23FFFFF4 | Ox23FFFFFO | Ox23FFFFEC | Ox23FFFFE8 | Ox23FFFFE4 I 0x23FFFFEQ I

I 0x2200001C I 0x22000018 0x22000014 0x22000010 0x2200000C 0x22000008 0x22000004 I 0x22000000 I

1 MB SRAM bit-band region

‘76543210’765432107654321076543210

T T T T 1
0x200FFFFF 0x200FFFFE 0x200FFFFD 0x200FFFFC
I I I I

°
°

°

765432107654321076543210‘76543210’

T U U U
0x20000003 0x20000002 0x20000001 0x20000000
I I I I

Directly Accessing an Alias Region

Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-

band region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to O
writes a 0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing OxFF.
Writing 0x00 has the same effect as writing OxOE.
Reading a word in the alias region:
e (0x00000000 indicates that the targeted bit in the bit-band region is set to 0
e 0x00000001 indicates that the targeted bit in the bit-band region is set to 1
Directly Accessing a Bit-band Region

“Behavior of Memory Accesses” describes the behavior of direct byte, halfword, or word accesses to the bit-band
regions.

12.4.2.6 Memory Endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example,

bytes 0-3 hold the first stored word, and bytes 4—7 hold the second stored word. “Little-endian Format” describes
how words of data are stored in memory.

Little-endian Format

In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and
the most significant byte at the highest-numbered byte. For example:

74 SAMA4S Series [DATASHEET)]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15 /I t m eL

Figure 12-5. Little-endian Format

Memory Register
7 0
31 2423 16 15 8 7 0
Address A BO |Isbyte B3 B2 B1 BO
A+1 B1
A+2 B2

A+3 B3 [msbyte

12.4.2.7 Synchronization Primitives

The Cortex-M4 instruction set includes pairs of synchronization primitives. These provide a non-blocking
mechanism that a thread or process can use to obtain exclusive access to a memory location. The software can
use them to perform a guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

A Load-exclusive Instruction, used to read the value of a memory location, requesting exclusive access to that
location.

A Store-Exclusive instruction, used to attempt to write to the same memory location, returning a status bit to a
register. If this bit is:
e 0: ltindicates that the thread or process gained exclusive access to the memory, and the write succeeds,

e 1:ltindicates that the thread or process did not gain exclusive access to the memory, and no write is
performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:

e The word instructions LDREX and STREX

e The halfword instructions LDREXH and STREXH

e The byte instructions LDREXB and STREXB.
The software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.
To perform an exclusive read-modify-write of a memory location, the software must:

1. Use a Load-Exclusive instruction to read the value of the location.

2. Update the value, as required.

3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location

4. Test the returned status bit. If this bit is:

0: The read-modify-write completed successfully.

1: No write was performed. This indicates that the value returned at step 1 might be out of date. The
software must retry the read-modify-write sequence.

The software can use the synchronization primitives to implement a semaphore as follows:
1. Use aLoad-Exclusive instruction to read from the semaphore address to check whether the semaphore is

free.
2. If the semaphore is free, use a Store-Exclusive instruction to write the claim value to the semaphore
address.
SAMA4S Series [DATASHEET 75
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

3. If the returned status bit from step 2 indicates that the Store-Exclusive instruction succeeded then the
software has claimed the semaphore. However, if the Store-Exclusive instruction failed, another process
might have claimed the semaphore after the software performed the first step.

The Cortex-M4 includes an exclusive access monitor, that tags the fact that the processor has executed a Load-
Exclusive instruction. If the processor is part of a multiprocessor system, the system also globally tags the memory
locations addressed by exclusive accesses by each processor.
The processor removes its exclusive access tag if:
e It executes a CLREX instruction
e It executes a Store-Exclusive instruction, regardless of whether the write succeeds.
e An exception occurs. This means that the processor can resolve semaphore conflicts between different
threads.
In a multiprocessor implementation:
e Executing a CLREX instruction removes only the local exclusive access tag for the processor
e Executing a Store-Exclusive instruction, or an exception, removes the local exclusive access tags, and all
global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX"” and “CLREX" .

12.4.2.8 Programming Hints for the Synchronization Primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic functions for
generation of these instructions:

Table 12-8. CMSIS Functions for Exclusive Access Instructions

Instruction CMSIS Function

LDREX uint32_t _ LDREXW (uint32_t *addr)

LDREXH uintl6_t LDREXH (uint16_t *addr)

LDREXB uint8_t __LDREXB (uint8_t *addr)

STREX uint32_t _ STREXW (uint32_t value, uint32_t *addr)
STREXH uint32_t __ STREXH (uint16_t value, uint16_t *addr)
STREXB uint32_t _ STREXB (uint8_t value, uint8_t *addr)
CLREX void __CLREX (void)

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic
function. For example, the following C code generates the required LDREXB operation:
__ldrex((vol atile char *) OxFF);
12.4.3 Exception Model
This section describes the exception model.
12.4.3.1 Exception States

Each exception is in one of the following states:
Inactive

The exception is not active and not pending.
Pending

The exception is waiting to be serviced by the processor.

76 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to
pending.
Active

An exception is being serviced by the processor but has not completed.
An exception handler can interrupt the execution of another exception handler. In this case, both exceptions are in
the active state.

Active and Pending

The exception is being serviced by the processor and there is a pending exception from the same source.

12.4.3.2 Exception Types

The exception types are:
Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception.
When reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset
is deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution
restarts as privileged execution in Thread mode.

Non Maskable Interrupt (NMI)

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is the highest
priority exception other than reset. It is permanently enabled and has a fixed priority of -2.
NMlIs cannot be:
e Masked or prevented from activation by any other exception.
e Preempted by any exception other than Reset.
Hard Fault

A hard fault is an exception that occurs because of an error during exception processing, or because an exception
cannot be managed by any other exception mechanism. Hard Faults have a fixed priority of -1, meaning they have
higher priority than any exception with configurable priority.

Memory Management Fault (MemManage)

A Memory Management Fault is an exception that occurs because of a memory protection related fault. The MPU
or the fixed memory protection constraints determines this fault, for both instruction and data memory transactions.
This fault is used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is
disabled.

Bus Fault

A Bus Fault is an exception that occurs because of a memory related fault for an instruction or data memory
transaction. This might be from an error detected on a bus in the memory system.

Usage Fault

A Usage Fault is an exception that occurs because of a fault related to an instruction execution. This includes:
An undefined instruction

An illegal unaligned access

An invalid state on instruction execution

e An error on exception return.

The following can cause a Usage Fault when the core is configured to report them:
e Anunaligned address on word and halfword memory access
e A division by zero.

/ItmeL SAMA4S Series [DATASHEET] 77

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

SVCall

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications
can use SVC instructions to access OS kernel functions and device drivers.

PendSV

PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context
switching when no other exception is active.

SysTick
A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate
a SysTick exception. In an OS environment, the processor can use this exception as system tick.

Interrupt (IRQ)

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are
asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the
processor.

Table 12-9. Properties of the Different Exception Types

Exception Vector Address

Number® Irqg Number® | Exception Type | Priority or Offset® Activation

1 - Reset -3, the highest | 0x00000004 Asynchronous
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C -

4 -12 Memory Configurable® | 0x00000010 Synchronous

management fault

Synchronous when precise,

5 -11 Bus fault Configurable® | 0x00000014 asynchronous when imprecise
6 -10 Usage fault Configurable® | 0x00000018 Synchronous

7-10 - - - Reserved -

11 -5 SvCall Configurable® | 0x0000002C Synchronous

12-13 - - - Reserved -

14 -2 PendSV Configurable® | 0x00000038 Asynchronous

15 -1 SysTick Configurable® | 0x0000003C Asynchronous

16 and above | 0 and above Interrupt (IRQ) Configurable® | 0x00000040 and above® | Asynchronous

Notes: 1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions other
than interrupts. The IPSR returns the Exception number, see “Interrupt Program Status Register” .

See “Vector Table” for more information
See “System Handler Priority Registers”
See “Interrupt Priority Registers”
Increasing in steps of 4.

a e

For an asynchronous exception, other than reset, the processor can execute another instruction between when the
exception is triggered and when the processor enters the exception handler.
Privileged software can disable the exceptions that Table 12-9 shows as having configurable priority, see:

e “System Handler Control and State Register”

e “Interrupt Clear-enable Registers” .

78 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

For more information about hard faults, memory management faults, bus faults, and usage faults, see “Fault

Handling” .

12.4.3.3 Exception Handlers

The processor handles exceptions using:
e Interrupt Service Routines (ISRs)

Interrupts IRQO to IRQ34 are the exceptions handled by ISRs.

e Fault Handlers

Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the fault

handlers.
e System Handlers

NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are handled by

system handlers.

12.4.3.4 Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception
vectors, for all exception handlers. Figure 12-6 shows the order of the exception vectors in the vector table. The
least-significant bit of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 12-6. Vector Table

Exception number IRQ number
255 239
18 2
17 1
16 0
15 -1
14 -2

13
12
11 -5
10
9
8
7
6 -10
5 -1
4 -12
3 -13
2 -14
1

Offset

0x03FC

0x004C
0x0048
0x0044
0x0040
0x003C
0x0038

0x002C

0x0018
0x0014
0x0010
0x000C
0x0008
0x0004
0x0000

Vector

IRQ239

IRQ2

IRQ1

IRQO

SysTick

PendSV

Reserved

Reserved for Debug

SVCall

Reserved

Usage fault

Bus fault

Memory management fault

Hard fault

NMI

Reset

Initial SP value

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the SCB_VTOR
to relocate the vector table start address to a different memory location, in the range 0x00000080 to Ox3FFFFF80,

see “Vector Table Offset Register” .

Atmel

SAM4S Series [DATASHEET] 79

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.4.3.5 Exception Priorities

As Table 12-9 shows, all exceptions have an associated priority, with:
e A lower priority value indicating a higher priority
e Configurable priorities for all exceptions except Reset, Hard fault and NMI.
If the software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0.

For information about configuring exception priorities see “System Handler Priority Registers” , and “Interrupt

Priority Registers” .

Note: Configurable priority values are in the range 0—15. This means that the Reset, Hard fault, and NMI exceptions, with
fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has

higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[O].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number
takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is
processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority
exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not
preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

12.4.3.6 Interrupt Priority Grouping
To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each
interrupt priority register entry into two fields:
e An upper field that defines the group priority
e Alower field that defines a subpriority within the group.
Only the group priority determines preemption of interrupt exceptions. When the processor is executing an

interrupt exception handler, another interrupt with the same group priority as the interrupt being handled does not
preempt the handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they
are processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the
lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see “Application
Interrupt and Reset Control Register” .

12.4.3.7 Exception Entry and Return

Descriptions of exception handling use the following terms:
Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its
priority is higher than the priority of the exception being handled. See “Interrupt Priority Grouping” for more
information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See “Exception Entry” more
information.
Return

This occurs when the exception handler is completed, and:
e There is no pending exception with sufficient priority to be serviced
e The completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred.
See “Exception Return” for more information.

80 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Tail-chaining

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending
exception that meets the requirements for exception entry, the stack pop is skipped and control transfers to the
new exception handler.

Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous
exception, the processor switches to handle the higher priority exception and initiates the vector fetch for that
exception. State saving is not affected by late arrival because the state saved is the same for both exceptions.
Therefore the state saving continues uninterrupted. The processor can accept a late arriving exception until the
first instruction of the exception handler of the original exception enters the execute stage of the processor. On
return from the exception handler of the late-arriving exception, the normal tail-chaining rules apply.

Exception Entry

An Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in
Thread mode, or the new exception is of a higher priority than the exception being handled, in which case the new
exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has more priority than any limits set by the mask registers, see
“Exception Mask Registers” . An exception with less priority than this is pending but is not handled by the
processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the
processor pushes information onto the current stack. This operation is referred as stacking and the structure of
eight data words is referred to as stack frame.

/ItmeL SAMA4S Series [DATASHEET] 81

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 12-7. Exception Stack Frame

{aligner} ! Pre-IRQ top of stack

FPSCR
S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2

S1 . . h

S0 : Taiignen ! l— Pre-IRQ top of stack
xPSR Decreasing xPSR
PC memory PC
R address R
R12 R12
R3 R3
R2 v R2
R1 R1
RO < IRQ top of stack RO « IRQ top of stack

Exception frame with Exception frame without
floating-point storage floating-point storage

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The alignment of the
stack frame is controlled via the STKALIGN bit of the Configuration Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in the interrupted program.
This value is restored to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start
address from the vector table. When stacking is complete, the processor starts executing the exception handler. At
the same time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer
corresponds to the stack frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during the exception entry, the processor starts executing the exception
handler and automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during the exception entry, the processor starts executing the exception

handler for this exception and does not change the pending status of the earlier exception. This is the late arrival
case.

Exception Return

An Exception return occurs when the processor is in Handler mode and executes one of the following instructions
to load the EXC_RETURN value into the PC:

e An LDM or POP instruction that loads the PC
e An LDR instruction with the PC as the destination.
e A BX instruction using any register.

82 SAMA4S Series [DATASHEET)]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15 /I t m eL

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on this value
to detect when the processor has completed an exception handler. The lowest five bits of this value provide
information on the return stack and processor mode. Table 12-10 shows the EXC_RETURN values with a
description of the exception return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC, it indicates to the
processor that the exception is complete, and the processor initiates the appropriate exception return sequence.

Table 12-10. Exception Return Behavior
EXC_RETURN[31:0] Description
OiFFEFEREL | el loender made excepon e uses oo o st

12.4.3.8 Fault Handling
Faults are a subset of the exceptions, see “Exception Model” . The following generate a fault:
e A hbus error on:
— Aninstruction fetch or vector table load
— Adata access
e An internally-detected error such as an undefined instruction
e An attempt to execute an instruction from a memory region marked as Non-Executable (XN).
e A privilege violation or an attempt to access an unmanaged region causing an MPU fault.
Fault Types
Table 12-11 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the
register bit that indicates that the fault has occurred. See “Configurable Fault Status Register” for more information
about the fault status registers.

Table 12-11. Faults
Fault Handler Bit Name Fault Status Register
Bus error on a vector read VECTTBL
Hard fault “Hard Fault Status Register”
Fault escalated to a hard fault FORCED
MPU or default memory map mismatch: - -
on instruction access IACCvIOL®
on data access Memory DACCVIOL®
: . . management “MMFSR: Memory Management Fault Status
during exception stacking fault MSTKERR Subregister”
during exception unstacking MUNSTKERR
during lazy floating-point state preservation MLSPERR®

Atmel

SAM4S Series [DATASHEET] 83

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 12-11. Faults (Continued)

Fault Handler Bit Name Fault Status Register
Bus error: - -

during exception stacking STKERR

during exception unstacking UNSTKERR

during instruction prefetch Bus fault IBUSERR

“BFSR: Bus Fault Status Subregister”

during lazy floating-point state preservation LSPERR®
Precise data bus error PRECISERR
Imprecise data bus error IMPRECISERR
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction set state INVSTATE

Usage fault “UFSR: Usage Fault Status Subregister”

Invalid EXC_RETURN value INVPC
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO

Notes: 1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2. Attempt to use an instruction set other than the Thumb instruction set, or return to a non load/store-multiple instruction with
ICI continuation.

3. Only present in a Cortex-M4F device
Fault Escalation and Hard Faults

All faults exceptions except for hard fault have configurable exception priority, see “System Handler Priority
Registers” . The software can disable the execution of the handlers for these faults, see “System Handler Control
and State Register” .

Usually, the exception priority, together with the values of the exception mask registers, determines whether the
processor enters the fault handler, and whether a fault handler can preempt another fault handler, as described in
“Exception Model” .

In some situations, a fault with configurable priority is treated as a hard fault. This is called priority escalation, and
the fault is described as escalated to hard fault. Escalation to hard fault occurs when:
e A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs
because a fault handler cannot preempt itself; it must have the same priority as the current priority level.
e A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the
handler for the new fault cannot preempt the currently executing fault handler.
e An exception handler causes a fault for which the priority is the same as or lower than the currently
executing exception.
e A fault occurs and the handler for that fault is not enabled.
If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a
hard fault. This means that if a corrupted stack causes a fault, the fault handler executes even though the stack
push for the handler failed. The fault handler operates but the stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than
Reset, NMI, or another hard fault.

Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault
address register indicates the address accessed by the operation that caused the fault, as shown in Table 12-12.

84 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 12-12. Fault Status and Fault Address Registers
Status Register Address Register
Handler Name Name Register Description
Hard fault SCB_HFSR - “Hard Fault Status Register”
“MMFSR: Memory Management Fault Status Subregister”
Memory MMFSR SCB_MMFAR / J _ J
management fault “MemManage Fault Address Register”
“BFSR: Bus Fault Status Subregister”
Bus fault BFSR SCB_BFAR)
“Bus Fault Address Register”
Usage fault UFSR - “UFSR: Usage Fault Status Subregister”
Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the
processor is in lockup state, it does not execute any instructions. The processor remains in lockup state until
either:

e ltisreset
e An NMI occurs
e ltis halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the lockup
state.

SAM4S Series [DATASHEET] 85

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

12.5 Power Management
The Cortex-M4 processor sleep modes reduce the power consumption:
e Sleep mode stops the processor clock
e Deep sleep mode stops the system clock and switches off the PLL and flash memory.
The SLEEPDEEP bit of the SCR selects which sleep mode is used; see “System Control Register” .

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep
mode.

12.5.1 Entering Sleep Mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor.
Therefore, the software must be able to put the processor back into sleep mode after such an event. A program
might have an idle loop to put the processor back to sleep mode.

1251.1 Wait for Interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a
WHFI instruction it stops executing instructions and enters sleep mode. See “WFI” for more information.

12.5.1.2 Wait for Event
The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an one-bit event
register. When the processor executes a WFE instruction, it checks this register:
e Ifthe register is 0, the processor stops executing instructions and enters sleep mode
e If the register is 1, the processor clears the register to 0 and continues executing instructions without
entering sleep mode.

See “WFE” for more information.

12.5.1.3 Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1 when the processor completes the execution of an exception
handler, it returns to Thread mode and immediately enters sleep mode. Use this mechanism in applications that
only require the processor to run when an exception occurs.

12.5.2 Wakeup from Sleep Mode
The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep mode.

12521 Wakeup from WFI or Sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception
entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it
executes an interrupt handler. To achieve this, set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an
interrupt arrives that is enabled and has a higher priority than the current exception priority, the processor wakes
up but does not execute the interrupt handler until the processor sets PRIMASK to zero. For more information
about PRIMASK and FAULTMASK, see “Exception Mask Registers” .

12.5.2.2 Wakeup from WFE
The processor wakes up if:
e |t detects an exception with sufficient priority to cause an exception entry
e It detects an external event signal. See “External Event Input”
e In a multiprocessor system, another processor in the system executes an SEV instruction.

86 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes
up the processor, even if the interrupt is disabled or has insufficient priority to cause an exception entry. For more
information about the SCR, see “System Control Register” .

12.5.2.3 External Event Input

The processor provides an external event input signal. Peripherals can drive this signal, either to wake the
processor from WFE, or to set the internal WFE event register to 1 to indicate that the processor must not enter
sleep mode on a later WFE instruction. See “Wait for Event” for more information.

12.5.3 Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following functions for
these instructions:

void _ WE(void) // Wait for Event

void _ W (void) // Wait for Interrupt

/ItmeL SAMA4S Series [DATASHEET] 87

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6 Cortex-M4 Instruction Set

12.6.1 Instruction Set Summary

The processor implements a version of the Thumb instruction set. Table 12-13 lists the supported instructions.

Angle brackets, <>, enclose alternative forms of the operand

Braces, {}, enclose optional operands

The Operands column is not exhaustive

Op2 is a flexible second operand that can be either a register or a constant
Most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 12-13. Cortex-M4 Instructions

Mnemonic Operands Description Flags
ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C.V
ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,V
ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,CV
ADR Rd, label Load PC-relative address -

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C

B label Branch -

BFC Rd, #Isb, #width Bit Field Clear -

BFI Rd, Rn, #lsb, #width Bit Field Insert -

BIC, BICS {Rd.,} Rn, Op2 Bit Clear N,z,C
BKPT #imm Breakpoint -

BL label Branch with Link -

BLX Rm Branch indirect with Link -

BX Rm Branch indirect -
CBNz Rn, label Compare and Branch if Non Zero -

cBz Rn, label Compare and Branch if Zero -
CLREX - Clear Exclusive -

CLZ Rd, Rm Count leading zeros -

CMN Rn, Op2 Compare Negative N,Z,CV
CMP Rn, Op2 Compare N,Z,C\V
CPSID i Change Processor State, Disable Interrupts -
CPSIE i Change Processor State, Enable Interrupts -

DMB - Data Memory Barrier -

DSB - Data Synchronization Barrier -

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C
ISB - Instruction Synchronization Barrier -

IT - If-Then condition block -

LDM Rn{!}, reglist Load Multiple registers, increment after -

88 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 12-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
LDMDB, LDMEA Rn{1}, reglist Load Multiple registers, decrement before -
LDMFD, LDMIA Rn{!}, reglist Load Multiple registers, increment after -
LDR Rt, [Rn, #offset] Load Register with word -
LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte -
LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes -
LDREX Rt, [Rn, #offset] Load Register Exclusive -
LDREXB Rt, [Rn] Load Register Exclusive with byte -
LDREXH Rt, [Rn] Load Register Exclusive with halfword -
LDRH, LDRHT Rt, [Rn, #offset] Load Register with halfword -
LDRSB, DRSBT Rt, [Rn, #offset] Load Register with signed byte -
LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with signed halfword -
LDRT Rt, [Rn, #offset] Load Register with word -
LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result -
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result -
MOV, MOVS Rd, Op2 Move N,Z,C
MOVT Rd, #imm16 Move Top -
MOVW, MOV Rd, #imm16 Move 16-bit constant N,zZ,C
MRS Rd, spec_reg Move from special register to general register -
MSR spec_reg, Rm Move from general register to special register N,Z,CV
MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z
MVN, MVNS Rd, Op2 Move NOT N,z,C
NOP - No Operation -
ORN, ORNS {Rd.} Rn, Op2 Logical OR NOT N,Z,C
ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C
PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack Halfword -
POP reglist Pop registers from stack -
PUSH reglist Push registers onto stack -
QADD {Rd,} Rn, Rm Saturating double and Add Q
QADD16 {Rd,} Rn, Rm Saturating Add 16 -
QADDS8 {Rd,} Rn, Rm Saturating Add 8 -
QASX {Rd,} Rn, Rm Saturating Add and Subtract with Exchange -
QDADD {Rd,} Rn, Rm Saturating Add Q
QDsSuUB {Rd,} Rn, Rm Saturating double and Subtract Q
QSAX {Rd,} Rn, Rm Saturating Subtract and Add with Exchange -
QsSuB {Rd,} Rn, Rm Saturating Subtract Q

Atmel

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

89

Table 12-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
QSuUB16 {Rd.,} Rn, Rm Saturating Subtract 16 -
QSuUBS8 {Rd,} Rn, Rm Saturating Subtract 8 -
RBIT Rd, Rn Reverse Bits -
REV Rd, Rn Reverse byte order in a word -
REV16 Rd, Rn Reverse byte order in each halfword -
REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend -
ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,zZ,C
RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C\V
SADD16 {Rd,} Rn, Rm Signed Add 16 GE
SADDS8 {Rd,} Rn, Rm Signed Add 8 and Subtract with Exchange GE
SASX {Rd,} Rn, Rm Signed Add GE
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C\V
SBFX Rd, Rn, #Isb, #width Signed Bit Field Extract -
SDIV {Rd,} Rn, Rm Signed Divide -
SEL {Rd,} Rn, Rm Select bytes -
SEV - Send Event -
SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 -
SHADDS8 {Rd,} Rn, Rm Signed Halving Add 8 -
SHASX {Rd,} Rn, Rm Signed Halving Add and Subtract with Exchange -
SHSAX {Rd,} Rn, Rm Signed Halving Subtract and Add with Exchange -
SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 -
SHSUBS8 {Rd,} Rn, Rm Signed Halving Subtract 8 -
gmtﬁ'?BB: SS,\'\//IIII_‘:_II_B_I-_F Rd, Rn, Rm, Ra Signed Multiply Accumulate Long (halfwords) Q
SMLAD, SMLADX Rd, Rn, Rm, Ra Signed Multiply Accumulate Dual Q
SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result -
gmtﬁt_?g Ssl\l\//llll__ﬁll__'rB'l-'r RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long, halfwords -
SMLALD, SMLALDX RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long Dual -
SMLAWB, SMLAWT Rd, Rn, Rm, Ra Signed Multiply Accumulate, word by halfword Q
SMLSD Rd, Rn, Rm, Ra Signed Multiply Subtract Dual Q
SMLSLD RdLo, RdHi, Rn, Rm Signed Multiply Subtract Long Dual
SMMLA Rd, Rn, Rm, Ra Signed Most significant word Multiply Accumulate -
SMMLS, SMMLR Rd, Rn, Rm, Ra Signed Most significant word Multiply Subtract -
SMMUL, SMMULR {Rd,} Rn, Rm Signed Most significant word Multiply -
SMUAD {Rd,} Rn, Rm Signed dual Multiply Add Q

90 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

Table 12-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
gmgt_?g SSI\,\//IIIEJJII__'I?': {Rd,} Rn, Rm Signed Multiply (halfwords) -
SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result -
SMULWB, SMULWT {Rd,} Rn, Rm Signed Multiply word by halfword -
SMUSD, SMUSDX {Rd,} Rn, Rm Signed dual Multiply Subtract -
SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q
SSAT16 Rd, #n, Rm Signed Saturate 16 Q
SSAX {Rd,} Rn, Rm Signed Subtract and Add with Exchange GE
SSUB16 {Rd,} Rn, Rm Signed Subtract 16 -
SSUBS8 {Rd,} Rn, Rm Signed Subtract 8 -
STM Rn{1}, reglist Store Multiple registers, increment after -
STMDB, STMEA Rn{'}, reglist Store Multiple registers, decrement before -
STMFD, STMIA Rn{!}, reglist Store Multiple registers, increment after -
STR Rt, [Rn, #offset] Store Register word -
STRB, STRBT Rt, [Rn, #offset] Store Register byte -
STRD Rt, Rt2, [Rn, #offset] Store Register two words -
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive -
STREXB Rd, Rt, [Rn] Store Register Exclusive byte -
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword -
STRH, STRHT Rt, [Rn, #offset] Store Register halfword -
STRT Rt, [Rn, #offset] Store Register word -
SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C,V
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C,V
svC #imm Supervisor Call -
SXTAB {Rd,} Rn, Rm,{,ROR #} | Extend 8 bits to 32 and add -
SXTAB16 {Rd,} Rn, Rm,{,ROR #} | Dual extend 8 bits to 16 and add -
SXTAH {Rd,} Rn, Rm,{,ROR #} | Extend 16 bits to 32 and add -
SXTB16 {Rd,} Rm {,ROR #n} Signed Extend Byte 16 -
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte -
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword -
TBB [Rn, Rm] Table Branch Byte -
TBH [Rn, Rm, LSL #1] Table Branch Halfword -
TEQ Rn, Op2 Test Equivalence N,Z,C
TST Rn, Op2 Test N,Z,C
UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE
UADDS8 {Rd,} Rn, Rm Unsigned Add 8 GE
USAX {Rd,} Rn, Rm Unsigned Subtract and Add with Exchange GE

Atmel

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

91

Table 12-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 -
UHADDS8 {Rd,} Rn, Rm Unsigned Halving Add 8 -
UHASX {Rd,} Rn, Rm Unsigned Halving Add and Subtract with Exchange -
UHSAX {Rd,} Rn, Rm Unsigned Halving Subtract and Add with Exchange -
UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract 16 -
UHSUBS {Rd,} Rn, Rm Unsigned Halving Subtract 8 -
UBFX Rd, Rn, #Isb, #width Unsigned Bit Field Extract -
ubDIv {Rd,} Rn, Rm Unsigned Divide -
UMAAL RdLo, RdHi, Rn, Rm g;_sbiig:rzzgul\lgultiply Accumulate Accumulate Long (32 x32+32+32), |
UMLAL RdLo, RdHi, Rn, Rm Unsigned Multiply with Accumulate (32 x 32 + 64), 64-bit result -
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result -
UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 -
UQADDS8 {Rd.,} Rn, Rm Unsigned Saturating Add 8 -
UQASX {Rd.,} Rn, Rm Unsigned Saturating Add and Subtract with Exchange -
UQSAX {Rd.,} Rn, Rm Unsigned Saturating Subtract and Add with Exchange -
UQSUB16 {Rd,} Rn, Rm Unsigned Saturating Subtract 16 -
UQSUBS {Rd,} Rn, Rm Unsigned Saturating Subtract 8 -
USADS8 {Rd,} Rn, Rm Unsigned Sum of Absolute Differences -
USADAS {Rd,} Rn, Rm, Ra Unsigned Sum of Absolute Differences and Accumulate -
USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q
USAT16 Rd, #n, Rm Unsigned Saturate 16 Q
UASX {Rd,} Rn, Rm Unsigned Add and Subtract with Exchange GE
USUB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE
UsuB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE
UXTAB {Rd,} Rn, Rm,{,ROR #} | Rotate, extend 8 bits to 32 and Add -
UXTAB16 {Rd.,} Rn, Rm,{,ROR #} | Rotate, dual extend 8 bits to 16 and Add -
UXTAH {Rd,} Rn, Rm,{,ROR #} | Rotate, unsigned extend and Add Halfword -
UXTB {Rd,} Rm {,ROR #n} Zero extend a byte -
UXTB16 {Rd,} Rm {,ROR #n} Unsigned Extend Byte 16 -
UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword -
VABS.F32 Sd, Sm Floating-point Absolute -
VADD.F32 {Sd,} Sn, Sm Floating-point Add -
VCMP E32 Sd, <Sm | #0.0> ;Sr(])(;nzp;roe two floating-point registers, or one floating-point register FPSCR
VONPERZ | sa.<omisoo- | CAMPa udfosingsont egser, or one st pan g | g
VCVT.S32.F32 Sd, Sm Convert between floating-point and integer -

92 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
VCVT.S16.F32 Sd, Sd, #fbits Convert between floating-point and fixed point -
VCVTR.S32.F32 Sd, Sm Convert between floating-point and integer with rounding -
VCVT<B|H>.F32.F16 Sd, Sm Converts half-precision value to single-precision -
VCVTT<B|T>.F32.F16 | Sd, Sm Converts single-precision register to half-precision -
VDIV.F32 {Sd,} Sn, Sm Floating-point Divide -
VFMA.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Accumulate -
VFNMA.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Accumulate -
VFMS.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Subtract -
VFNMS.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Subtract -
VLDM.F<32|64> Rn{'}, list Load Multiple extension registers -
VLDR.F<32|64> <Dd|Sd>, [Rn] Load an extension register from memory -
VLMA.F32 {Sd,} Sn, Sm Floating-point Multiply Accumulate -
VLMS.F32 {Sd,} Sn, Sm Floating-point Multiply Subtract -
VMOV.F32 Sd, #imm Floating-point Move immediate —
VMOV Sd, Sm Floating-point Move register -
VMOV Sn, Rt Copy ARM core register to single precision -
VMOV Sm, Sm1, Rt, Rt2 Copy 2 ARM core registers to 2 single precision -
VMOV Dd[x], Rt Copy ARM core register to scalar -
VMOV Rt, Dn[x] Copy scalar to ARM core register -
VMRS Rt, FPSCR Move FPSCR to ARM core register or APSR N,Z,C.\V
VMSR FPSCR, Rt Move to FPSCR from ARM Core register FPSCR
VMUL.F32 {Sd,} Sn, Sm Floating-point Multiply -
VNEG.F32 Sd, Sm Floating-point Negate -
VNMLA.F32 Sd, Sn, Sm Floating-point Multiply and Add -
VNMLS.F32 Sd, Sn, Sm Floating-point Multiply and Subtract -
VNMUL {Sd,} Sn, Sm Floating-point Multiply -
VPOP list Pop extension registers -
VPUSH list Push extension registers -
VSQRT.F32 Sd, Sm Calculates floating-point Square Root -
VSTM Rn{'}, list Floating-point register Store Multiple -
VSTR.F<32|64> Sd, [Rn] Stores an extension register to memory -
VSUB.F<32|64> {Sd,} Sn, Sm Floating-point Subtract -
WFE - Wait For Event -
WFI - Wait For Interrupt -

12.6.2 CMSIS Functions

ISO/IEC cannot directly access some Cortex-M4 instructions. This section describes intrinsic functions that can
generate these instructions, provided by the CMIS and that might be provided by a C compiler. If a C compiler

/ItmeL SAMA4S Series [DATASHEET] 93

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

does not support an appropriate intrinsic function, the user might have to use inline assembler to access some
instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly
access:

Table 12-14. CMSIS Functions to Generate some Cortex-M4 Instructions

Instruction CMSIS Function

CPSIE | void __enable_irg(void)

CPSID | void __disable_irg(void)

CPSIE F void __enable_fault_irq(void)

CPSID F void __disable_fault_irg(void)

ISB void __ISB(void)

DSB void ___DSB(void)

DMB void __DMB(void)

REV uint32_t _ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t _ REVSH(uint32_t int value)
RBIT uint32_t __ RBIT(uint32_t int value)
SEV void __SEV(void)

WFE void __ WFE(void)

WEFI void __ WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR
instructions:

Table 12-15. CMSIS Intrinsic Functions to Access the Special Registers

Special Register Access CMSIS Function
Read uint32_t __get PRIMASK (void)
PRIMASK
Write void __set PRIMASK (uint32_t value)
Read uint32_t __get_ FAULTMASK (void
FAULTMASK
Write void __set FAULTMASK (uint32_t value)
Read uint32_t __get BASEPRI (void)
BASEPRI
Write void __set BASEPRI (uint32_t value)
Read uint32_t __get CONTROL (void)
CONTROL
Write void __set CONTROL (uint32_t value)
Read uint32_t __get MSP (void)
MSP
Write void __set_MSP (uint32_t TopOfMainStack)
Read uint32_t __get PSP (void)
PSP
Write void __set PSP (uint32_t TopOfProcStack)
94 SAMA4S Series [DATASHEET)] AtmeL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.3 Instruction Descriptions

12.6.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions
act on the operands and often store the result in a destination register. When there is a destination register in the
instruction, it is usually specified before the operands.

Operands in some instructions are flexible, can either be a register or a constant. See “Flexible Second Operand” .

12.6.3.2 Restrictions when Using PC or SP
Many instructions have restrictions on whether the Program Counter (PC) or Stack Pointer (SP) for the operands
or destination register can be used. See instruction descriptions for more information.

Note: Bit[O] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct execution,
because this bit indicates the required instruction set, and the Cortex-M4 processor only supports Thumb instructions.

12.6.3.3 Flexible Second Operand

Many general data processing instructions have a flexible second operand. This is shown as Operand?2 in the
descriptions of the syntax of each instruction.
Operand?2 can be a:
e “Constant”
e “Register with Optional Shift”
Constant

Specify an Operand?2 constant in the form:
#const ant
where constant can be:
e Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word
e Any constant of the form 0x00XYO00XY
e Any constant of the form 0xXY00XY00
e Any constant of the form OxXYXYXYXY.

Note: In the constants shown above, X and Y are hexadecimal digits.
In addition, in a small number of instructions, constant can take a wider range of values. These are described in
the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS,
TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be
produced by shifting an 8-bit value. These instructions do not affect the carry flag if Operand2 is any other
constant.

Instruction Substitution

The assembler might be able to produce an equivalent instruction in cases where the user specifies a constant
that is not permitted. For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the
equivalent instruction CMN Rd, #0x2.

Register with Optional Shift

Specify an Operand2 register in the form:

Rm{, shift}
where:
Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:

/ItmeL SAMA4S Series [DATASHEET] 95

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

ASR #n arithmetic shift right n bits, 1 < n < 32.
LSL #n logical shift left n bits, 1 <n < 31.
LSR #n logical shift right n bits, 1 < n < 32.
ROR #n rotate right n bits, 1 <n < 31.

RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If the user omits the shift, or specifies LSL #0, the instruction uses the value in Rm.

If the user specifies a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the
instruction. However, the contents in the register Rm remains unchanged. Specifying a register with shift also
updates the carry flag when used with certain instructions. For information on the shift operations and how they
affect the carry flag, see “Flexible Second Operand” .

12.6.3.4 Shift Operations
Register shift operations move the bits in a register left or right by a specified number of bits, the shift length.
Register shift can be performed:
e Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register
e During the calculation of Operand2 by the instructions that specify the second operand as a register with
shift. See “Flexible Second Operand” . The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction. If the shift length is 0, no shift occurs.
Register shift operations update the carry flag except when the specified shift length is 0. The following
subsections describe the various shift operations and how they affect the carry flag. In these descriptions, Rm is
the register containing the value to be shifted, and n is the shift length.

ASR
Arithmetic shift right by n bits moves the left-hand 32-n bits of the register, Rm, to the right by n places, into the

right-hand 32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n bits of the
result. See Figure 12-8.

The ASR #n operation can be used to divide the value in the register Rm by 2", with the result being rounded
towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.

e Ifnis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
e Ifnis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 12-8. ASR #3

31 | 5£;j D

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-
hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0. See Figure 12-9.

26 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

The LSR #n operation can be used to divide the value in the register Rm by 2", if the value is regarded as an
unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.

e Ifnis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to O.

Figure 12-9. LSR#3

[
000 Flag
vV VY

31 [Sl;%—i D

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand
32-n bits of the result; and it sets the right-hand n bits of the result to 0. See Figure 12-10.

The LSL #n operation can be used to multiply the value in the register Rm by 2", if the value is regarded as an
unsigned integer or a two’'s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-
n], of the register Rm. These instructions do not affect the carry flag when used with LSL #0.

e Ifnis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to O.

Figure 12-10. LSL #3

«o—

31 5|4

Cary T 1T t

[I
w
N ¢O—
-
o +O—

=

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result; and it moves the right-hand n bits of the register into the left-hand n bits of the result. See
Figure 12-11.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register
Rm.

e Ifnis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated
to bit[31] of Rm.

e ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

/ItmeL SAMA4S Series [DATASHEET] 97

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 12-11. ROR #3

RRX

Carry

3 || e

31 AEES Sﬁ;; D

Rotate right with extend moves the bits of the register Rm to the right by one bit; and it copies the carry flag into
bit[31] of the result. See Figure 12-12.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 12-12. RRX

12.6.3.5

Carry
Flag

31|30 110

TS s

Address Alignment

An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word
access, or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.

The Cortex-M4 processor supports unaligned access only for the following instructions:

LDR, LDRT
LDRH, LDRHT
LDRSH, LDRSHT
STR, STRT
STRH, STRHT

All other load and store instructions generate a usage fault exception if they perform an unaligned access, and
therefore their accesses must be address-aligned. For more information about usage faults, see “Fault Handling” .

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not
support unaligned accesses. Therefore, ARM recommends that programmers ensure that accesses are aligned.
To avoid accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the Configuration and Control
Register to trap all unaligned accesses, see “Configuration and Control Register” .

12.6.3.6

PC-relative Expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is
represented in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the
required offset from the label and the address of the current instruction. If the offset is too big, the assembler
produces an error.

For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4
bytes.

08 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

e For all other instructions that use labels, the value of the PC is the address of the current instruction plus 4
bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

e Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a
number, or an expression of the form [PC, #number].

12.6.3.7 Conditional Execution

Most data processing instructions can optionally update the condition flags in the Application Program Status
Register (APSR) according to the result of the operation, see “Application Program Status Register” . Some
instructions update all flags, and some only update a subset. If a flag is not updated, the original value is
preserved. See the instruction descriptions for the flags they affect.
An instruction can be executed conditionally, based on the condition flags set in another instruction, either:

e Immediately after the instruction that updated the flags

e After any number of intervening instructions that have not updated the flags.
Conditional execution is available by using conditional branches or by adding condition code suffixes to
instructions. See Table 12-16 for a list of the suffixes to add to instructions to make them conditional instructions.
The condition code suffix enables the processor to test a condition based on the flags. If the condition test of a
conditional instruction fails, the instruction:

e Does not execute
e Does not write any value to its destination register
e Does not affect any of the flags
e Does not generate any exception.
Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See “IT” for

more information and restrictions when using the IT instruction. Depending on the vendor, the assembler might
automatically insert an IT instruction if there are conditional instructions outside the IT block.

The CBZ and CBNZ instructions are used to compare the value of a register against zero and branch on the result.

This section describes:
e “Condition Flags”
e “Condition Code Suffixes” .
Condition Flags

The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to O otherwise.

\% Set to 1 when the operation caused overflow, cleared to O otherwise.

For more information about the APSR, see “Program Status Register” .

A carry occurs:

e Ifthe result of an addition is greater than or equal to 232

e If the result of a subtraction is positive or zero

e Asthe result of an inline barrel shifter operation in a move or logical instruction.
An overflow occurs when the sign of the result, in bit[31], does not match the sign of the result, had the operation
been performed at infinite precision, for example:

e If adding two negative values results in a positive value

e If adding two positive values results in a negative value

e If subtracting a positive value from a negative value generates a positive value

/ItmeL SAMA4S Series [DATASHEET] 99

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

e If subtracting a negative value from a positive value generates a negative value.
The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is
discarded. See the instruction descriptions for more information.

Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for more
information.

Note:

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}.
Conditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if
the condition code flags in the APSR meet the specified condition. Table 12-16 shows the condition codes to use.

A conditional execution can be used with the IT instruction to reduce the number of branch instructions in code.
Table 12-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Table 12-16. Condition Code Suffixes
Suffix Flags Meaning
EQ z=1 Equal
NE Z=0 Not equal
CSorHS c=1 Higher or same, unsigned >
CCorlLO Cc=0 Lower, unsigned <
MI N=1 Negative
PL N=0 Positive or zero
VS v=1 Overflow
VvC V=0 No overflow
HI C=1landzZ=0 Higher, unsigned >
LS C=0o0rz=1 Lower or same, unsigned <
GE N=V Greater than or equal, signed >
LT N!=V Less than, signed <
GT Z=0and N=V Greater than, signed >
LE Z=1landN!=V Less than or equal, signed <
AL Can have any value Always. This is the default when no suffix is specified.

Absolute Value

The example below shows the use of a conditional instruction to find the absolute value of a number. RO =

ABS(R1).
MOVS RO, R1 ; RO = Rl, setting flags
T M ; I Tinstruction for the negative condition
RSBM RO, R1, #0 ; If negative, RO = -R1

Compare and Update Value

The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is
greater than R1 and R2 is greater than R3.

cwP RO, R1 ; Conmpare RO and R1, setting flags

I TT GT ; I Tinstruction for the two GI conditions

CVPGT R2, R3 ; If 'greater than', conpare R2 and R3, setting flags
MOVGT R4, RS ; If still "greater than', do R4 = RS

100 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

12.6.3.8 Instruction Width Selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the
operands and destination register specified. For some of these instructions, the user can force a specific
instruction size by using an instruction width suffix. The .W suffix forces a 32-bit instruction encoding. The .N suffix
forces a 16-bit instruction encoding.

If the user specifies an instruction width suffix and the assembler cannot generate an instruction encoding of the

requested width, it generates an error.

Note: In some cases, it might be necessary to specify the .W suffix, for example if the operand is the label of an instruction or
literal data, as in the case of branch instructions. This is because the assembler might not automatically generate the
right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any.

The example below shows instructions with the instruction width suffix.

BCS. W | abel ; creates a 32-bit instruction even for a short
; branch
ADDS. WRO, RO, Rl ; creates a 32-bit instruction even though the sane
operation can be done by a 16-bit instruction

SAMA4S Series [DATASHEET)] 101
/I t m eL Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.4 Memory Access Instructions

102

The table below shows the memory access instructions.

Table 12-17. Memory Access Instructions
Mnemonic Description
ADR Load PC-relative address
CLREX Clear Exclusive
LDM{mode} Load Multiple registers
LDR{type} Load Register using immediate offset
LDR{type} Load Register using register offset
LDR{type}T Load Register with unprivileged access
LDR Load Register using PC-relative address
LDRD Load Register Dual
LDREX{type} Load Register Exclusive
POP Pop registers from stack
PUSH Push registers onto stack
STM{mode} Store Multiple registers
STR{type} Store Register using immediate offset
STR{type} Store Register using register offset
STR{type}T Store Register with unprivileged access
STREX{type} Store Register Exclusive

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

12.6.4.1 ADR
Load PC-relative address.

Syntax

ADR{ cond} Rd, | abel
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
label is a PC-relative expression. See “PC-relative Expressions” .
Operation

ADR determines the address by adding an immediate value to the PC, and writes the result to the destination
register.

ADR produces position-independent code, because the address is PC-relative.

If ADR is used to generate a target address for a BX or BLX instruction, ensure that bit[0] of the address generated
is set to 1 for correct execution.

Values of label must be within the range of —4095 to +4095 from the address in the PC.

Note: The user might have to use the .W suffix to get the maximum offset range or to generate addresses that are not word-
aligned. See “Instruction Width Selection” .

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.

Examples
ADR Rl, Text Message ; Wite address value of a location |abelled as
; Text Message to R1

SAMA4S Series [DATASHEET 103
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.4.2 LDR and STR, Immediate Offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax
op{type}{cond} R, [Rn {, #offset}] ; i mredi ate of fset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; imredi ate offset, two words
opD{cond} R, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words
where:
op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.
cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.
Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:
Offset Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode is:
[Rn, #offset]

104 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Pre-indexed Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access and written back into the register Rn. The assembly language syntax for this mode
is:

[Rn, #offset]!
Post-indexed Addressing

The address obtained from the register Rn is used as the address for the memory access. The offset value is
added to or subtracted from the address, and written back into the register Rn. The assembly language syntax for
this mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed
or unsigned. See “Address Alignment” .

The table below shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 12-18. Offset Ranges

Instruction Type Immediate Offset Pre-indexed Post-indexed
Word, halfword, signed
halfword, byte, or signed byte -255 to 4095 -255 to 255 -255 to 255
Two words multiple of 4 in the multiple of 4 in the multiple of 4 in the
range -1020 to 1020 | range -1020 to 1020 | range -1020 to 1020
Restrictions

For load instructions:
e Rtcan be SP or PC for word loads only
e Rt must be different from Rt2 for two-word loads
e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:
e Bit[0] of the loaded value must be 1 for correct execution
e A branch occurs to the address created by changing bit[0] of the loaded value to 0
e If the instruction is conditional, it must be the last instruction in the IT block.
For store instructions:
e Rt can be SP for word stores only
e Rtmustnot be PC
e Rnmustnot be PC
e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.
Condition Flags

These instructions do not change the flags.

SAMA4S Series [DATASHEET 105
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Examples
LDR R8, [R10] ; Loads R8 fromthe address in R10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 froma word
; 960 bytes above the address in R5, and
; increnments R5 by 960.
STR R2, [R9,#const-struc] ; const-struc is an expression eval uating
; to a constant in the range 0-4095.
STRH R3, [R4], #4 ;. Store R3 as halfword data into address in
; R4, then increnent R4 by 4
LDRD R8, R9, [R3, #0x20] ; Load R8 froma word 32 bytes above the

; address in R3, and load RO froma word 36
; bytes above the address in R3

STRD RO, R1, [R8], #-16 : Store RO to address in R8, and store Rl to
; a wrd 4 bytes above the address in RS,
; and then decrenment R8 by 16.

12.6.4.3 LDR and STR, Register Offset
Load and Store with register offset.

Syntax

op{type}{cond} R, [Rn, Rm{, LSL #n}]
where:
op is one of:

LDR Load Register.
STR Store Register.

type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.
LSL #n is an optional shift, with n in the range 0 to 3.

Operation

LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the
register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either
be signed or unsigned. See “Address Alignment” .

Restrictions

In these instructions:
e Rn must not be PC

106 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

e Rm must not be SP and must not be PC
e Rtcan be SP only for word loads and word stores
e Rt can be PC only for word loads.

When Rt is PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples
STR RO, [R5, R1] ; Store value of RO into an address equal to
; sumof R5 and Rl
LDRSB RO, [R5, Rl, LSL #1] ; Read byte value froman address equal to
; sumof R5 and two times R1, sign extended it
; to a word value and put it in RO
STR RO, [R1, R2, LSL #2] ; Stores RO to an address equal to sumof Rl
; and four times R2

SAMA4S Series [DATASHEET 107
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.4.4 LDR and STR, Unprivileged
Load and Store with unprivileged access.

Syntax

op{type}T{cond} Rt, [Rn {, #offset}] ; immedi ate of fset
where:
op is one of:

LDR Load Register.
STR Store Register.
type is one of:

B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rn is the register on which the memory address is based.
offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.
Operation

These load and store instructions perform the same function as the memory access instructions with immediate
offset, see “LDR and STR, Immediate Offset” . The difference is that these instructions have only unprivileged
access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access
instructions with immediate offset.

Restrictions

In these instructions:
e Rn must not be PC
e Rt must not be SP and must not be PC.

Condition Flags
These instructions do not change the flags.

Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in

; R4 to an address in R7, with unprivil eged access
LDRHT R2, [R2, #8] ; Load hal fword value froman address equal to

; sumof R2 and 8 into R2, with unprivil eged access

108 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.4.5 LDR, PC-relative
Load register from memory.

Syntax
LDR{type}{cond} Rt, | abel
LDRD{ cond} Rt, Rt2, |abel ; Load two words
where:
type is one of:
B unsigned byte, zero extend to 32 bits.

SB signed byte, sign extend to 32 bits.

H unsigned halfword, zero extend to 32 bits.
SH signed halfword, sign extend to 32 bits.

- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative Expressions” .
Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label
or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either
be signed or unsigned. See “Address Alignment” .

label must be within a limited range of the current instruction. The table below shows the possible offsets between
label and the PC.

Table 12-19. Offset Ranges

Instruction Type Offset Range
Word, halfword, signed halfword, byte, signed byte -4095 to 4095
Two words -1020 to 1020

The user might have to use the .W suffix to get the maximum offset range. See “Instruction Width Selection” .
Restrictions
In these instructions:

e Rtcanbe SP or PC only for word loads

e Rt2 must not be SP and must not be PC

e Rt must be different from Rt2.

SAMA4S Series [DATASHEET 109
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

When Rt is PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples

LDR RO, LookUpTabl e ; Load RO with a word of data from an address
; labell ed as LookUpTabl e

LDRSB R7, |ocal data ; Load a byte value froman address | abelled

; as localdata, sign extend it to a word
; value, and put it in R7

12.6.4.6 LDM and STM
Load and Store Multiple registers.

Syntax

op{addr_node}{cond} Rn{!}, reglist
where:
op is one of;

LDM Load Multiple registers.
STM Store Multiple registers.
addr_mode is any one of the following:

1A Increment address After each access. This is the default.
DB Decrement address Before each access.
cond is an optional condition code, see “Conditional Execution” .
Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If I'is present, the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It
can contain register ranges. It must be comma separated if it contains more
than one register or register range, see “Examples” .

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending
stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending
stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks
Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.
STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in
order of increasing register numbers, with the lowest numbered register using the lowest memory address and the

110 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

highest number register using the highest memory address. If the writeback suffix is specified, the value of Rn + 4
* (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals
ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of
decreasing register numbers, with the highest numbered register using the highest memory address and the
lowest number register using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 *
(n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” for details.
Restrictions

In these instructions:

Rn must not be PC

reglist must not contain SP

In any STM instruction, reglist must not contain PC

In any LDM instruction, reglist must not contain PC if it contains LR

e reglist must not contain Rn if the writeback suffix is specified.

When PC is in reglist in an LDM instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples
LDM R8, { RO, R2, R9} ; LDMAis a synonymfor LDM
STMDB R1!, {R3-R6, R11, R12}

Incorrect Examples
STM R5!, {R5, R4, R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There nust be at |east one register in the |ist

SAMA4S Series [DATASHEET 111
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.4.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.
Syntax
PUSH{ cond} regli st
POP{cond} regli st
where:
cond is an optional condition code, see “Conditional Execution” .
reglist is a non-empty list of registers, enclosed in braces. It can contain register

ranges. It must be comma separated if it contains more than one register or
register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based
on SP, and with the final address for the access written back to the SP. PUSH and POP are the preferred
mnemonics in these cases.

Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered
register using the highest memory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register
using the lowest memory address and the highest numbered register using the highest memory address.

See “LDM and STM” for more information.
Restrictions
In these instructions:
e reglist must not contain SP
e For the PUSH instruction, reglist must not contain PC
e For the POP instruction, reglist must not contain PC if it contains LR.
When PC is in reglist in a POP instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples
PUSH { RO, R4- R7}
PUSH {R2, LR}
POP { RO, R10, PC}

112 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.4.8 LDREX and STREX
Load and Store Register Exclusive.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]

STREX{cond} Rd, Rt, [Rn {, #offset}]

LDREXB{ cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]

LDREXH{ cond} Rt, [Rn]

STREXH{ cond} Rd, Rt, [Rn]
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register for the returned status.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.

Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address.
The address used in any Store-Exclusive instruction must be the same as the address in the most recently
executed Load-exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same
data size as the value loaded by the preceding Load-exclusive instruction. This means software must always use a
Load-exclusive instruction and a matching Store-Exclusive instruction to perform a synchronization operation, see
“Synchronization Primitives” .

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the
store, it writes 1 to its destination register. If the Store-Exclusive instruction writes O to the destination register, it is
guaranteed that no other process in the system has accessed the memory location between the Load-exclusive
and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-
Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding
Load-Exclusive instruction is unpredictable.

Restrictions

In these instructions:

Do not use PC

Do not use SP for Rd and Rt

For STREX, Rd must be different from both Rt and Rn

The value of offset must be a multiple of four in the range 0-1020.

Condition Flags
These instructions do not change the flags.

Examples
MoV R1, #0Ox1 ; Initialize the ‘lock taken' value try
LDREX RO, [LockAddr] ; Load the | ock val ue
cawP RO, #0 ; Is the lock free?

SAMA4S Series [DATASHEET 113
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

ITT EQ ; I'T instruction for STREXEQ and CMPEQ
STREXEQ RO, R1, [LockAddr] ; Try and claimthe |ock
CMPEQ RO, #0 ; Did this succeed?

BNE try ; No — try again
;. Yes — we have the |ock

12.6.4.9 CLREX
Clear Exclusive.

Syntax
CLREX{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write a 1 to its destination register and fail
to perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception
occurs between a load exclusive instruction and the matching store exclusive instruction in a synchronization
operation.

See “Synchronization Primitives” for more information.
Condition Flags
These instructions do not change the flags.

Examples
CLREX

114 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.5 General Data Processing Instructions

The table below shows the data processing instructions.

Table 12-20. Data Processing Instructions

Mnemonic Description

ADC Add with Carry

ADD Add

ADDW Add

AND Logical AND

ASR Arithmetic Shift Right

BIC Bit Clear

CLz Count leading zeros

CMN Compare Negative

CMP Compare

EOR Exclusive OR

LSL Logical Shift Left

LSR Logical Shift Right

MOV Move

MOVT Move Top

MOVW Move 16-bit constant

MVN Move NOT

ORN Logical OR NOT

ORR Logical OR

RBIT Reverse Bits

REV Reverse byte order in a word

REV16 Reverse byte order in each halfword
REVSH Reverse byte order in bottom halfword and sign extend
ROR Rotate Right

RRX Rotate Right with Extend

RSB Reverse Subtract

SADD16 Signed Add 16

SADDS8 Signed Add 8

SASX Signed Add and Subtract with Exchange
SSAX Signed Subtract and Add with Exchange
SBC Subtract with Carry

SHADD16 Signed Halving Add 16

SHADDS Signed Halving Add 8

SHASX Signed Halving Add and Subtract with Exchange
SHSAX Signed Halving Subtract and Add with Exchange

SAMA4S Series [DATASHEET 115
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 12-20. Data Processing Instructions (Continued)

Mnemonic Description

SHSUB16 Signed Halving Subtract 16

SHSUBS8 Signed Halving Subtract 8

SSUB16 Signed Subtract 16

SSUBS8 Signed Subtract 8

SuUB Subtract

SUBW Subtract

TEQ Test Equivalence

TST Test

UADD16 Unsigned Add 16

UADDS8 Unsigned Add 8

UASX Unsigned Add and Subtract with Exchange

USAX Unsigned Subtract and Add with Exchange
UHADD16 Unsigned Halving Add 16

UHADDS8 Unsigned Halving Add 8

UHASX Unsigned Halving Add and Subtract with Exchange
UHSAX Unsigned Halving Subtract and Add with Exchange
UHSUB16 Unsigned Halving Subtract 16

UHSUBS Unsigned Halving Subtract 8

USADS8 Unsigned Sum of Absolute Differences

USADAS Unsigned Sum of Absolute Differences and Accumulate
USUB16 Unsigned Subtract 16

UsuBS8 Unsigned Subtract 8

116 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.5.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax
op{S}{cond} {Rd,} Rn, Operand2
op{cond} {Rd,} Rn, #inml2 ; ADD and SUB only
where:
op is one of:
ADD Add.
ADC Add with Carry.
SUB Subtract.
SBC Subtract with Carry.
RSB Reverse Subtract.
S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution” .
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the first operand.
Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.
imm12 is any value in the range 0—4095.

Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is
reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the wide
range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see Multiword arithmetic examples on.

See also “ADR” .

Note: ~ ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax that uses
the imm12 operand.

Restrictions
In these instructions:
e Operand2 must not be SP and must not be PC
e Rdcan be SP only in ADD and SUB, and only with the additional restrictions:
— Rn must also be SP
— Any shift in Operand2 must be limited to a maximum of 3 bits using LSL
e Rncanbe SP only in ADD and SUB
e Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
— The user must not specify the S suffix
— Rm must not be PC and must not be SP

SAMA4S Series [DATASHEET 117
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

— If the instruction is conditional, it must be the last instruction in the IT block

e With the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only
with the additional restrictions:

— The user must not specify the S suffix
— The second operand must be a constant in the range 0 to 4095.

— Note: When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to O0b00
before performing the calculation, making the base address for the calculation word-aligned.

— Note: To generate the address of an instruction, the constant based on the value of the PC must be
adjusted. ARM recommends to use the ADR instruction instead of ADD or SUB with Rn equal to the
PC, because the assembler automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:
e Bit[0] of the value written to the PC is ignored
e A branch occurs to the address created by forcing bit[0] of that value to 0.

Condition Flags
If s is specified, these instructions update the N, Z, C and V flags according to the result.

Examples
ADD R2, R1, R3 ; Sets the flags on the result
SUBS R8, R6, #240 ; Subtracts contents of R4 from 1280
RSB R4, R4, #1280 ; Only executed if Cflag set and Z
ADCHI R11, RO, R3 ; flag clear.

Multiword Arithmetic Examples

The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit
integer contained in RO and R1, and place the result in R4 and R5.

64-bit Addition Example
ADDS R4, RO, R2 ; add the | east significant words
ADC R5, R1, R3 ; add the nost significant words with carry

Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a
96-bit integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the
result in R6, R9, and R2.

96-bit Subtraction Example

SUBS R6, R6, RO ; subtract the least significant words
SBCS R9, R2, R1 ; Subtract the middle words with carry
SBC R2, R8, Rl1 ; subtract the nost significant words with carry

12.6.5.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax
op{S}{cond} {Rd,} Rn, Operand2

where:
op is one of:
AND logical AND.
ORR logical OR, or bit set.
EOR logical Exclusive OR.
BIC logical AND NOT, or bit clear.
ORN logical OR NOT.

118 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution” .

cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn
and Operand?.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand2.

Restrictions
Do not use SP and do not use PC.
Condition Flags

If s is specified, these instructions:
e Update the N and Z flags according to the result
e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
e Do not affect the V flag.

SAMA4S Series [DATASHEET 119
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Examples
AND R9, R2, #OxFFOO
ORREQ R2, RO, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
Bl C RO, R1, #Oxab
ORN R7, R11, R14, ROR #4

ORNS R7, R11l, R14, ASR #32

12.6.5.3 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

Syntax
op{S}{cond} Rd, Rm Rs
op{S}{cond} Rd, Rm #n
RRX{ S}{cond} Rd, Rm

where:

op is one of:
ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution” .

Rd is the destination register.
Rm is the register holding the value to be shifted.
Rs is the register holding the shift length to apply to the value in Rm. Only the least

significant byte is used and can be in the range 0 to 255.
n is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from O to 31
LSR shift length from 1 to 32
ROR shift length from 0 to 31

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by
constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For details on
what result is generated by the different instructions, see “Shift Operations” .

Restrictions
Do not use SP and do not use PC.
Condition Flags

120 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

If s is specified:
e These instructions update the N and Z flags according to the result
e The C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift Operations” .

Examples
ASR R7, R8, #9 ; Arithnetic shift right by 9 bits
SLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottombyte of R6
RRX R4, R5 ; Rotate right with extend.

12.6.5.4 CLz
Count Leading Zeros.

Syntax
CLZ{cond} Rd, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the operand register.
Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result
value is 32 if no bits are set and zero if bit[31] is set.

Restrictions

Do not use SP and do not use PC.
Condition Flags

This instruction does not change the flags.

Examples
CLz R4, RO
CLZNE R2, R3

SAMA4S Series [DATASHEET 121
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.5.5

122

CMP and CMN
Compare and Compare Negative.

Syntax
CwP{cond} Rn, Operand2
CWMN{ cond} Rn, Operand2

where:
cond is an optional condition code, see “Conditional Execution” .
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.

Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the result,
but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS
instruction, except that the result is discarded.

The CMN instruction adds the value of Operand?2 to the value in Rn. This is the same as an ADDS instruction,
except that the result is discarded.

Restrictions
In these instructions:
e Donotuse PC
e Operand2 must not be SP.
Condition Flags
These instructions update the N, Z, C and V flags according to the result.

Examples
cwP R2, R9
CWN RO, #6400
CMPGT SP, R7, LSL #2

SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.5.6 MOV and MVN
Move and Move NOT.

Syntax
MOV{ S} {cond} Rd, Operand2
MOV{cond} Rd, #i nml6
MN{ S} {cond} Rd, Operand2

where:
S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution” .
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.
imm16 is any value in the range 0—65535.

Operation
The MOV instruction copies the value of Operand2 into Rd.
When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the
corresponding shift instruction:
ASR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n
LSL{SKcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #nifn!=0
LSR{SKcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n
ROR{S}Hcond} Rd, Rm, #n is the preferred syntax for MOV{S}¥cond} Rd, Rm, ROR #n
RRX{SHcond} Rd, Rm is the preferred syntax for MOV{SHcond} Rd, Rm, RRX.
Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:
e MOV{SHcond} Rd, Rm, ASR Rs is a synonym for ASR{SH{cond} Rd, Rm, Rs
e MOV{SHcond} Rd, Rm, LSL Rs is a synonym for LSL{SHcond} Rd, Rm, Rs
e MOV{SHcond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs
e MOV{SHcond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs
See “ASR, LSL, LSR, ROR, and RRX" .

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value, and
places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.
Restrictions
SP and PC only can be used in the MOV instruction, with the following restrictions:

e The second operand must be a register without shift
e The S suffix must not be specified.

When Rd is PC in a MOV instruction:
e Bit[0] of the value written to the PC is ignored
e A branch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX
instruction to branch for software portability to the ARM instruction set.

Condition Flags

SAMA4S Series [DATASHEET 123
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

If S is specified, these instructions:
e Update the N and Z flags according to the result
e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
e Do not affect the V flag.

Examples

MOVS R11, #0x000B ; Wite value of 0x000B to
R11, flags get updated

MOV R1, #0xFAQ05 ; Wite value of OxFAO5 to
R1, flags are not updated

MOVS R10, R12 ; Wite value in R12 to R10,
flags get updated

MOV R3, #23 ; Wite value of 23 to R3

MOV R8, SP ; Wite value of stack pointer to R8

M/NS R2, #OxF ; Wite value of OxFFFFFFFO (bitw se inverse of OxF)

; to the R2 and update fl ags.

12.6.5.7 MOVT

Move Top.
Syntax
MOVT{ cond} Rd, #i mMmi6
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
imm16 is a 16-bit immediate constant.
Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register. The write
does not affect Rd[15:0].

The MOV, MOVT instruction pair enables to generate any 32-bit constant.
Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples
MOVT R3, #0xF123 ; Wite O0xF123 to upper hal fword of R3, |ower hal fword
; and APSR are unchanged.

12.6.5.8 REV, REV16, REVSH, and RBIT
Reverse bytes and Reverse bits.

Syntax

op{cond} Rd, Rn
where:
op is any of:

REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.

124 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.

cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

Rn is the register holding the operand.

Operation

Use these instructions to change endianness of data:
REV converts either:
e 32-bit big-endian data into little-endian data
e 32-bit little-endian data into big-endian data.
REV16 converts either:
e 16-bit big-endian data into little-endian data
e 16-bit little-endian data into big-endian data.
REVSH converts either:
e 16-bit signed big-endian data into 32-bit signed little-endian data
e 16-bit signed little-endian data into 32-bit signed big-endian data.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.
Examples
REV R3, R7; Reverse byte order of value in R7 and wite it to R3
REV16 RO, RO; Reverse byte order of each 16-bit halfword in RO
REVSH RO, R5; Reverse Signed Hal fword

REVHS R3, R7; Reverse with Higher or Sane condition
RBIT R7, R8; Reverse bit order of value in R8 and wite the result to R7.

SAMA4S Series [DATASHEET 125
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.5.9 SADD16 and SADD8
Signed Add 16 and Signed Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:
SADD16 Performs two 16-bit signed integer additions.
SADDS8 Performs four 8-bit signed integer additions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to perform a halfword or byte add in parallel:
The SADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the result in the corresponding halfwords of the destination register.

The SADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
Writes the result in the corresponding bytes of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
SADD16 R1, RO ; Adds the halfwords in RO to the correspondi ng
; halfwords of Rl and wites to correspondi ng hal fword
; of RIL.

SADD8 R4, RO, R5 ; Adds bytes of RO to the corresponding byte in R5 and
; Wwites to the corresponding byte in R4.

126 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.5.10 SHADD16 and SHADDS8
Signed Halving Add 16 and Signed Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
SHADD16 Signed Halving Add 16.
SHADDS Signed Halving Add 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the
destination register:

The SHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halfword results in the destination register.

The SHADDBS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
SHADD16 R1, RO ; Adds hal fwords in RO to corresponding hal fword of Rl
; and wites halved result to corresponding hal fword in
; R

SHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; wites halved result to corresponding byte in R4.

SAMA4S Series [DATASHEET 127
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.5.11 SHASX and SHSAX

Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is any of:
SHASX Add and Subtract with Exchange and Halving.
SHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.

2. Writes the halfword result of the addition to the top halfword of the destination register, shifted by one bit to
the right causing a divide by two, or halving.

3. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

4. Writes the halfword result of the division in the bottom halfword of the destination register, shifted by one bit
to the right causing a divide by two, or halving.

The SHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Writes the halfword result of the addition to the bottom halfword of the destination register, shifted by one bit
to the right causing a divide by two, or halving.

3. Adds the bottom halfword of the first operand with the top halfword of the second operand.

4. Writes the halfword result of the division in the top halfword of the destination register, shifted by one bit to
the right causing a divide by two, or halving.

Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

128 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Examples
SHASX R7, R4, R2 ;

SHSAX RO, R3, R5 ;

Atmel

Adds top hal fword of R4 to bottom hal fword of R2
and wites halved result to top hal fword of R7
Subtracts top hal fword of R2 from bottom hal fword of
R4 and wites halved result to bottom hal fword of R7
Subtracts bottom hal fword of R5 fromtop hal fword

of R3 and wites halved result to top hal fword of RO
Adds top hal fword of R5 to bottom hal fword of R3 and
wites halved result to bottom hal fword of RO.

SAM4S Series [DATASHEET] 129

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.5.12 SHSUB16 and SHSUBS8
Signed Halving Subtract 16 and Signed Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:

SHSUB16 Signed Halving Subtract 16.

SHSUBS Signed Halving Subtract 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the
destination register:

The SHSUB16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfwords of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halved halfword results in the destination register.
The SHSUBBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand,
2. Shuffles the result by one bit to the right, halving the data,
3. Writes the corresponding signed byte results in the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags
These instructions do not change the flags.

Examples
SHSUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword
; of RL and wites to correspondi ng hal fwrd of RL
SHSUB8 R4, RO, R5 ; Subtracts bytes of RO from corresponding byte in R5,
; and wites to corresponding byte in R4.

130 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.5.13 SSUB16 and SSUB8
Signed Subtract 16 and Signed Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
SSUB16 Performs two 16-bit signed integer subtractions.
SSUB8 Performs four 8-bit signed integer subtractions.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to change endianness of data:
The SSUB16 instruction:
1. Subtracts each halfword from the second operand from the corresponding halfword of the first operand
2. Writes the difference result of two signed halfwords in the corresponding halfword of the destination register.
The SSUBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand
2. Writes the difference result of four signed bytes in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
SSUB16 R1, RO ; Subtracts halfwords in RO from correspondi ng hal fword
; of RL and wites to corresponding hal fword of Rl
SSUB8 R4, RO, R5 ; Subtracts bytes of R5 fromcorresponding byte in
; RO, and wites to correspondi ng byte of R4.

SAMA4S Series [DATASHEET 131
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.5.14 SASX and SSAX

Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rm Rn

where:
op is any of:

SASX Signed Add and Subtract with Exchange.

SSAX Signed Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SASX instruction:
1. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
2. Writes the signed result of the addition to the top halfword of the destination register.

3. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first
operand.

4. Writes the signed result of the subtraction to the bottom halfword of the destination register.
The SSAX instruction:

1. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first
operand.

2. Writes the signed result of the addition to the bottom halfword of the destination register.
3. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
4. Writes the signed result of the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SASX RO, R4, R5 ; Adds top halfword of R4 to bottom hal fword of R5 and
; Wwites to top hal fword of RO
; Subtracts bottom hal fword of R5 fromtop hal fword of R4
; and wites to bottom hal fword of RO

SSAX R7, R3, R2 ; Subtracts top hal fword of R2 frombottom hal fword of R3
; and wites to bottom hal fword of R7
; Adds top hal fword of R3 with bottom hal fword of R2 and
; Wwites to top hal fword of R7.

12.6.5.15 TST and TEQ
Test bits and Test Equivalence.

Syntax
TST{cond} Rn, Operand2
TEQ cond} Rn, Operand2

132 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

where
cond is an optional condition code, see “Conditional Execution” .
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.

Operation

These instructions test the value in a register against Operand2. They update the condition flags based on the
result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This is the
same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that bit set to 1
and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand2.
This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the
sign bits of the two operands.

Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions:
e Update the N and Z flags according to the result
e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”

e Do not affect the V flag.
Examples
TST RO, #0x3F8 ; Perform bitw se AND of RO val ue to Ox3F8,
; APSR is updated but result is discarded
TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to
; value in RO, APSR is updated but result is discarded.

12.6.5.16 UADD16 and UADD8
Unsigned Add 16 and Unsigned Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
UADD16 Performs two 16-bit unsigned integer additions.
UADDS8 Performs four 8-bit unsigned integer additions.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

SAMA4S Series [DATASHEET 133
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Use these instructions to add 16- and 8-bit unsigned data:
The UADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the unsigned result in the corresponding halfwords of the destination register.
The UADD16 instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the unsigned result in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
UADD16 R1, RO ; Adds hal fwords in RO to corresponding hal fword of R1,
; Wwites to corresponding hal fword of Rl
UADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; Wwites to corresponding byte in R4.

134 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.5.17 UASX and USAX
Add and Subtract with Exchange and Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UASX Add and Subtract with Exchange.

USAX Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UASX instruction:
1. Subtracts the top halfword of the second operand from the bottom halfword of the first operand.
2. Writes the unsigned result from the subtraction to the bottom halfword of the destination register.
3. Adds the top halfword of the first operand with the bottom halfword of the second operand.
4. Writes the unsigned result of the addition to the top halfword of the destination register.
The USAX instruction:
1. Adds the bottom halfword of the first operand with the top halfword of the second operand.
2. Writes the unsigned result of the addition to the bottom halfword of the destination register.
3. Subtracts the bottom halfword of the second operand from the top halfword of the first operand.
4. Writes the unsigned result from the subtraction to the top halfword of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not affect the condition code flags.

Examples

UASX RO, R4, R5 ; Adds top halfword of R4 to bottom hal fword of R5 and
; Wwites to top hal fword of RO
; Subtracts bottom hal fword of R5 fromtop hal fword of RO
; and wites to bottom hal fword of RO

USAX R7, R3, R2 ; Subtracts top halfword of R2 frombottom hal fword of R3
; and wites to bottom hal fword of R7
; Adds top hal fword of R3 to bottom hal fword of R2 and
; Wites to top hal fword of R7.

12.6.5.18 UHADD16 and UHADDS8
Unsigned Halving Add 16 and Unsigned Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:
UHADD16 Unsigned Halving Add 16.
UHADDS Unsigned Halving Add 8.

SAMA4S Series [DATASHEET 135
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

Rn is the register holding the first operand.

Rm is the register holding the second operand.

Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing the result to the
destination register:

The UHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the halfword result by one bit to the right, halving the data.
3. Writes the unsigned results to the corresponding halfword in the destination register.
The UHADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the byte result by one bit to the right, halving the data.
3. Writes the unsigned results in the corresponding byte in the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
UHADD16 R7, R3 ; Adds halfwords in R7 to correspondi ng hal fword of R3
; and wites halved result to corresponding hal fword
; in R7

UHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; Wwites halved result to corresponding byte in R4.

12.6.5.19 UHASX and UHSAX
Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UHASX Add and Subtract with Exchange and Halving.

UHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UHASX instruction:
1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
2. Shifts the result by one bit to the right causing a divide by two, or halving.
3. Writes the halfword result of the addition to the top halfword of the destination register.

136 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

4. Subtracts the top halfword of the second operand from the bottom highword of the first operand.
5. Shifts the result by one bit to the right causing a divide by two, or halving.
6. Writes the halfword result of the division in the bottom halfword of the destination register.
The UHSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
Writes the halfword result of the subtraction in the top halfword of the destination register.
Adds the bottom halfword of the first operand with the top halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
6. Writes the halfword result of the addition to the bottom halfword of the destination register.
Restrictions

a bk N

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

Examples
UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom hal fword of R2

; and wites halved result to top hal fword of R7

; Subtracts top hal fword of R2 from bottom hal fword of

; R7 and wites halved result to bottom hal fword of R7

UHSAX RO, R3, R5 ; Subtracts bottom halfword of R5 fromtop hal fword of
; R3 and wites halved result to top hal fword of RO
; Adds top halfword of R5 to bottom hal fword of R3 and
; Wwites halved result to bottom hal fword of RO.

SAMA4S Series [DATASHEET 137
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.5.20 UHSUB16 and UHSUBS

Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
UHSUB16 Performs two unsigned 16-bit integer additions, halves the results,
and writes the results to the destination register.
UHSUBS8 Performs four unsigned 8-bit integer additions, halves the results, and
writes the results to the destination register.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the
destination register:

The UHSUB16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.
2. Shuffles each halfword result to the right by one bit, halving the data.
3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.
The UHSUBS instruction:
1. Subtracts each byte of second operand from the corresponding byte of the first operand.
2. Shuffles each byte result by one bit to the right, halving the data.
3. Writes the unsigned byte results to the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

UHSUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword of

; RL and wites halved result to corresponding halfword in Rl

UHSUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO and

; wites halved result to corresponding byte in R4.

12.6.5.21 SEL

138

Select Bytes. Selects each byte of its result from either its first operand or its second operand, according to the
values of the GE flags.

Syntax

SEL{<c>}{<qg>} {<Rd>} <Rn> <Rm>
where:
c, q are standard assembler syntax fields.

SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Rd is the destination register.

Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

The SEL instruction:
1. Reads the value of each bit of APSR.GE.

2. Depending on the value of APSR.GE, assigns the destination register the value of either the first or second
operand register.

Restrictions

None.

Condition Flags

These instructions do not change the flags.

Examples
SADD16 RO, R1, R2 ; Set GE bits based on result
SEL RO, RO, R3 ; Select bytes fromRO or R3, based on GE

SAMA4S Series [DATASHEET 139
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.5.22 USADS8
Unsigned Sum of Absolute Differences

Syntax
USAD8{cond}{Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

The USADS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand
register.

2. Adds the absolute values of the differences together.
3. Writes the result to the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
USAD8 R1, R4, RO ; Subtracts each byte in RO fromcorrespondi ng byte of R4
; adds the differences and wites to RL
USAD8 RO, R5 ; Subtracts bytes of R5 fromcorresponding byte in RO,
; adds the differences and wites to RO.

140 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.5.23 USADAS8
Unsigned Sum of Absolute Differences and Accumulate

Syntax
USADA8{cond}{Rd,} Rn, Rm Ra
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Ra is the register that contains the accumulation value.
Operation

The USADAS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand
register.

2. Adds the unsigned absolute differences together.
3. Adds the accumulation value to the sum of the absolute differences.
4. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
USADA8 R1, RO, R6 ; Subtracts bytes in RO from correspondi ng hal fword of Rl
; adds differences, adds value of R6, wites to Rl
USADA8 R4, RO, R5, R2 ; Subtracts bytes of R5 from corresponding byte in RO
: adds differences, adds value of R2 wites to R4.

SAMA4S Series [DATASHEET 141
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.5.24 USUB16 and USUB8
Unsigned Subtract 16 and Unsigned Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where
op is any of:
USUB16 Unsigned Subtract 16.
USUBS8 Unsigned Subtract 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination register:

The USUB16 instruction:

1. Subtracts each halfword from the second operand register from the corresponding halfword of the first
operand register.

2. Writes the unsigned result in the corresponding halfwords of the destination register.
The USUBS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand
register.

2. Writes the unsigned byte result in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
USUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword of Rl
and wites to corresponding hal fword in RIUSUB8 R4, RO, R5
; Subtracts bytes of R5 from corresponding byte in RO and
; Wwites to the corresponding byte in R4.

142 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.6 Multiply and Divide Instructions

The table below shows the multiply and divide instructions.

Table 12-21. Multiply and Divide Instructions

Mnemonic Description

MLA Multiply with Accumulate, 32-bit result
MLS Multiply and Subtract, 32-bit result
MUL Multiply, 32-bit result

SDIV Signed Divide

SMLA[B,T] Signed Multiply Accumulate (halfwords)

SMLAD, SMLADX

Signed Multiply Accumulate Dual

SMLAL

Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result

SMLAL[B,T] Signed Multiply Accumulate Long (halfwords)
SMLALD, SMLALDX Signed Multiply Accumulate Long Dual
SMLAWIBIT] Signed Multiply Accumulate (word by halfword)
SMLSD Signed Multiply Subtract Dual

SMLSLD Signed Multiply Subtract Long Dual

SMMLA Signed Most Significant Word Multiply Accumulate

SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract

SMUAD, SMUADX

Signed Dual Multiply Add

SMULIB,T] Signed Multiply (word by halfword)
SMMUL, SMMULR Signed Most Significant Word Multiply
SMULL Signed Multiply (32x32), 64-bit result

SMULWB, SMULWT

Signed Multiply (word by halfword)

SMUSD, SMUSDX

Signed Dual Multiply Subtract

uDIVv Unsigned Divide

UMAAL Unsigned Multiply Accumulate Accumulate Long (32 x 32 + 32 + 32), 64-bit result
UMLAL Unsigned Multiply with Accumulate (32 x 32 + 64), 64-bit result

UMULL Unsigned Multiply (32 x 32), 64-bit result

Atmel

SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

143

12.6.6.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a 32-bit result.

Syntax
MUL{ S}{cond} {Rd,} Rn
MLA{ cond} Rd, Rn, Rm
M.S{cond} Rd, Rn, Rm

Rm; Miltiply
Ra ; Miultiply with accunul ate
Ra ; Miultiply with subtract

where:

cond is an optional condition code, see “Conditional Execution” .

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in
Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least
significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and
places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.
Restrictions
In these instructions, do not use SP and do not use PC.

If the S suffix is used with the MUL instruction:
e Rd, Rn, and Rm must all be in the range RO to R7
e Rd must be the same as Rm
e The cond suffix must not be used.

Condition Flags

If S is specified, the MUL instruction:
e Updates the N and Z flags according to the result
e Does not affect the C and V flags.

Examples
MJL R10, R2, RS ; Multiply, RLO = R2 x RS
M_A R10, R2, R1, R5 ; Multiply with accunulate, R1I0 = (R2 x Rl) + RS
MILS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2
MIULLT R2, R3, R2 ; Conditionally multiply, RR = R3 x R2
M.S R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6)

12.6.6.2 UMULL, UMAAL, UMLAL
Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax

op{cond} RdLo, RdH, Rn, Rm
where:
op is one of:

144 SAMA4S Series [DATASHEET] /ItmeL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

UMULL Unsigned Long Multiply.
UMAAL Unsigned Long Multiply with Accumulate Accumulate.
UMLAL Unsigned Long Multiply, with Accumulate.

cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers. For UMAAL, UMLAL and UMLAL they also hold
the accumulating value.

Rn, Rm are registers holding the first and second operands.
Operation
These instructions interpret the values from Rn and Rm as unsigned 32-bit integers.
The UMULL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Writes the least significant 32 bits of the result in RdLo.
e Writes the most significant 32 bits of the result in RdHi.
The UMAAL instruction:
e Multiplies the two unsigned 32-bit integers in the first and second operands.
e Adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication.
e Adds the unsigned 32-bit integer in RdLo to the 64-bit result of the addition.
e Writes the top 32-bits of the result to RdHi.
e Writes the lower 32-bits of the result to RdLo.
The UMLAL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.
e Writes the result back to RdHi and RdLo.
Restrictions
In these instructions:
e Do notuse SP and do not use PC.
e RdHi and RdLo must be different registers.
Condition Flags
These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Multiplies RS and R6, wites the top 32 bits to R4
; and the bottom 32 bits to RO
UVAAL R3, R6, R2, R7 ; Miltiplies RR and R7, adds R6, adds R3, wites the
; top 32 bits to R6, and the bottom 32 bits to R3
UMLAL R2, Rl, R3, R5 ; Miltiplies R5 and R3, adds R1L: R2, wites to Rl: R2.

12.6.6.3 SMLA and SMLAW
Signed Multiply Accumulate (halfwords).

Syntax
op{ XY}{cond} Rd, Rn, Rm
op{Y}{cond} Rd, Rn, Rm Ra

where:
op is one of;
SMLA Signed Multiply Accumulate Long (halfwords).

SAMA4S Series [DATASHEET 145
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

X and Y specifies which half of the source registers Rn and Rm are used as the
first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used

SMLAW Signed Multiply Accumulate (word by halfword).

Y specifies which half of the source register Rm is used as the second multiply
operand.

If Y is T, then the top halfword, bits [31:16] of Rm is used.
If Y is B, then the bottom halfword, bits [15:0] of Rm is used.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.
Operation

The SMALBB, SMLABT, SMLATB, SMLATT instructions:
e Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.
e Adds the value in Ra to the resulting 32-bit product.
e Writes the result of the multiplication and addition in Rd.
The non-specified halfwords of the source registers are ignored.
The SMLAWB and SMLAWT instructions:
e Multiply the 32-bit signed values in Rn with:
— The top signed halfword of Rm, T instruction suffix.
— The bottom signed halfword of Rm, B instruction suffix.
e Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product
e Writes the result of the multiplication and addition in Rd.
The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. No
overflow can occur during the multiplication.

Restrictions

In these instructions, do not use SP and do not use PC.
Condition Flags

If an overflow is detected, the Q flag is set.

Examples
SMLABB R5, R6, R4, RL ; Miltiplies bottom hal fwords of R6 and R4, adds
: Rl and wites to R5
SMLATB R5, R6, R4, RL ; Miltiplies top hal fword of R6 with bottom hal fword
; of R4, adds R1L and wites to R5
SMLATT R5, R6, R4, RL ; Miltiplies top hal fwords of R6 and R4, adds
; RL and wites the sumto RS
SMLABT R5, R6, R4, RL ; Miltiplies bottomhal fword of R6 with top hal fword
; of R4, adds R1L and wites to R5
SMLABT R4, R3, R2 ; Multiplies bottomhal fword of R4 with top hal fword of

: R3, adds R2 and wites to R4

146 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

SMLAWB R10, R2, R5, R3 ; Miltiplies RR with bottom hal fword of R5, adds
; RBtothe result and wites top 32-bits to R10

SMAWI R10, R2, R1, R5 ; Miultiplies R2 with top hal fword of Rl, adds R5
; and wites top 32-bits to R10.

SAMA4S Series [DATASHEET 147
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.6.4 SMLAD
Signed Multiply Accumulate Long Dual

Syntax
op{X}{cond} Rd, Rn, Rm Ra ;
where:
op is one of:
SMLAD Signed Multiply Accumulate Dual.
SMLADX Signed Multiply Accumulate Dual Reverse.
X specifies which halfword of the source register Rn is used as the multiply
operand.
If X is omitted, the multiplications are bottom x bottom and top x top.
If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register holding the values to be multiplied.
Rm the second operand register.
Ra is the accumulate value.
Operation

The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values. The SMLAD and
SMLADX instructions:

e If X is not present, multiply the top signed halfword value in Rn with the top signed halfword of Rm and the
bottom signed halfword values in Rn with the bottom signed halfword of Rm.

e Orif X is present, multiply the top signed halfword value in Rn with the bottom signed halfword of Rm and
the bottom signed halfword values in Rn with the top signed halfword of Rm.

Add both multiplication results to the signed 32-bit value in Ra.
e Writes the 32-bit signed result of the multiplication and addition to Rd.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples

SMLAD RI10, R2, R, R5 ; Multiplies two halfword values in R2 with
; corresponding hal fwords in Rl, adds R5 and
; wites to R10

SMLALDX RO, R2, R4, R6 ; Miultiplies top halfword of R2 with bottom
; halfword of R4, nmultiplies bottom hal fword of R2
; with top halfword of R4, adds R6 and wites to
;. RO.

12.6.6.5 SMLAL and SMLALD

Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed Multiply Accumulate
Long Dual.

Syntax
op{cond} RdLo, RdHi, Rn, Rm

148 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

op{ XY}{cond} RdLo, RdHi, Rn, Rm
op{X}{cond} RdLo, RdH , Rn, Rm

where:
op is one of:
MLAL Signed Multiply Accumulate Long.
SMLAL Signed Multiply Accumulate Long (halfwords, X and Y).

X and Y specify which halfword of the source registers Rn and Rm are used as
the first and second multiply operand:

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.

If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMLALD Signed Multiply Accumulate Long Dual.

SMLALDX Signed Multiply Accumulate Long Dual Reversed.

If the X is omitted, the multiplications are bottom x bottom and top x top.

If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers.
RdLo is the lower 32 bits and RdHi is the upper 32 bits of the 64-bit integer.
For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLA
LDX, they also hold the accumulating value.

Rn, Rm are registers holding the first and second operands.
Operation

The SMLAL instruction:
e Multiplies the two’s complement signed word values from Rn and Rm.
e Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.
The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:
e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
e Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.
The non-specified halfwords of the source registers are ignored.
The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s complement
signed 16-bit integers. These instructions:

e If Xis not present, multiply the top signed halfword value of Rn with the top signed halfword of Rm and the
bottom signed halfword values of Rn with the bottom signed halfword of Rm.

e Orif X is present, multiply the top signed halfword value of Rn with the bottom signed halfword of Rm and
the bottom signed halfword values of Rn with the top signed halfword of Rm.

e Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the resulting 64-bit
product.

e Write the 64-bit product in RdLo and RdHi.
Restrictions

In these instructions:

SAMA4S Series [DATASHEET 149
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

e Do not use SP and do not use PC.
e RdHi and RdLo must be different registers.

Condition Flags
These instructions do not affect the condition code flags.

Examples

SMLAL R4, R5, R3, R8 ; Miltiplies R3 and R8, adds R5:R4 and wites to
. R5:R4

SMLALBT R2, R1, R6, R7 ; Miltiplies bottomhal fword of R6 with top
; hal fword of R7, sign extends to 32-bit, adds
; RI:R2 and wites to Rl: R2

SMALTB R2, RlL, R6, R7 ; Miltiplies top hal fword of R6 with bottom
; hal fword of R7,sign extends to 32-bit, adds Rl:R2
; and wites to RL: R2

SMLALD R6, R8, R5, R1 ; Miltiplies top halfwords in R5 and RL and bottom
; hal fwords of R5 and Rl1, adds R8:R6 and wites to
; R8:R6

SMLALDX R6, R8, R5, Rl ; Miltiplies top halfword in R5 with bottom
: halfword of RL, and bottom hal fword of R5 with
; top hal fword of Rl, adds R8:R6 and wites to
. R8: R6.

150 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.6.6 SMLSD and SMLSLD
Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual

Syntax
op{X}{cond} Rd, Rn, Rm Ra
where:
op is one of:
SMLSD Signed Multiply Subtract Dual.
SMLSDX Signed Multiply Subtract Dual Reversed.
SMLSLD Signed Multiply Subtract Long Dual.
SMLSLDX Signed Multiply Subtract Long Dual Reversed.
SMLAW Signed Multiply Accumulate (word by halfword).
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Ra is the register holding the accumulate value.
Operation

The SMLSD instruction interprets the values from the first and second operands as four signed halfwords. This
instruction:

e Optionally rotates the halfwords of the second operand.
e Performs two signed 16 x 16-bit halfword multiplications.
e Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
e Adds the signed accumulate value to the result of the subtraction.
e Writes the result of the addition to the destination register.
The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords.
This instruction:
e Optionally rotates the halfwords of the second operand.
Performs two signed 16 x 16-bit halfword multiplications.
Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.
Writes the 64-bit result of the addition to the RdHi and RdLo.

Restrictions

In these instructions:
e Do not use SP and do not use PC.
Condition Flags
This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the
multiplications or subtraction.
For the Thumb instruction set, these instructions do not affect the condition code flags.

Examples
SMSD RO, R4, R5, R6 ; Miultiplies bottomhal fword of R4 with bottom
; halfword of R5, nultiplies top hal fword of R4

SAMA4S Series [DATASHEET 151
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

; with top hal fword of R5, subtracts second from
; first, adds R6, wites to RO
SMLSDX R1, R3, R2, RO ; Miltiplies bottomhalfword of R3 with top
; halfword of R2, nultiplies top hal fword of R3
; With bottom hal fword of R2, subtracts second from
; first, adds RO, wites to Rl
SM.SLD R3, R6, R2, R7 ; Miultiplies bottomhal fword of R6 with bottom
; halfword of R2, nultiplies top hal fword of R6
; with top hal fword of R2, subtracts second from
; first, adds R6:R3, wites to R6:R3
SMLSLDX R3, R6, R2, R7 ; Miultiplies bottomhalfword of R6 with top
; halfword of R2, nultiplies top hal fword of R6
; wWith bottom hal fword of R2, subtracts second from
; first, adds R6:R3, wites to R6:R3.

152 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.6.7 SMMLA and SMMLS
Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply Subtract

Syntax
op{R}{cond} Rd, R, Rm Ra
where:
op is one of:
SMMLA Signed Most Significant Word Multiply Accumulate.
SMMLS Signed Most Significant Word Multiply Subtract.
If the X is omitted, the multiplications are bottom x bottom and top x top.

R is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second multiply operands.

Ra is the register holding the accumulate value.

Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLA instruction:

e Multiplies the values in Rn and Rm.

e Optionally rounds the result by adding 0x80000000.

e Extracts the most significant 32 bits of the result.

e Adds the value of Ra to the signed extracted value.

e Writes the result of the addition in Rd.
The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLS instruction:

e Multiplies the values in Rn and Rm.

e Optionally rounds the result by adding 0x80000000.
e Extracts the most significant 32 bits of the result.
e Subtracts the extracted value of the result from the value in Ra.
e Writes the result of the subtraction in Rd.
Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags
These instructions do not affect the condition code flags.

Examples
SMWLA RO, R4, R5, R6 ; Miltiplies R4 and R5, extracts top 32 bits, adds
; R6, truncates and wites to RO
SWLAR R6, R2, R1, R4 ; Miltiplies R2 and Rl, extracts top 32 bits, adds
; R4, rounds and wites to R6
SMMLSR R3, R6, R2, R7 ; Miltiplies R6 and R2, extracts top 32 bits,
; subtracts R7, rounds and wites to R3

SAMA4S Series [DATASHEET 153
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

SMMLS R4, R5, R3, R8B ; Miltiplies R5 and R3, extracts top 32 bits,
; subtracts R8, truncates and wites to R4.

12.6.6.8 SMMUL
Signed Most Significant Word Multiply

Syntax
op{R}{cond} Rd, Rn, Rm

where:

op is one of:

SMMUL Signed Most Significant Word Multiply.

R is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed integers. The
SMMUL instruction:

e Multiplies the values from Rn and Rm.
e Optionally rounds the result, otherwise truncates the result.
e Writes the most significant signed 32 bits of the result in Rd.

Restrictions

In this instruction:
e do not use SP and do not use PC.

Condition Flags
This instruction does not affect the condition code flags.

Examples
SMULL RO, R4, R5 ; Miltiplies R4 and R5, truncates top 32 bits
; and wites to RO
SMULLR R6, R2 ; Multiplies R6 and R2, rounds the top 32 bits
; and wites to R6.

12.6.6.9 SMUAD and SMUSD
Signed Dual Multiply Add and Signed Dual Multiply Subtract

Syntax
op{X}{cond} Rd, Rn, Rm

where:

op is one of;
SMUAD Signed Dual Multiply Add.
SMUADX Signed Dual Multiply Add Reversed.
SMUSD Signed Dual Multiply Subtract.

154 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

SMUSDX Signed Dual Multiply Subtract Reversed.

If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.

cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

Rn, Rm are registers holding the first and second operands.
Operation

The SMUAD instruction interprets the values from the first and second operands as two signed halfwords in each
operand. This instruction:

e Optionally rotates the halfwords of the second operand.
e Performs two signed 16 x 16-bit multiplications.
e Adds the two multiplication results together.
e Writes the result of the addition to the destination register.
The SMUSD instruction interprets the values from the first and second operands as two’s complement signed
integers. This instruction:
e Optionally rotates the halfwords of the second operand.
e Performs two signed 16 x 16-bit multiplications.
e Subtracts the result of the top halfword multiplication from the result of the bottom halfword multiplication.
e Writes the result of the subtraction to the destination register.
Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags
Sets the Q flag if the addition overflows. The multiplications cannot overflow.

SAMA4S Series [DATASHEET 155
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Examples

SMUAD RO, R4, R5 ; Miltiplies bottomhal fword of R4 with the bottom
; halfword of R5, adds nultiplication of top hal fword
; of RA with top halfword of R5, wites to RO

SMUADX R3, R7, R4 ; Miltiplies bottomhal fword of R7 with top hal fword
; of R4, adds multiplication of top hal fword of R7
: with bottomhal fword of R4, wites to R3

SMUSD R3, R6, R2 ; Miltiplies bottomhalfword of R4 with bottom hal fword
; of R6, subtracts nmultiplication of top halfword of R6
; Wth top halfword of R3, wites to R3

SMUSDX R4, R5, R3 ; Miltiplies bottomhal fword of R5 with top hal fword of
; R3, subtracts nultiplication of top hal fwrd of R5
: with bottomhal fword of R3, wites to R4.

12.6.6.10 SMUL and SMULW

Signed Multiply (halfwords) and Signed Multiply (word by halfword)
Syntax

op{ XY}{cond} Rd, Rn, Rm

op{Y}{cond} Rd. Rn, Rm
For SMULXY only:
op is one of:

SMUL{XY} Signed Multiply (halfwords).

X and Y specify which halfword of the source registers Rn and Rm is used as
the first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0] of Rn is used.

If X is T, then the top halfword, bits [31:16] of Rn is used.If Y is B, then the bot
tom halfword, bits [15:0], of Rm is used.

If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMULW({Y} Signed Multiply (word by halfword).
Y specifies which halfword of the source register Rm is used as the second mul
tiply operand.

If Y is B, then the bottom halfword (bits [15:0]) of Rm is used.
If Y is T, then the top halfword (bits [31:16]) of Rm is used.

cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

Rn, Rm are registers holding the first and second operands.
Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four signed
16-bit integers. These instructions:

e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

e Writes the 32-bit result of the multiplication in Rd.
The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm as two
halfword 16-bit signed integers. These instructions:

e Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second operand.

e Writes the signed most significant 32 bits of the 48-bit result in the destination register.

Restrictions

156 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

In these instructions:

e Do notuse SP and do not use PC.
e RdHi and RdLo must be different registers.

Examples
SMULBT

SMULBB
SMULTT
SMULTB

SMULWI

SMULWVB

Atmel

RO,

R4,

R4,

R4,

R4,

R4,

R4,

R5,

R5,

R5

Multiplies the bottomhal fword of R4 with the
top hal fword of R5, nmultiplies results and
wites to RO

Multiplies the bottomhal fword of R4 with the
bottom hal fword of R5, nultiplies results and
wites to RO

Multiplies the top hal fword of R4 with the top
hal fword of R5, multiplies results and wites
to RO

Multiplies the top hal fword of R4 with the
bottom hal fword of R5, nultiplies results and
and wites to RO

Miultiplies RS with the top hal fword of RS,
extracts top 32 bits and wites to R4
Miultiplies R5 with the bottom hal fword of R3,
extracts top 32 bits and wites to R4.

SAM4S Series [DATASHEET] 157

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.6.11 UMULL, UMLAL, SMULL, and SMLAL
Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit

result.
Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:
op is one of:

UMULL Unsigned Long Multiply.
UMLAL Unsigned Long Multiply, with Accumulate.
SMULL Signed Long Multiply.
SMLAL Signed Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers. For UMLAL and SMLAL they also hold the accu
mulating value.

Rn, Rm are registers holding the operands.
Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and
places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers,
adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to
RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the
result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo, and writes the result
back to RdHi and RdLo.

Restrictions
In these instructions:
e Do notuse SP and do not use PC
e RdHi and RdLo must be different registers.
Condition Flags
These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Unsigned (R4, R0) = R5 x R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 x R8

158 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.6.12 SDIV and UDIV
Signed Divide and Unsigned Divide.

Syntax
SDI V{cond} {Rd,} Rn, Rm
uUDI V{cond} {Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.
Rm is a register holding the divisor.
Operation

SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards zero.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SDIV RO, R, R4 ; Signed divide, RO = R2/R4
UDIV R8, R8, Rl ; Unsigned divide, R8 = R8/Rl

SAMA4S Series [DATASHEET 159
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.7 Saturating Instructions
The table below shows the saturating instructions.

Table 12-22. Saturating Instructions

Mnemonic Description

SSAT Signed Saturate

SSAT16 Signed Saturate Halfword

USAT Unsigned Saturate

USAT16 Unsigned Saturate Halfword

QADD Saturating Add

QSuB Saturating Subtract

QSUB16 Saturating Subtract 16

QASX Saturating Add and Subtract with Exchange

QSAX Saturating Subtract and Add with Exchange

QDADD Saturating Double and Add

QDSUB Saturating Double and Subtract

UQADD16 Unsigned Saturating Add 16

UQADDS8 Unsigned Saturating Add 8

UQASX Unsigned Saturating Add and Subtract with Exchange
UQSAX Unsigned Saturating Subtract and Add with Exchange
UQSUB16 Unsigned Saturating Subtract 16

UQSuUBS Unsigned Saturating Subtract 8

For signed n-bit saturation, this means that:
e If the value to be saturated is less than -2"2, the result returned is -2"*
e If the value to be saturated is greater than 2"-1, the result returned is 2"*-1
e Otherwise, the result returned is the same as the value to be saturated.
For unsigned n-bit saturation, this means that:
e Ifthe value to be saturated is less than 0, the result returned is 0
e If the value to be saturated is greater than 2"-1, the result returned is 2"-1
e Otherwise, the result returned is the same as the value to be saturated.
If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the

instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q flag to 0, the
MSR instruction must be used; see “MSR” .

To read the state of the Q flag, the MRS instruction must be used; see “MRS” .

160 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.7.1 SSAT and USAT
Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.
Syntax
op{cond} Rd, #n, Rm{, shift #s}
where:
op is one of;
SSAT Saturates a signed value to a signed range.
USAT Saturates a signed value to an unsigned range.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
n specifies the bit position to saturate to:

n ranges from 1
to 32 for SSAT

n ranges from 0 to 31 for USAT.

Rm is the register containing the value to saturate.

shift #s is an optional shift applied to Rm before saturating. It must be one of the
following:

ASR #s where s is in the range 1 to 31.

LSL #s where s is in the range 0 to 31.

Operation

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range

2t <x <2y,

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 < x < 2"-1.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples
SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
; saturate it as a signed 16-bit val ue and
; wite it back to R7
USATNE RO, #7, RS ; Conditionally saturate value in R5 as an

; unsigned 7 bit value and wite it to RO.

SAM4S Series [DATASHEET] 161

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

12.6.7.2 SSAT16 and USAT16
Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax
op{cond} Rd, #n, Rm

where:

op is one of;
SSAT16 Saturates a signed halfword value to a signed range.
USAT16 Saturates a signed halfword value to an unsigned range.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1 n ranges from 0 to 15 for USAT.

to 16 for SSAT

Rm is the register containing the value to saturate.

Operation

The SSAT16 instruction:

Saturates two signed 16-bit halfword values of the register with the value to saturate from selected by the bit
position in n.

Writes the results as two signed 16-bit halfwords to the destination register.
The USAT16 instruction:

Saturates two unsigned 16-bit halfword values of the register with the value to saturate from selected by the bit
position in n.

Writes the results as two unsigned halfwords in the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples
SSAT16 R7, #9, R2 ; Saturates the top and bottom hi ghwords of R2
; as 9-bit values, wites to correspondi ng hal fword
; of R7

USAT16NE RO, #13, R5 ; Conditionally saturates the top and bottom
; halfwords of R5 as 13-bit values, wites to
; correspondi ng hal fword of RO.

12.6.7.3 QADD and QSUB
Saturating Add and Saturating Subtract, signed.

Syntax
op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:

162 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

op is one of:
QADD Saturating 32-bit add.
QADDS8 Saturating four 8-bit integer additions.
QADD16 Saturating two 16-bit integer additions.
QSUB Saturating 32-bit subtraction.
QSUBS8 Saturating four 8-bit integer subtraction.
QSUB16 Saturating two 16-bit integer subtraction.

cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

Rn, Rm are registers holding the first and second operands.
Operation

These instructions add or subtract two, four or eight values from the first and second operands and then writes a
signed saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the result to the signed
range -2"1 < x < 2"1-1, where x is given by the number of bits applied in the instruction, 32, 16 or 8.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the
QADD and QSUB instructions set the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. The 8-bit
and 16-bit QADD and QSUB instructions always leave the Q flag unchanged.

To clear the Q flag to 0, the MSR instruction must be used; see “MSR” .

To read the state of the Q flag, the MRS instruction must be used; see “MRS” .
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

SAMA4S Series [DATASHEET 163
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Examples

QADD16 R7, R4, R2 ; Adds hal fwords of R4 with correspondi ng hal fword of
; R2, saturates to 16 bits and wites to
; correspondi ng hal fword of R7

QADD8 R3, Rl, R6 ; Adds bytes of Rl to the correspondi ng bytes of R,
; saturates to 8 bits and wites to correspondi ng
; byte of R3

QSUBL6 R4, R2, R3 ; Subtracts hal fwords of R3 from correspondi ng
; hal fword of R2, saturates to 16 bits, wites to
; correspondi ng hal fword of R4

QsuBS8 R4, R2, R5 ; Subtracts bytes of R5 fromthe correspondi ng byte
; in R2, saturates to 8 bits, wites to corresponding
; byte of R4.

12.6.7.4 QASX and QSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, signed.

Syntax
op{cond} {Rd}, Rm Rn

where:
op is one of:

QASX Add and Subtract with Exchange and Saturate.

QSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The QASX instruction;
1. Adds the top halfword of the source operand with the bottom halfword of the second operand.
2. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —21° <x <25 -1,
where x equals 16, to the bottom halfword of the destination register.

4. Saturates the results of the sum and writes a 16-bit signed integer in the range
-2 <x <2 — 1, where x equals 16, to the top halfword of the destination register.
The QSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the source operand with the top halfword of the second operand.

3. Saturates the results of the sum and writes a 16-bit signed integer in the range
—215 <x <21 _ 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —2%° <x < 21— 1,
where x equals 16, to the top halfword of the destination register.

Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

164 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Examples

QASX R7, R4, R ;

QSAX RO, R3, R5 ;

Atmel

Adds top halfword of R4 to bottom hal fword of R2,
saturates to 16 bits, wites to top hal fword of R7
Subtracts top highword of R2 from bottom hal fword of
R4, saturates to 16 bits and wites to bottom hal fword
of R7

Subtracts bottom hal fword of R5 fromtop hal fword of
R3, saturates to 16 bits, wites to top hal fword of RO
Adds bottom hal fword of R3 to top hal fword of R5,
saturates to 16 bits, wites to bottom hal fword of RO.

SAM4S Series [DATASHEET] 165

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.7.5

166

QDADD and QDSUB
Saturating Double and Add and Saturating Double and Subtract, signed.
Syntax
op{cond} {Rd}, Rm Rn

where:
op is one of:

QDADD Saturating Double and Add.

QDSUB Saturating Double and Subtract.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm, Rn are registers holding the first and second operands.
Operation

The QDADD instruction:
e Doubles the second operand value.

e Adds the result of the doubling to the signed saturated value in the first operand.

e Writes the result to the destination register.

The QDSUB instruction:
e Doubles the second operand value.

e Subtracts the doubled value from the signed saturated value in the first operand.

e Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit signed integer range —

231 < x < 231 1. If saturation occurs in either operation, it sets the Q flag in the APSR.
Restrictions

Do not use SP and do not use PC.

Condition Flags

If saturation occurs, these instructions set the Q flag to 1.

Examples
QDADD R7, R4, R2 ; Doubles and saturates R4 to 32 bits, adds R2,
; saturates to 32 bits, wites to R7
QDsuB RO, R3, R5 ; Subtracts R3 doubled and saturated to 32 bits

; fromR5, saturates to 32 bits, wites to RO.

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

12.6.7.6 UQASX and UQSAX

Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, unsigned.
Syntax
op{cond} {Rd}, Rm Rn

where:
type is one of:
UQASX Add and Subtract with Exchange and Saturate.
UQSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UQASX instruction:
1. Adds the bottom halfword of the source operand with the top halfword of the second operand.
2. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

3. Saturates the results of the sum and writes a 16-bit unsigned integer in the range
0<x< 2% -1, where x equals 16, to the top halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 216 — 1, where
X equals 16, to the bottom halfword of the destination register.

The UQSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the first operand with the top halfword of the second operand.

3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 26 — 1, where
x equals 16, to the top halfword of the destination register.

4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0 < x < 2® — 1, where x
equals 16, to the bottom halfword of the destination register.

Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

SAMA4S Series [DATASHEET 167
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Examples
UQASX R7, R4, R2 ; Adds top halfword of R4 with bottom hal fword of R2,
; saturates to 16 bits, wites to top hal fword of R7
; Subtracts top hal fword of R2 from bottom hal fword of
; R4, saturates to 16 bits, wites to bottom hal fword of R7
UXSAX RO, R3, R5 ; Subtracts bottom halfword of R5 fromtop hal fword of R3,
; saturates to 16 bits, wites to top hal fwrd of RO
; Adds bottom hal fword of R4 to top hal fword of R5
; saturates to 16 bits, wites to bottom hal fword of RO.

12.6.7.7 UQADD and UQSUB
Saturating Add and Saturating Subtract Unsigned.

Syntax
op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm
where:
op is one of:
UQADDS8 Saturating four unsigned 8-bit integer additions.
UQADD16 Saturating two unsigned 16-bit integer additions.
UDSUBS8 Saturating four unsigned 8-bit integer subtractions.
UQSUB16 Saturating two unsigned 16-bit integer subtractions.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

These instructions add or subtract two or four values and then writes an unsigned saturated value in the
destination register.
The UQADDA16 instruction:
e Adds the respective top and bottom halfwords of the first and second operands.
e Saturates the result of the additions for each halfword in the destination register to the unsigned range
0<x< 2.1, where x is 16.
The UQADDS instruction:
e Adds each respective byte of the first and second operands.
e Saturates the result of the addition for each byte in the destination register to the unsigned range 0 < x < 28-
1, where x is 8.
The UQSUBL16 instruction:
e Subtracts both halfwords of the second operand from the respective halfwords of the first operand.
e Saturates the result of the differences in the destination register to the unsigned range 0 < x < 26-1, where x
is 16.
The UQSUBS instructions:
e Subtracts the respective bytes of the second operand from the respective bytes of the first operand.

e Saturates the results of the differences for each byte in the destination register to the unsigned range
0 <x <281, where x is 8.

168 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples
UQADD16 R7, R4, R2 ; Adds halfwords in R4 to corresponding hal fword in R2,
; saturates to 16 bits, wites to corresponding hal fword of R7
; Adds bytes of R2 to corresponding byte of R5, saturates
; to 8 bits, wites to corresponding bytes of R4
UQsSuB16 R6, R3, RO ; Subtracts hal fwords in RO from correspondi ng hal fword
; in R3, saturates to 16 bits, wites to correspondi ng
; halfword in R6
uQsuBs Rl, R5, R6 ; Subtracts bytes in R6 from corresponding byte of R5,
; saturates to 8 bits, wites to correspondi ng byte of RIl.

UQADDS R4, R2,

&

SAMA4S Series [DATASHEET 169
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.8 Packing and Unpacking Instructions
The table below shows the instructions that operate on packing and unpacking data.

Table 12-23. Packing and Unpacking Instructions

Mnemonic Description

PKH Pack Halfword

SXTAB Extend 8 bits to 32 and add
SXTAB16 Dual extend 8 bits to 16 and add
SXTAH Extend 16 bits to 32 and add
SXTB Sign extend a byte

SXTB16 Dual extend 8 bits to 16 and add
SXTH Sign extend a halfword

UXTAB Extend 8 bits to 32 and add
UXTAB16 Dual extend 8 bits to 16 and add
UXTAH Extend 16 bits to 32 and add
UXTB Zero extend a byte

UXTB16 Dual zero extend 8 bits to 16 and add
UXTH Zero extend a halfword

170 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.8.1 PKHBT and PKHTB
Pack Halfword

Syntax
op{cond} {Rd}, Rn, Rm{, LSL #i mi}
op{cond} {Rd}, Rn, Rm{, ASR #i mi

where:
op is one of:
PKHBT Pack Halfword, bottom and top with shift.
PKHTB Pack Halfword, top and bottom with shift.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register
Rm is the second operand register holding the value to be optionally shifted.
imm is the shift length. The type of shift length depends on the instruction:
For PKHBT
LSL a left shift with a shift length from 1 to 31, 0 means no shift.
For PKHTB
ASR an arithmetic shift right with a shift length from 1 to 32,
a shift of 32-bits is encoded as 0b00000.
Operation

The PKHBT instruction:

1. Writes the value of the bottom halfword of the first operand to the bottom halfword of the destination
register.

2. If shifted, the shifted value of the second operand is written to the top halfword of the destination register.
The PKHTB instruction:

1. Writes the value of the top halfword of the first operand to the top halfword of the destination register.

2. If shifted, the shifted value of the second operand is written to the bottom halfword of the destination register.

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.

SAMA4S Series [DATASHEET 171
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

PKHBT

Examples

R3, R4, R5 LSL #0 ; Wites bottom hal fword of R4 to bottom hal fword of

; R3, wites top halfword of R5, unshifted, to top
; hal fword of R3

PKHTB R4, RO, R2 ASR #1 ; Wites R2 shifted right by 1 bit to bottom hal fword
; of R4, and wites top halfword of RO to top
: hal fword of R4.
12.6.8.2 SXT and UXT

172

Sign extend and Zero extend.

Syntax

op{cond} {Rd,} Rm{, ROR #n}
op{cond} {Rd}, Rm{, ROR #n}

where:

op

cond
Rd

Rm
ROR #n

Operation

is one of:

SXTB Sign extends an 8-bit value to a 32-bit value.

SXTH Sign extends a 16-bit value to a 32-bit value.
SXTB16 Sign extends two 8-bit values to two 16-bit values.
UXTB Zero extends an 8-bit value to a 32-bit value.

UXTH Zero extends a 16-bit value to a 32-bit value.
UXTB16 Zero extends two 8-bit values to two 16-bit values.
is an optional condition code, see “Conditional Execution” .
is the destination register.

is the register holding the value to extend.

is one of:

ROR #8 Value from Rm is rotated right 8 bits.

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:

Restrictions

SXTB extracts bits[7:0] and sign extends to 32 bits.
UXTB extracts bits[7:0] and zero extends to 32 bits.
SXTH extracts bits[15:0] and sign extends to 32 bits.
UXTH extracts bits[15:0] and zero extends to 32 bits.
SXTB16 extracts bits[7:0] and sign extends to 16 bits,
and extracts bits [23:16] and sign extends to 16 bits.
UXTB16 extracts bits[7:0] and zero extends to 16 bits,
and extracts bits [23:16] and zero extends to 16 bits.

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Examples

SXTH R4, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom hal fword of

UXTB R3, RI10

; of result, sign extends to 32 bits and wites to R4
; Extracts |owest byte of value in R10, zero extends, and
; Wwites to R3.

12.6.8.3 SXTA and UXTA
Signed and Unsigned Extend and Add

Syntax

op{cond} {Rd,}
op{cond} {Rd,}

where:

op

cond
Rd
Rn
Rm

ROR #n

Operation

R, Rm{, ROR #n}
R, Rm{, ROR #n}

is one of:

SXTAB Sign extends an 8-bit value to a 32-bit value and add.
SXTAH Sign extends a 16-bit value to a 32-bit value and add.
SXTAB16 Sign extends two 8-bit values to two 16-bit values and add.
UXTAB Zero extends an 8-bit value to a 32-bit value and add.
UXTAH Zero extends a 16-bit value to a 32-bit value and add.
UXTAB16 Zero extends two 8-bit values to two 16-bit values and add.
is an optional condition code, see “Conditional Execution” .

is the destination register.

is the first operand register.

is the register holding the value to rotate and extend.

is one of:

ROR #8 Value from Rm is rotated right 8 bits.

ROR #16 Value from Rm is rotated right 16 bits.

ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
Extract bits from the resulting value:

2.

3.

Atmel

SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.
UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.
SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.
UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.
SXTAB16 extracts bits[7:0] from Rm and sign extends to 16 bits,
and extracts bits [23:16] from Rm and sign extends to 16 bits.
UXTAB16 extracts bits[7:0] from Rm and zero extends to 16 bits,
and extracts bits [23:16] from Rm and zero extends to 16 bits.

Adds the signed or zero extended value to the word or corresponding halfword of Rn and writes the result in

Rd.

SAM4S Series [DATASHEET] 173

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples

SXTAH R4, R8, R6, ROR #16 ;

UXTAB R3, R4, RI10

174 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Rotates R6 right by 16 bits, obtains bottom
hal fword, sign extends to 32 bits, adds
R8,and wites to R4

Extracts bottom byte of RLO and zero extends
to 32 bits, adds R4, and wites to R3.

Atmel

12.6.9 Bitfield Instructions

The table below shows the instructions that operate on adjacent sets of bits in registers or bitfields.

Table 12-24. Packing and Unpacking Instructions

Mnemonic Description

BFC Bit Field Clear

BFI Bit Field Insert

SBFX Signed Bit Field Extract
SXTB Sign extend a byte

SXTH Sign extend a halfword
UBFX Unsigned Bit Field Extract
UXTB Zero extend a byte

UXTH Zero extend a halfword

SAMA4S Series [DATASHEET 175
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.9.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

Syntax
BFC{cond} Rd, #lsb, #wi dth
BFI {cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. Isb must be in the range
0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-Isb.

Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position Isb. Other bits in Rd are
unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit
position Isb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of RAto O
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of RO with
; bit O0to bit 11 from R2.

176 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.9.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax
SBFX{cond} Rd, Rn, #lsb, #wi dth
UBFX{ cond} Rd, Rn, #lsb, #width
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield. Isb must be in the range
0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-Isb.
Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the destination
register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples

SBFX RO, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) fromRl and sign
; extend to 32 bits and then wite the result to RO.

UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from Rl1l and zero
: extend to 32 bits and then wite the result to RS8.

SAMA4S Series [DATASHEET 177
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.9.3 SXT and UXT
Sign extend and Zero extend.

Syntax
SXText end{cond} {Rd,} Rm{, ROR #n}
UXText end{cond} {Rd}, Rm {, ROR #n}

where:
extend is one of:
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
Operation

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
— SXTB extracts bits[7:0] and sign extends to 32 bits.
— UXTB extracts bits[7:0] and zero extends to 32 bits.
— SXTH extracts bits[15:0] and sign extends to 32 bits.
— UXTH extracts bits[15:0] and zero extends to 32 bits.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the | ower
; hal fword of the result and then sign extend to
; 32 bits and wite the result to R4.

UXTB R3, R10 ; Extract |owest byte of the value in RLO and zero
; extend it, and wite the result to R3.

178 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.10 Branch and Control Instructions

The table below shows the branch and control instructions.

Table 12-25. Branch and Control Instructions

Mnemonic Description

B Branch

BL Branch with Link

BLX Branch indirect with Link

BX Branch indirect

CBNz Compare and Branch if Non Zero
cBz Compare and Branch if Zero

IT If-Then

TBB Table Branch Byte

TBH Table Branch Halfword

SAMA4S Series [DATASHEET)] 179
/I t m eL Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.10.1 B, BL, BX, and BLX

Branch instructions.

Syntax
B{ cond} | abel
BL{cond} | abel
BX{cond} Rm
BLX{ cond} Rm
where:
B is branch (immediate).
BL is branch with link (immediate).
BX is branch indirect (register).
BLX is branch indirect with link (register).
cond is an optional condition code, see “Conditional Execution” .
label is a PC-relative expression. See “PC-relative Expressions” .
Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm
must be 1, but the address to branch to is created by changing bit[0] to O.
Operation

All these instructions cause a branch to label, or to the address indicated in Rm. In addition:
e The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
e The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All other branch
instructions must be conditional inside an IT block, and must be unconditional outside the IT block, see “IT" .

The table below shows the ranges for the various branch instructions.

Table 12-26. Branch Ranges

Instruction Branch Range

B label -16 MB to +16 MB
Bcond label (outside IT block) -1 MBto +1 MB
Bcond label (inside IT block) -16 MB to +16 MB
BL{cond} label -16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

The .W suffix might be used to get the maximum branch range. See “Instruction Width Selection” .

Restrictions

The restrictions are:
e Do not use PC in the BLX instruction
e For BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target address
created by changing bit[0] to O
e When any of these instructions is inside an IT block, it must be the last instruction of the IT block.

Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has a longer
branch range when it is inside an IT block.

180 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Condition Flags

These instructions do not change the flags.

Examples
B | oopA
BLE ng

B. W tar get
BEQ target
BEQ W target

BL funC
BX LR
BXNE RO
BLX RO

Atmel

Branch to | oopA

Conditionally branch to | abel ng

Branch to target within 16MB range

Conditionally branch to target

Conditionally branch to target within 1MB

Branch with link (Call) to function funC, return address
stored in LR

Return from function call

Conditionally branch to address stored in RO

Branch with |link and exchange (Call) to a address stored in RO.

SAM4S Series [DATASHEET] 181

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.10.2 CBZand CBNZ

Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax
CBZ Rn, | abel
CBNZ Rn, | abel
where:
Rn is the register holding the operand.
label is the branch destination.
Operation
Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of
instructions.
CBZ Rn, label does not change condition flags but is otherwise equivalent to:
CwvP Rn, #0
BEQ | abel
CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CwP Rn, #0
BNE | abel

Restrictions

The restrictions are:
e Rn must be in the range of RO to R7
e The branch destination must be within 4 to 130 bytes after the instruction
e These instructions must not be used inside an IT block.

Condition Flags

These instructions do not change the flags.

Examples
CcBz R5, target ; Forward branch if R5 is zero
CBNz RO, target ; Forward branch if RO is not zero

182 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.10.3 IT
If-Then condition instruction.
Syntax
| T{x{y{z}}} cond
where:
X specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.
z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the instructions in
the IT block must be unconditional, and each of x, y, and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the same, or some
of them can be the logical inverse of the others. The conditional instructions following the IT instruction form the IT
block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of their
syntax.

The assembler might be able to generate the required IT instructions for conditional instructions automatically, so
that the user does not have to write them. See the assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block. Such an
exception results in entry to the appropriate exception handler, with suitable return information in LR and stacked
PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception, and
execution of the IT block resumes correctly. This is the only way that a PC-modifying instruction is permitted to
branch to an instruction in an IT block.

Restrictions

The following instructions are not permitted in an IT block:
e T
e CBZand CBNZ
e CPSID and CPSIE.

Other restrictions when using an IT block are:

e A branch or any instruction that modifies the PC must either be outside an IT block or must be the last
instruction inside the IT block. These are:

— ADDPC, PC,Rm
— MOV PC,Rm
— B, BL,BX, BLX
— Any LDM, LDR, or POP instruction that writes to the PC
— TBBand TBH
e Do not branch to any instruction inside an IT block, except when returning from an exception handler

SAMA4S Series [DATASHEET 183
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

e All conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or inside
an IT block but has a larger branch range if it is inside one

e Each instruction inside the IT block must specify a condition code suffix that is either the same or logical
inverse as for the other instructions in the block.

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of assembler
directives within them.

Condition Flags

This instruction does not change the flags.

Example
ITTE NE ; Next 3 instructions are conditional
ANDNE RO, RO, RL ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags
MOVEQ R2, R3 ; Conditional nove
cwp RO, #9 ; Convert RO hex value (0 to 15) into ASCl I
; ("0 -T9, A -TFY)
| TE Gr ; Next 2 instructions are conditional
ADDGT R1, RO, #55 ; Convert OxA ->'"A
ADDLE R1, RO, #48 ; Convert 0x0 -> '0'
T Gr ; I T block with only one conditional instruction
ADDGT R1, R1, #1 ; Increment Rl conditionally
| TTEE EQ ; Next 4 instructions are conditional
MOVEQ RO, RL ; Conditional nove
ADDEQ R2, R2, #10 ; Conditional add
ANDNE R3, R3, #1 ; Conditional AND
BNE. W dl oop ; Branch instruction can only be used in the |ast
; instruction of an IT bl ock
T NE ; Next instruction is conditional
ADD RO, RO, R1 ; Syntax error: no condition code used in IT bl ock

12.6.10.4 TBB and TBH
Table Branch Byte and Table Branch Halfword.

Syntax
TBB [Rn, Rn
TBH [Rn, Rm LSL #1]
where:
Rn is the register containing the address of the table of branch lengths.
If Rn is PC, then the address of the table is the address of the byte immediately
following the TBB or TBH instruction.
Rm is the index register. This contains an index into the table. For halfword tables,

LSL #1 doubles the value in Rm to form the right offset into the table.

184 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB, or halfword
offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For TBB the branch
offset is twice the unsigned value of the byte returned from the table. and for TBH the branch offset is twice the
unsigned value of the halfword returned from the table. The branch occurs to the address at that offset from the
address of the byte immediately after the TBB or TBH instruction.

Restrictions

The restrictions are:

e Rn must not be SP

e Rm must not be SP and must not be PC

e When any of these instructions is used inside an IT block, it must be the last instruction of the IT block.
Condition Flags
These instructions do not change the flags.

SAMA4S Series [DATASHEET 185
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Examples
ADR. W RO, BranchTabl e_Byte
TBB [RO, R1] ; RlLis the index, RO is the base address of the
; branch table
Casel
;an instruction sequence foll ows
Case2
;an instruction sequence foll ows
Case3

;an instruction sequence foll ows

BranchTabl e_Byte
DCB 0 ; Casel offset calculation
DCB ((Case2-Casel)/2) ; Case2 offset calculation
DCB ((Case3-Casel)/2) ; Case3 offset calculation

TBH [PC, R1, LSL #1] ; RLis the index, PCis used as base of the
; branch table
BranchTabl e_H

DCl ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
DCl ((CaseB - BranchTable_H)/2) ; CaseB offset calculation
DCl ((CaseC - BranchTable_H)/2) ; CaseC offset calculation

CaseA

;an instruction sequence follows

CaseB

;an instruction sequence follows

CaseC

;an instruction sequence follows

186 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.11 Miscellaneous Instructions

The table below shows the remaining Cortex-M4 instructions.

Table 12-27. Miscellaneous Instructions

Mnemonic Description
BKPT Breakpoint
CPSID Change Processor State, Disable Interrupts
CPSIE Change Processor State, Enable Interrupts
DMB Data Memory Barrier
DSB Data Synchronization Barrier
ISB Instruction Synchronization Barrier
MRS Move from special register to register
MSR Move from register to special register
NOP No Operation
SEV Send Event
SsvC Supervisor Call
WFE Wait For Event
WFI Wait For Interrupt
/ItmeL SAMA4S Series [DATASHEET] 187
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.11.1 BKPT

Breakpoint.
Syntax
BKPT #i nm
where:
imm is an expression evaluating to an integer in the range 0—255 (8-bit value).
Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system
state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about the
breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the condition
specified by the IT instruction.

Condition Flags
This instruction does not change the flags.

Examples
BKPT OxAB ; Breakpoint with i medi ate val ue set to OxAB (debugger can
; extract the imediate value by locating it using the PC)

Note: ARM does not recommend the use of the BKPT instruction with an immediate value set to 0xAB for any purpose other
than Semi-hosting.

12.6.11.2 CPS
Change Processor State.

Syntax
CPSef fect iflags
where:
effect is one of:
IE Clears the special purpose register.
ID Sets the special purpose register.
iflags is a sequence of one or more flags:
i Set or clear PRIMASK.
f Set or clear FAULTMASK.
Operation

CPS changes the PRIMASK and FAULTMASK special register values. See “Exception Mask Registers” for more
information about these registers.

Restrictions

The restrictions are:
e Use CPS only from privileged software, it has no effect if used in unprivileged software
e CPS cannot be conditional and so must not be used inside an IT block.

188 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Condition Flags
This instruction does not change the condition flags.

Examples

CPSIDi ; Disable interrupts and configurable fault handlers (set PRI MASK)
CPSIDf ; Disable interrupts and all fault handlers (set FAULTMASK)

CPSIE i ; Enable interrupts and configurable fault handl ers (clear PRI MASK)

CPSIE f ; Enable interrupts and fault handl ers (cl ear FAULTMASK)

12.6.11.3 DMB
Data Memory Barrier.

Syntax
DVB{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program order,
before the DMB instruction are completed before any explicit memory accesses that appear, in program order,
after the DMB instruction. DMB does not affect the ordering or execution of instructions that do not access
memory.

Condition Flags
This instruction does not change the flags.

Examples
DMB ; Data Menmory Barrier

SAMA4S Series [DATASHEET 189
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.11.4 DSB
Data Synchronization Barrier.

Syntax
DSB{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program
order, do not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory
accesses before it complete.

Condition Flags
This instruction does not change the flags.

Examples
DSB ; Data Synchronisation Barrier

12.6.11.5 ISB

Instruction Synchronization Barrier.

Syntax
| SB{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions
following the ISB are fetched from cache or memory again, after the ISB instruction has been completed.

Condition Flags
This instruction does not change the flags.

Examples
ISB ; Instruction Synchronisation Barrier

190 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.11.6 MRS
Move the contents of a special register to a general-purpose register.

Syntax
MRS{ cond} Rd, spec_reg
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for example to
clear the Q flag.

In process swap code, the programmers model state of the process being swapped out must be saved, including
relevant PSR contents. Similarly, the state of the process being swapped in must also be restored. These
operations use MRS in the state-saving instruction sequence and MSR in the state-restoring instruction sequence.
Note: BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.

See "MSR”.

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.

Examples
MRS RO, PRIMASK ; Read PRI MASK value and wite it to RO

12.6.11.7 MSR
Move the contents of a general-purpose register into the specified special register.

Syntax
MBR{ cond} spec_reg, Rn
where:
cond is an optional condition code, see “Conditional Execution” .
Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

SAMA4S Series [DATASHEET 191
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only access the
APSR. See “Application Program Status Register” . Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Note: When the user writes to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
Rn is non-zero and the current BASEPRI value is 0
Rn is non-zero and less than the current BASEPRI value.

See “MRS".

Restrictions

Rn must not be SP and must not be PC.

Condition Flags

This instruction updates the flags explicitly based on the value in Rn.

Examples
MSR CONTROL, Rl ; Read Rl value and wite it to the CONTROL register

12.6.11.8 NOP
No Operation.

Syntax
NOP{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from the
pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.
Condition Flags
This instruction does not change the flags.

Examples
NOP ; No operation

192 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.11.9 SEV

Send Event.
Syntax
SEV{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor system. It
also sets the local event register to 1, see “Power Management” .

Condition Flags
This instruction does not change the flags.

Examples
SEV ; Send Event

12.6.11.10 SVC
Supervisor Call.

Syntax
SVC{ cond} #i nm
where:
cond is an optional condition code, see “Conditional Execution” .
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).
Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service
is being requested.

Condition Flags
This instruction does not change the flags.

Examples
SVC 0x32 ; Supervisor Call (SVC handler can extract the i medi ate val ue
; by locating it via the stacked PC)

SAMA4S Series [DATASHEET 193
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.11.11 WFE
Wait For Event.

Syntax
WFE{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

WEFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

e An exception, unless masked by the exception mask registers or the current priority level

e An exception enters the Pending state, if SEVONPEND in the System Control Register is set
e A Debug Entry request, if Debug is enabled
[J

An event signaled by a peripheral or another processor in a multiprocessor system using the SEV
instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.
For more information, see “Power Management” .

Condition Flags

This instruction does not change the flags.

Examples

WFE ; Wait for event

12.6.11.12 WFI
Wait for Interrupt.

Syntax
WFI { cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

WFI is a hint instruction that suspends execution until one of the following events occurs:
e An exception
e A Debug Entry request, regardless of whether Debug is enabled.

Condition Flags
This instruction does not change the flags.

Examples
WFl ; Wait for interrupt

194 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.7 Cortex-M4 Core Peripherals

12.7.1 Peripherals

e Nested Vectored Interrupt Controller (NVIC)
The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that supports low
latency interrupt processing. See Section 12.8 "Nested Vectored Interrupt Controller (NVIC)".

e System Control Block (SCB)
The System Control Block (SCB) is the programmers model interface to the processor. It provides system
implementation information and system control, including configuration, control, and reporting of system
exceptions. See Section 12.9 "System Control Block (SCB)".

e System Timer (SysTick)
The System Timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System
(RTOS) tick timer or as a simple counter. See Section 12.10 "System Timer (SysTick)”.

e Memory Protection Unit (MPU)
The Memory Protection Unit (MPU) improves system reliability by defining the memory attributes for different
memory regions. It provides up to eight different regions, and an optional predefined background region.
See Section 12.11 "Memory Protection Unit (MPU)”.

12.7.2 Address Map

The address map of the Private peripheral bus (PPB) is given in the following table.

Table 12-28. Core Peripheral Register Regions

Address Core Peripheral
0xEOOOE008-0xEOOOEOOF System Control Block
O0xEOOOE010-0xEOOOEQ1F System Timer
OXEOOOE100-0xEOOOE4EF Nested Vectored Interrupt Controller
0XEOOOEDO00-0XEOOOED3F System control block
OXEOOOED90-0xEOOOEDBS Memory Protection Unit
OXEOOOEF00-OXEOOOEF03 Nested Vectored Interrupt Controller

In register descriptions:
e The required privilege gives the privilege level required to access the register, as follows:
— Privileged: Only privileged software can access the register.
— Unprivileged: Both unprivileged and privileged software can access the register.

SAMA4S Series [DATASHEET 195
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.8 Nested Vectored Interrupt Controller (NVIC)

This section describes the NVIC and the registers it uses. The NVIC supports:

12.8.1

12.8.1.1

Up to 35 interrupts

A programmable priority level of 0-15 for each interrupt. A higher level corresponds to a lower priority, so
level 0 is the highest interrupt priority.

Level detection of interrupt signals

Dynamic reprioritization of interrupts

Grouping of priority values into group priority and subpriority fields
Interrupt tail-chaining

An external Non-maskable interrupt (NMI)

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no
instruction overhead. This provides low latency exception handling.

Level-sensitive Interrupts

The processor supports level-sensitive interrupts. A level-sensitive interrupt is held asserted until the peripheral
deasserts the interrupt signal. Typically, this happens because the ISR accesses the peripheral, causing it to clear
the interrupt request.

When the processor enters the ISR, it automatically removes the pending state from the interrupt (see “Hardware
and Software Control of Interrupts”). For a level-sensitive interrupt, if the signal is not deasserted before the
processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR
again. This means that the peripheral can hold the interrupt signal asserted until it no longer requires servicing.

Hardware and Software Control of Interrupts

The Cortex-M4 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:

The NVIC detects that the interrupt signal is HIGH and the interrupt is not active
The NVIC detects a rising edge on the interrupt signal

A software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-pending
Registers”, or to the NVIC_STIR to make an interrupt pending, see “Software Trigger Interrupt Register” .

A pending interrupt remains pending until one of the following:

The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active.
Then:

— For alevel-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the
interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might
cause the processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to
inactive.

Software writes to the corresponding interrupt clear-pending register bit.
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not
change. Otherwise, the state of the interrupt changes to inactive.

12.8.2 NVIC Design Hints and Tips

196

Ensure that the software uses correctly aligned register accesses. The processor does not support unaligned
accesses to NVIC registers. See the individual register descriptions for the supported access sizes.

A interrupt can enter a pending state even if it is disabled. Disabling an interrupt only prevents the processor from
taking that interrupt.

SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Before programming SCB_VTOR to relocate the vector table, ensure that the vector table entries of the new vector
table are set up for fault handlers, NMI and all enabled exception like interrupts. For more information, see the
“Vector Table Offset Register” .

12.8.2.1 NVIC Programming Hints

The software uses the CPSIE | and CPSID | instructions to enable and disable the interrupts. The CMSIS provides
the following intrinsic functions for these instructions:

void __disable_irg(void) // Disable Interrupts
void __enable_irq(void) // Enable Interrupts
In addition, the CMSIS provides a nhumber of functions for NVIC control, including:

Table 12-29. CMSIS Functions for NVIC Control

CMSIS Interrupt Control Function Description

void NVIC_SetPriorityGrouping(uint32_t priority_grouping) Set the priority grouping

void NVIC_EnablelRQ(IRQnN_t IRQN) Enable IRQn

void NVIC_DisablelRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendinglRQ (IRQn_t IRQN) Return true (IRQ-Number) if IRQn is pending
void NVIC_SetPendingIRQ (IRQn_t IRQnN) Set IRQn pending

void NVIC_ClearPendinglRQ (IRQn_t IRQN) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQn) Return the IRQ number of the active interrupt
void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

The input parameter IRQn is the IRQ number. For more information about these functions, see the CMSIS
documentation.
To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the CMSIS:

e The Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to arrays of 32-bit
integers, so that:

— The array ISERJ[0] to ISER[1] corresponds to the registers ISERO-ISER1
— The array ICER[0] to ICER[1] corresponds to the registers ICERO-ICER1
— The array ISPRJ[0] to ISPR[1] corresponds to the registers ISPRO-ISPR1
— The array ICPR[0] to ICPR[1] corresponds to the registers ICPRO-ICPR1
— The array IABRJ[0] to IABR[1] corresponds to the registers IABRO-IABR1
e The Interrupt Priority Registers (IPRO-IPR8) provide an 8-bit priority field for each interrupt and each register
holds four priority fields.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Registers. Table 12-30
shows how the interrupts, or IRQ numbers, map onto the interrupt registers and corresponding CMSIS variables
that have one bit per interrupt.

Table 12-30. Mapping of Interrupts

CMSIS Array Elements ™
Interrupts | Set-enable Clear-enable Set-pending Clear-pending Active Bit
0-31 ISERI[0] ICER[O] ISPRI[0] ICPR[O] IABR[0]
32-35 ISER[1] ICER[1] ISPR[1] ICPR[1] IABR[1]

SAMA4S Series [DATASHEET 197
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Note: 1. Each array element corresponds to a single NVIC register, for example the ICER[0] element corresponds to the
ICERO.

198 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.8.3 Nested Vectored Interrupt Controller (NVIC) User Interface

Table 12-31. Nested Vectored Interrupt Controller (NVIC) Register Mapping

Offset Register Name Access Reset

OxEOOOE100 Interrupt Set-enable Register 0 NVIC_ISERO Read/Write 0x00000000
OXEOOOE11C Interrupt Set-enable Register 7 NVIC_ISER7 Read/Write 0x00000000
0XEOOOE180 Interrupt Clear-enable Register 0 NVIC_ICERO Read/Write 0x00000000
OXEOOOE19C Interrupt Clear-enable Register 7 NVIC_ICER7 Read/Write 0x00000000
0XEOO0E200 Interrupt Set-pending Register 0 NVIC_ISPRO Read/Write 0x00000000
OXEOOOE21C Interrupt Set-pending Register 7 NVIC_ISPR7 Read/Write 0x00000000
0XEOOOE280 Interrupt Clear-pending Register 0 NVIC_ICPRO Read/Write 0x00000000
OXEOOOE29C Interrupt Clear-pending Register 7 NVIC_ICPR7 Read/Write 0x00000000
OXEOOOE300 Interrupt Active Bit Register O NVIC_IABRO Read/Write 0x00000000
OXEOOOE31C Interrupt Active Bit Register 7 NVIC_IABR7 Read/Write 0x00000000
OXEOOOE400 Interrupt Priority Register O NVIC_IPRO Read/Write 0x00000000
OxXEOOOE420 Interrupt Priority Register 8 NVIC_IPR8 Read/Write 0x00000000
OxEOOOEF00 Software Trigger Interrupt Register NVIC_STIR Write-only 0x00000000

Atmel

SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

199

12.8.3.1 Interrupt Set-enable Registers

Name: NVIC_ISERX [x=0..7]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| SETENA |
23 22 21 20 19 18 17 16

| SETENA |
15 14 13 12 11 10 9 8

| SETENA |
7 6 5 4 3 2 1 0

| SETENA |

These registers enable interrupts and show which interrupts are enabled.

» SETENA: Interrupt Set-enable
Write:

0: No effect.

1: Enables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

Notes: 1. If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority.

2. If aninterrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, the NVIC never activates
the interrupt, regardless of its priority.

200 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.8.3.2 Interrupt Clear-enable Registers

Name: NVIC_ICERX [x=0..7]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| CLRENA |
23 22 21 20 19 18 17 16

| CLRENA |
15 14 13 12 11 10 9 8

| CLRENA |
7 6 5 4 3 2 1 0

| CLRENA |

These registers disable interrupts, and show which interrupts are enabled.

* CLRENA: Interrupt Clear-enable
Write:

0: No effect.

1: Disables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

SAMA4S Series [DATASHEET 201
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.8.3.3 Interrupt Set-pending Registers

Name: NVIC_ISPRx [x=0..7]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| SETPEND |
23 22 21 20 19 18 17 16

| SETPEND |
15 14 13 12 11 10 9 8

| SETPEND |
7 6 5 4 3 2 1 0

| SETPEND |

These registers force interrupts into the pending state, and show which interrupts are pending.

» SETPEND: Interrupt Set-pending
Write:

0: No effect.

1: Changes the interrupt state to pending.
Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Notes: 1. Writing a 1 to an ISPR bit corresponding to an interrupt that is pending has no effect.
2. Wiriting a 1 to an ISPR bit corresponding to a disabled interrupt sets the state of that interrupt to pending.

202 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.8.3.4 Interrupt Clear-pending Registers

Name: NVIC_ICPRXx [x=0..7]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| CLRPEND |
23 22 21 20 19 18 17 16

| CLRPEND |
15 14 13 12 11 10 9 8

| CLRPEND |
7 6 5 4 3 2 1 0

| CLRPEND |

These registers remove the pending state from interrupts, and show which interrupts are pending.

* CLRPEND: Interrupt Clear-pending

Write:

0: No effect.

1: Removes the pending state from an interrupt.

Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Note: Writing a 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

SAMA4S Series [DATASHEET 203
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.8.3.5 Interrupt Active Bit Registers

Name: NVIC_IABRXx [x=0..7]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| ACTIVE |
23 22 21 20 19 18 17 16

| ACTIVE |
15 14 13 12 11 10 9 8

| ACTIVE |
7 6 5 4 3 2 1 0

| ACTIVE |

These registers indicate which interrupts are active.

» ACTIVE: Interrupt Active Flags
0: Interrupt is not active.

1: Interrupt is active.
Note: A bit reads as one if the status of the corresponding interrupt is active, or active and pending.

204 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.8.3.6 Interrupt Priority Registers

Name: NVIC_IPRx [x=0..8]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| PRI3 |
23 22 21 20 19 18 17 16

| PRI2 |
15 14 13 12 11 10 9 8

| PRI1 |
7 6 5 4 3 2 1 0

| PRIO |

The NVIC_IPRO-NVIC_IPRS registers provide a 8-bit priority field for each interrupt. These registers are byte-accessible.
Each register holds four priority fields that map up to four elements in the CMSIS interrupt priority array IP[0] to IP[34].

¢ PRI3: Priority (4m+3)
Priority, Byte Offset 3, refers to register bits [31:24].

* PRI2: Priority (4m+2)
Priority, Byte Offset 2, refers to register bits [23:16].

* PRI1: Priority (4m+1)
Priority, Byte Offset 1, refers to register bits [15:8].

¢ PRIO: Priority (4m)
Priority, Byte Offset 0, refers to register bits [7:0].

Notes: 1.

Each priority field holds a priority value, 0-15. The lower the value, the greater the priority of the corresponding interrupt.
The processor implements only bits[7:4] of each field; bits[3:0] read as zero and ignore writes.

For more information about the IP[0] to IP[34] interrupt priority array, that provides the software view of the interrupt
priorities, see Table 12-29, “CMSIS Functions for NVIC Control” .

The corresponding IPR number n is given by n = m DIV 4.
The byte offset of the required Priority field in this register is m MOD 4.

SAMA4S Series [DATASHEET 205
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.8.3.7 Software Trigger Interrupt Register
Name: NVIC_STIR
Access: Write-only
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
I R - — T - - - D]
7 6 5 4 3 2 1 0

INTID

Write to this register to generate an interrupt from the software.

* INTID:

Interrupt ID

Interrupt ID of the interrupt to trigger, in the range 0-239. For example, a value of 0x03 specifies interrupt IRQ3.

206

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

12.9

System Control Block (SCB)

The System Control Block (SCB) provides system implementation information, and system control. This includes

configuration, control, and reporting of the system exceptions.

Ensure that the software uses aligned accesses of the correct size to access the system control block registers:
e Except for the SCB_CFSR and SCB_SHPR1-SCB_SHPR3 registers, it must use aligned word accesses
e Forthe SCB_CFSR and SCB_SHPR1-SCB_SHPR3 registers, it can use byte or aligned halfword or word

accesses.

The processor does not support unaligned accesses to system control block registers.

In a fault handler, to determine the true faulting address:

1. Read and save the MMFAR or SCB_BFAR value.
2. Read the MMARVALID bit in the MMFSR subregister, or the BFARVALID bit in the BFSR subregister. The
SCB_MMFAR or SCB_BFAR address is valid only if this bit is 1.

The software must follow this sequence because another higher priority exception might change the SCB_ MMFAR
or SCB_BFAR value. For example, if a higher priority handler preempts the current fault handler, the other fault
might change the SCB_MMFAR or SCB_BFAR value.

SAMA4S Series [DATASHEET 207
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1 System Control Block (SCB) User Interface

Table 12-32. System Control Block (SCB) Register Mapping

Offset Register Name Access Reset
O0xEOOOE008 Auxiliary Control Register SCB_ACTLR Read/Write 0x00000000
OxEOOOEDOO CPUID Base Register SCB_CPUID Read-only 0x410FC240
OXEOOOEDO4 Interrupt Control and State Register SCB_ICSR Read/Write® 0x00000000
OXEOOOEDO08 Vector Table Offset Register SCB_VTOR Read/Write 0x00000000
OXEOOOEDOC Application Interrupt and Reset Control Register SCB_AIRCR Read/Write 0xFA050000
OXEOOOED10 System Control Register SCB_SCR Read/Write 0x00000000
OXEOOOED14 Configuration and Control Register SCB_CCR Read/Write 0x00000200
OxXEOOOED18 System Handler Priority Register 1 SCB_SHPR1 Read/Write 0x00000000
OXEOOOED1C System Handler Priority Register 2 SCB_SHPR2 Read/Write 0x00000000
OXEOOOED20 System Handler Priority Register 3 SCB_SHPR3 Read/Write 0x00000000
OXEOOOED24 System Handler Control and State Register SCB_SHCSR Read/Write 0x00000000
OxEOOOED28 Configurable Fault Status Register SCB_CFSR® Read/Write 0x00000000
OXEOOOED2C HardFault Status Register SCB_HFSR Read/Write 0x00000000
OxEOOOED34 MemManage Fault Address Register SCB_MMFAR Read/Write Unknown
OxEOOOED38 BusFault Address Register SCB_BFAR Read/Write Unknown
OXEOOOED3C Auxiliary Fault Status Register SCB_AFSR Read/Write 0x00000000

Notes: 1. See the register description for more information.

2. This register contains the subregisters: “MMFSR: Memory Management Fault Status Subregister” (OXEOOOED28 - 8 bits),
“BFSR: Bus Fault Status Subregister” (OXEOOOEDZ29 - 8 bits), “UFSR: Usage Fault Status Subregister” (OXEOOOED2A - 16

bits).

208 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

12.9.1.1 Auxiliary Control Register

Name: SCB_ACTLR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | — | DISOOFP | DISFPCA |
7 6 5 4 3 2 1 0

| — | - | — | - | - | DISFOLD | DISDEFWBUFl DISMCYCINT |

The SCB_ACTLR provides disable bits for the following processor functions:
« IT folding
» Write buffer use for accesses to the default memory map
« Interruption of multi-cycle instructions.

By default, this register is set to provide optimum performance from the Cortex-M4 processor, and does not normally
require modification.

» DISOOFP: Disable Out Of Order Floating Point
Disables floating point instructions that complete out of order with respect to integer instructions.

e DISFPCA: Disable FPCA
Disables an automatic update of CONTROL.FPCA.

» DISFOLD: Disable Folding

When set to 1, disables the IT folding.

Note: In some situations, the processor can start executing the first instruction in an IT block while it is still executing the IT instruction.
This behavior is called IT folding, and it improves the performance. However, IT folding can cause jitter in looping. If a task must
avoid jitter, set the DISFOLD bit to 1 before executing the task, to disable the IT folding.

 DISDEFWBUF: Disable Default Write Buffer

When set to 1, it disables the write buffer use during default memory map accesses. This causes BusFault to be precise
but decreases the performance, as any store to memory must complete before the processor can execute the next
instruction.

This bit only affects write buffers implemented in the Cortex-M4 processor.

* DISMCYCINT: Disable Multiple Cycle Interruption

When set to 1, it disables the interruption of load multiple and store multiple instructions. This increases the interrupt
latency of the processor, as any LDM or STM must complete before the processor can stack the current state and enter the
interrupt handler.

SAMA4S Series [DATASHEET 209
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.2 CPUID Base Register

Name: SCB_CPUID

Access: Read/Write
31 30 29 28 27 26 25 24

| Implementer |
23 22 21 20 19 18 17 16

| Variant Constant |
15 14 13 12 11 10 9 8

| PartNo |
7 6 5 4 3 2 1 0

| PartNo | Revision |

The SCB_CPUID register contains the processor part number, version, and implementation information.

* Implementer: Implementer Code
0x41: ARM.

» Variant: Variant Number
It is the r value in the rnpn product revision identifier:
0x0: Revision 0.

» Constant: Reads as OxF
Reads as OxF.

e PartNo: Part Number of the Processor
0xC24 = Cortex-M4.

* Revision: Revision Number
It is the p value in the rnpn product revision identifier:
0x0: Patch 0.

210 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.3 Interrupt Control and State Register

Name: SCB_ICSR

Access: Read/Write
31 30 29 28 27 26 25 24

| NMIPENDSET | - PENDSVSET | PENDSVCLR | PENDSTSET | PENDSTCLR - |
23 22 21 20 19 18 17 16

| - | ISRPENDING VECTPENDING |
15 14 13 12 11 10 9 8

| VECTPENDING RETTOBASE - - VECTACTIVE |
7 6 5 4 3 2 1 0

| VECTACTIVE |

The SCB_ICSR provides a set-pending bit for the Non-Maskable Interrupt (NMI) exception, and set-pending and clear-
pending bits for the PendSV and SysTick exceptions.

It indicates:
» The exception number of the exception being processed, and whether there are preempted active exceptions,
» The exception number of the highest priority pending exception, and whether any interrupts are pending.

« NMIPENDSET: NMI Set-pending

Write:

PendSV set-pending bit.

Write:

0: No effect.

1: Changes NMI exception state to pending.
Read:

0: NMI exception is not pending.

1: NMI exception is pending.

As NMI is the highest-priority exception, the processor normally enters the NMI exception handler as soon as it registers a
write of 1 to this bit. Entering the handler clears this bit to 0. A read of this bit by the NMI exception handler returns 1 only if
the NMI signal is reasserted while the processor is executing that handler.

* PENDSVSET: PendSV Set-pending

Write:

0: No effect.

1: Changes PendSV exception state to pending.

Read:

0: PendSV exception is not pending.

1: PendSV exception is pending.

Writing a 1 to this bit is the only way to set the PendSV exception state to pending.

SAMA4S Series [DATASHEET 211
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

 PENDSVCLR: PendSV Clear-pending
Write:
0: No effect.

1: Removes the pending state from the PendSV exception.

 PENDSTSET: SysTick Exception Set-pending
Write:

0: No effect.

1: Changes SysTick exception state to pending.
Read:

0: SysTick exception is not pending.

1: SysTick exception is pending.

» PENDSTCLR: SysTick Exception Clear-pending

Write:

0: No effect.

1: Removes the pending state from the SysTick exception.
This bit is Write-only. On a register read, its value is Unknown.

* ISRPENDING: Interrupt Pending Flag (Excluding NMI and Faults)
0: Interrupt not pending.
1: Interrupt pending.

» VECTPENDING: Exception Number of the Highest Priority Pending Enabled Exception
0: No pending exceptions.
Nonzero: The exception humber of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the
PRIMASK register.

« RETTOBASE: Preempted Active Exceptions Present or Not
0: There are preempted active exceptions to execute.
1: There are no active exceptions, or the currently-executing exception is the only active exception.

¢ VECTACTIVE: Active Exception Number Contained
0: Thread mode.

Nonzero: The exception number of the currently active exception. The value is the same as IPSR bits [8:0]. See “Interrupt
Program Status Register” .

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-
Pending, Set-Pending, or Priority Registers, see “Interrupt Program Status Register” .
Note: When the user writes to the SCB_ICSR, the effect is unpredictable if:

- Writing a 1 to the PENDSVSET bit and writing a 1 to the PENDSVCLR bit
- Writing a 1 to the PENDSTSET bit and writing a 1 to the PENDSTCLR bit.

212 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.4 Vector Table Offset Register

Name: SCB_VTOR

Access: Read/Write
31 30 29 28 27 26 25 24

| TBLOFF |
23 22 21 20 19 18 17 16

| TBLOFF |
15 14 13 12 11 10 9 8

| TBLOFF |
7 6 5 4 3 2 1 0

[TBLOFF | - I - I - I - I - I - I - |

The SCB_VTOR indicates the offset of the vector table base address from memory address 0x00000000.

* TBLOFF: Vector Table Base Offset

It contains bits [29:7] of the offset of the table base from the bottom of the memory map.
Bit [29] determines whether the vector table is in the code or SRAM memory region:

0: Code.

1: SRAM.

It is sometimes called the TBLBASE bit.

Note: When setting TBLOFF, the offset must be aligned to the number of exception entries in the vector table. Configure the next
statement to give the information required for your implementation; the statement reminds the user of how to determine the
alignment requirement. The minimum alignment is 32 words, enough for up to 16 interrupts. For more interrupts, adjust the
alignment by rounding up to the next power of two. For example, if 21 interrupts are required, the alignment must be on a 64-word
boundary because the required table size is 37 words, and the next power of two is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

SAMA4S Series [DATASHEET 213
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.5 Application Interrupt and Reset Control Register

Name: SCB_AIRCR

Access: Read/Write
31 30 29 28 27 26 25 24

| VECTKEYSTAT/VECTKEY |
23 22 21 20 19 18 17 16

| VECTKEYSTAT/VECTKEY |
15 14 13 12 11 10 9 8

| ENDIANNESS | - | - | - | - | PRIGROUP |
7 6 5 4 3 2 1 0

| _ | _ | — | - | — | SYSRESETREQ |VECTCLRACTIVE| VECTRESET |

The SCB_AIRCR provides priority grouping control for the exception model, endian status for data accesses, and reset
control of the system. To write to this register, write OX5FA to the VECTKEY field, otherwise the processor ignores the
write.

 VECTKEYSTAT: Register Key (Read)
Reads as 0xFAO05.

* VECTKEY: Register Key (Write)
Writes Ox5FA to VECTKEY, otherwise the write is ignored.

« ENDIANNESS: Data Endianness
O: Little-endian.

1: Big-endian.

* PRIGROUP: Interrupt Priority Grouping

This field determines the split of group priority from subpriority. It shows the position of the binary point that splits the PRI_n
fields in the Interrupt Priority Registers into separate group priority and subpriority fields. The table below shows how the
PRIGROUP value controls this split.

Interrupt Priority Level Value, PRI_N[7:0] Number of
PRIGROUP Binary Point® Group Priority Bits | Subpriority Bits Group Priorities Subpriorities
0b000 DXXXXXXX.Y [7:1] None 128 2
0b001 bXXXXXX.yy [7:2] [4:0] 64 4
0b010 bxxxxx.yyy [7:3] [4:0] 32 8
0b011 bxxxx.yyyy [7:4] [4:0] 16 16
0b100 bxxx.yyyyy [7:5] [4:0] 8 32
0b101 bxx.yyyyyy [7:6] [5:0] 4 64
Ob110 bx.yyyyyyy [7] [6:0] 2 128
Ob111 b.yyyyyyy None [7:0] 1 256

Note: 1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field bit.
Determining preemption of an exception uses only the group priority field.

214 SAMA4S Series [DATASHEET] /Itmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

e SYSRESETREQ: System Reset Request
0: No system reset request.
1: Asserts a signal to the outer system that requests a reset.

This is intended to force a large system reset of all major components except for debug. This bit reads as 0.

* VECTCLRACTIVE: Reserved for Debug use
This bit reads as 0. When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

 VECTRESET: Reserved for Debug use
This bit reads as 0. When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

SAMA4S Series [DATASHEET 215
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.6 System Control Register

Name: SCB_SCR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| SEVONPEND | - | SLEEPDEEP |SLEEPONEXIT| - |

 SEVONPEND: Send Event on Pending Bit
0: Only enabled interrupts or events can wake up the processor; disabled interrupts are excluded.

1: Enabled events and all interrupts, including disabled interrupts, can wake up the processor.

When an event or an interrupt enters the pending state, the event signal wakes up the processor from WFE. If the proces-
sor is not waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

» SLEEPDEEP: Sleep or Deep Sleep

Controls whether the processor uses sleep or deep sleep as its low power mode:
0: Sleep.

1: Deep sleep.

* SLEEPONEXIT: Sleep-on-exit

Indicates sleep-on-exit when returning from the Handler mode to the Thread mode:

0: Do not sleep when returning to Thread mode.

1: Enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt-driven application to avoid returning to an empty main application.

216 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.7 Configuration and Control Register

Name: SCB_CCR

Access: Read/Write
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 1 10 9 8

| - | - | - | - | - | - [STKALIGN | BFHFNMIGN |
7 6 5 4 3 2 1 0
- - - DIV.0_TRP |UNALIGN_TRP - USERSETMPENDNONBAS/ETHRDE

The SCB_CCR controls the entry to the Thread mode and enables the handlers for NMI, hard fault and faults escalated by
FAULTMASK to ignore BusFaults. It also enables the division by zero and unaligned access trapping, and the access to
the NVIC_STIR by unprivileged software (see “Software Trigger Interrupt Register”).

» STKALIGN: Stack Alignment

Indicates the stack alignment on exception entry:
0: 4-byte aligned.

1: 8-byte aligned.

On exception entry, the processor uses bit [9] of the stacked PSR to indicate the stack alignment. On return from the
exception, it uses this stacked bit to restore the correct stack alignment.

 BFHFNMIGN: Bus Faults Ignored

Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the
hard fault and FAULTMASK escalated handlers:

0: Data bus faults caused by load and store instructions cause a lock-up.
1. Handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe sys-
tem devices and bridges to detect control path problems and fix them.

» DIV_O_TRP: Division by Zero Trap

Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of O:
0: Do not trap divide by 0.

1: Trap divide by O.

When this bit is set to 0, a divide by zero returns a quotient of 0.

e UNALIGN_TRP: Unaligned Access Trap

Enables unaligned access traps:

0: Do not trap unaligned halfword and word accesses.

1. Trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

SAMA4S Series [DATASHEET 217
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.

¢ USERSETMPEND: Unprivileged Software Access

Enables unprivileged software access to the NVIC_STIR, see “Software Trigger Interrupt Register” :
0: Disable.

1: Enable.

¢ NONBASETHRDENA: Thread Mode Enable
Indicates how the processor enters Thread mode:
0: The processor can enter the Thread mode only when no exception is active.

1: The processor can enter the Thread mode from any level under the control of an EXC_RETURN value, see “Exception
Return” .

218 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.8 System Handler Priority Registers

The SCB_SHPR1-SCB_SHPR3 registers set the priority level, 0 to 15 of the exception handlers that have configurable pri-

ority. They are byte-accessible.

The system fault handlers and the priority field and register for each handler are:

Table 12-33. System Fault Handler Priority Fields

Handler Field Register Description

Memory management fault (MemManage) PRI_4

Bus fault (BusFault) PRI_5 System Handler Priority Register 1

Usage fault (UsageFault) PRI_6

Svcall PRI_11 System Handler Priority Register 2

PendSV PRI_14 . .
System Handler Priority Register 3

SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits [7:4] of each field, and bits [3:0] read as zero and

ignore writes.

Atmel

SAM4S Series [DATASHEET] 219

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.9 System Handler Priority Register 1

Name: SCB_SHPR1

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| PRI_6 |
15 14 13 12 11 10 9 8

| PRI_5 |
7 6 5 4 3 2 1 0

| PRI_4 |

* PRIL_6: Priority
Priority of system handler 6, UsageFault.

* PRIL_5: Priority
Priority of system handler 5, BusFault.

e PRI_4: Priority
Priority of system handler 4, MemManage.

220 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.10 System Handler Priority Register 2

Name: SCB_SHPR2

Access: Read/Write
31 30 29 28 27 26 25 24

| PRI_11 |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - I - |
* PRI_11: Priority
Priority of system handler 11, SVCall.

SAMA4S Series [DATASHEET 221
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.11 System Handler Priority Register 3

Name: SCB_SHPR3

Access: Read/Write
31 30 29 28 27 26 25 24

| PRI_15 |
23 22 21 20 19 18 17 16

| PRI_14 |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - I - |
* PRI_15: Priority
Priority of system handler 15, SysTick exception.

* PRI_14: Priority
Priority of system handler 14, PendSV.

222 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.12 System Handler Control and State Register

Name: SCB_SHCSR

Access: Read/Write
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - [USGFAULTENA|BUSFAULTENAMEMFAULTENA
15 14 13 12 11 10 9 8

SVCALLPENDED BUSFAEE'-)TPEND MEMFAEE%TPEND USGFAE’E';TPEND SYSTICKACT | PENDSVACT - MONITORACT
7 6 5 4 3 2 1 0

[SVCALLACT | - | - | - [USGFAULTACT] - [BUSFAULTACT [MEMFAULTACT|

The SHCSR enables the system handlers, and indicates the pending status of the bus fault, memory management fault,
and SVC exceptions; it also indicates the active status of the system handlers.

» USGFAULTENA: Usage Fault Enable
0: Disables the exception.
1: Enables the exception.

» BUSFAULTENA: Bus Fault Enable
0: Disables the exception.
1: Enables the exception.

* MEMFAULTENA: Memory Management Fault Enable
0: Disables the exception.
1: Enables the exception.

» SVCALLPENDED: SVC Call Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

e BUSFAULTPENDED: Bus Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

SAMA4S Series [DATASHEET 223
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

+ MEMFAULTPENDED: Memory Management Fault Exception Pending
Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

* USGFAULTPENDED: Usage Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

e SYSTICKACT: SysTick Exception Active
Read:
0: The exception is not active.

1: The exception is active.

Note: The user can write to these bits to change the active status of the exceptions.
- Caution: A software that changes the value of an active bit in this register without a correct adjustment to the stacked content
can cause the processor to generate a fault exception. Ensure that the software writing to this register retains and subsequently
restores the current active status.
- Caution: After enabling the system handlers, to change the value of a bit in this register, the user must use a read-modify-write
procedure to ensure that only the required bit is changed.

« PENDSVACT: PendSV Exception Active

0: The exception is not active.

1: The exception is active.

* MONITORACT: Debug Monitor Active
0: Debug monitor is not active.
1: Debug monitor is active.

« SVCALLACT: SVC Call Active
0: SVC call is not active.
1: SVC call is active.

 USGFAULTACT: Usage Fault Exception Active
0: Usage fault exception is not active.
1: Usage fault exception is active.

 BUSFAULTACT: Bus Fault Exception Active
0: Bus fault exception is not active.
1: Bus fault exception is active.

« MEMFAULTACT: Memory Management Fault Exception Active
0: Memory management fault exception is not active.

1: Memory management fault exception is active.

224 SAMA4S Series [DATASHEET] /ItmeL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

If the user disables a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

The user can write to this register to change the pending or active status of system exceptions. An OS kernel can write to
the active bits to perform a context switch that changes the current exception type.

12.9.1.13 Configurable Fault Status Register

Name: SCB_CFSR

Access: Read/Write
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | DIVBYZERO | UNALIGNED |
23 22 21 20 19 18 17 16

| - | - | - | - | NOCP | INVPC | INVSTATE | UNDEFINSTR |
15 14 13 12 11 10 9 8

| BFARVALID | - | _ | STKERR | UNSTKERR |IMPRECISERR| PRECISERR| IBUSERR |
7 6 5 4 3 2 1 0

| MMARVALID | - | _ | MSTKERR |MUNSTKERR| - | DACCVIOL | IACCVIOL |

* IACCVIOL: Instruction Access Violation Flag

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No instruction access violation fault.

1: The processor attempted an instruction fetch from a location that does not permit execution.
This fault occurs on any access to an XN region, even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not
written a fault address to the SCB_MMFAR.

» DACCVIOL: Data Access Violation Flag

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No data access violation fault.

1: The processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded
the SCB_MMFAR with the address of the attempted access.

« MUNSTKERR: Memory Manager Fault on Unstacking for a Return From Exception
This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No unstacking fault.

1: Unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The proces-
sor has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a
fault address to the SCB_MMFAR.

SAMA4S Series [DATASHEET 225
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

» MSTKERR: Memory Manager Fault on Stacking for Exception Entry
This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No stacking fault.

1: Stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor
has not written a fault address to SCB_ MMFAR.

* MMARVALID: Memory Management Fault Address Register (SCB_MMFAR) Valid Flag
This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: The value in SCB_MMFAR is not a valid fault address.

1: SCB_MMFAR holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set
this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose SCB_MMFAR
value has been overwritten.

* IBUSERR: Instruction Bus Error

This is part of “BFSR: Bus Fault Status Subregister” .
0: No instruction bus error.

1: Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

* PRECISERR: Precise Data Bus Error
This is part of “BFSR: Bus Fault Status Subregister” .
0: No precise data bus error.

1: A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused
the fault.

When the processor sets this bit to 1, it writes the faulting address to the SCB_BFAR.

* IMPRECISERR: Imprecise Data Bus Error
This is part of “BFSR: Bus Fault Status Subregister” .
0: No imprecise data bus error.

1: A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the
error.

When the processor sets this bit to 1, it does not write a fault address to the SCB_BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority pro-
cesses. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects
that both this bit and one of the precise fault status bits are set to 1.

226 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

 UNSTKERR: Bus Fault on Unstacking for a Return From Exception
This is part of “BFSR: Bus Fault Status Subregister” .

0: No unstacking fault.

1: Unstack for an exception return has caused one or more bus faults.

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still
present. The processor does not adjust the SP from the failing return, does not performed a new save, and does not write
a fault address to the BFAR.

» STKERR: Bus Fault on Stacking for Exception Entry

This is part of “BFSR: Bus Fault Status Subregister” .

0: No stacking fault.

1: Stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incor-
rect. The processor does not write a fault address to the SCB_BFAR.

« BFARVALID: Bus Fault Address Register (BFAR) Valid flag
This is part of “BFSR: Bus Fault Status Subregister” .

0: The value in SCB_BFAR is not a valid fault address.

1. SCB_BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a
memory management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This
prevents problems if returning to a stacked active bus fault handler whose SCB_BFAR value has been overwritten.

* UNDEFINSTR: Undefined Instruction Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No undefined instruction usage fault.

1: The processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.
An undefined instruction is an instruction that the processor cannot decode.

» INVSTATE: Invalid State Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No invalid state usage fault.

1: The processor has attempted to execute an instruction that makes illegal use of the EPSR.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal
use of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

e INVPC: Invalid PC Load Usage Fault
This is part of “UFSR: Usage Fault Status Subregister” . It is caused by an invalid PC load by EXC_RETURN:
0: No invalid PC load usage fault.

1: The processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

SAMA4S Series [DATASHEET 227
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the ille-
gal load of the PC.

« NOCP: No Coprocessor Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” . The processor does not support coprocessor instructions:
0: No usage fault caused by attempting to access a coprocessor.

1: The processor has attempted to access a coprocessor.

« UNALIGNED: Unaligned Access Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No unaligned access fault, or unaligned access trapping not enabled.
1: The processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the SCB_CCR to 1. See “Configuration and
Control Register” . Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of
UNALIGN_TRP.

* DIVBYZERO: Divide by Zero Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No divide by zero fault, or divide by zero trapping not enabled.

1: The processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed
the divide by zero. Enable trapping of divide by zero by setting the DIV_0_TRP bit in the SCB_CCR to 1. See “Configura-
tion and Control Register” .

228 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.14 Configurable Fault Status Register (Byte Access)

Name: SCB_CFSR (BYTE)

Access: Read/Write
31 30 29 28 27 26 25 24

| UFSR |
23 22 21 20 19 18 17 16

| UFSR |
15 14 13 12 11 10 9 8

| BFSR |
7 6 5 4 3 2 1 0

| MMFSR |

* MMFSR: Memory Management Fault Status Subregister

The flags in the MMFSR subregister indicate the cause of memory access faults. See bitfield [7..0] description in Section
12.9.1.13.

* BFSR: Bus Fault Status Subregister

The flags in the BFSR subregister indicate the cause of a bus access fault. See hitfield [14..8] description in Section
12.9.1.13.

» UFSR: Usage Fault Status Subregister

The flags in the UFSR subregister indicate the cause of a usage fault. See bitfield [31..15] description in Section 12.9.1.13.

Note: The UFSR bits are sticky. This means that as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to 0 only by wrting a 1 to that bit, or by a reset.

The SCB_CFSR indicates the cause of a memory management fault, bus fault, or usage fault. It is byte accessible. The
user can access the SCB_CFSR or its subregisters as follows:

» Access complete SCB_CFSR with a word access to 0OxEOOOED28
» Access MMFSR with a byte access to 0OxEOOOED28

» Access MMFSR and BFSR with a halfword access to OXEOOOED28
» Access BFSR with a byte access to OXEOOOED29

» Access UFSR with a halfword access to OXEOOOED2A.

SAMA4S Series [DATASHEET 229
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.15 Hard Fault Status Register

Name: SCB_HFSR
Access: Read/Write
31 30 29 28 27 26 25 24

| DEBUGEVT | FORCED | - | - | - | — | - | — |

23 22 21 20 19 18 17 16

. - r - r -+ -+ -1 - ¢ - [- |
15 14 13 12 11 10 9 8

. - r - r -+ -+ - 1 - ¢ - [- |
7 6 5 4 3 2 1 0

. - r - r - - - [- [veerms | - |

The SCB_HFSR gives information about events that activate the hard fault handler. This register is read, write to clear.
This means that bits in the register read normally, but wrting a 1 to any bit clears that bit to 0.

 DEBUGEVT: Reserved for Debug Use
When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

» FORCED: Forced Hard Fault

It indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either
because of priority or because it is disabled:

0: No forced hard fault.
1: Forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.

* VECTTBL: Bus Fault on a Vector Table

It indicates a bus fault on a vector table read during an exception processing:
0: No bus fault on vector table read.

1: Bus fault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

Note: The HFSR bits are sticky. This means that, as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to 0 only by wrting a 1 to that bit, or by a reset.

230 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.16 MemManage Fault Address Register

Name: SCB_MMFAR

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

The SCB_MMFAR contains the address of the location that generated a memory management fault.

 ADDRESS: Memory Management Fault Generation Location Address

When the MMARVALID bit of the MMFSR subregister is set to 1, this field holds the address of the location that generated

the memory management fault.

Notes: 1. When an unaligned access faults, the address is the actual address that faulted. Because a single read or write instruction

can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size.

2. Flags in the MMFSR subregister indicate the cause of the fault, and whether the value in the SCB_MMFAR is valid. See

Atmel

“MMFSR: Memory Management Fault Status Subregister” .

SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

231

12.9.1.17 Bus Fault Address Register

Name: SCB_BFAR

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

The SCB_BFAR contains the address of the location that generated a bus fault.

» ADDRESS: Bus Fault Generation Location Address

When the BFARVALID bit of the BFSR subregister is set to 1, this field holds the address of the location that generated the
bus fault.

Notes: 1. When an unaligned access faults, the address in the SCB_BFAR is the one requested by the instruction, even if it is not the
address of the fault.

2. Flags in the BFSR indicate the cause of the fault, and whether the value in the SCB_BFAR is valid. See “BFSR: Bus Fault
Status Subregister” .

232 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.10 System Timer (SysTick)

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads (wraps
to) the value in the SYST_RVR on the next clock edge, then counts down on subsequent clocks.

When the processor is halted for debugging, the counter does not decrement.

The SysTick counter runs on the processor clock. If this clock signal is stopped for low power mode, the SysTick
counter stops.
Ensure that the software uses aligned word accesses to access the SysTick registers.
The SysTick counter reload and current value are undefined at reset; the correct initialization sequence for the
SysTick counter is:

1. Program the reload value.

2. Clear the current value.

3. Program the Control and Status register.

SAMA4S Series [DATASHEET 233
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.10.1 System Timer (SysTick) User Interface

Table 12-34. System Timer (SYST) Register Mapping

Offset Register Name Access Reset
OxEOOOEO010 SysTick Control and Status Register SYST_CSR Read/Write 0x00000000
OxEOOOEO014 SysTick Reload Value Register SYST_RVR Read/Write Unknown
OxEOOOE018 SysTick Current Value Register SYST_CVR Read/Write Unknown
OXEOOOEO1C SysTick Calibration Value Register SYST_CALIB Read-only 0x000030D4

234 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.10.1.1 SysTick Control and Status Register

Name: SYST_CSR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | — | - | — | - | - | - |COUNTFLAG|
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - |CLKSOURCE| TICKINT | ENABLE |

The SysTick SYST_CSR enables the SysTick features.

* COUNTFLAG: Count Flag
Returns 1 if the timer counted to 0 since the last time this was read.

* CLKSOURCE: Clock Source
Indicates the clock source:

0: External Clock.

1: Processor Clock.

» TICKINT: SysTick Exception Request Enable

Enables a SysTick exception request:

0: Counting down to zero does not assert the SysTick exception request.

1: Counting down to zero asserts the SysTick exception request.

The software can use COUNTFLAG to determine if SysTick has ever counted to zero.

* ENABLE: Counter Enable
Enables the counter:

0: Counter disabled.

1: Counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR and then counts down. On reaching
0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then loads the
RELOAD value again, and begins counting.

SAMA4S Series [DATASHEET 235
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.10.1.2 SysTick Reload Value Registers

Name: SYST_RVR

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| RELOAD |
15 14 13 12 11 10 9 8

| RELOAD |
7 6 5 4 3 2 1 0

| RELOAD |

The SYST_RVR specifies the start value to load into the SYST_CVR.

* RELOAD: SYST_CVR Load Value

Value to load into the SYST_CVR when the counter is enabled and when it reaches 0.

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value of 0 is possible, but has no

effect because the SysTick exception request and COUNTFLAG are activated when counting from 1 to O.

The RELOAD value is calculated according to its use: For example, to generate a multi-shot timer with a period of N pro-
cessor clock cycles, use a RELOAD value of N-1. If the SysTick interrupt is required every 100 clock pulses, set RELOAD

to 99.

236

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

12.10.1.3 SysTick Current Value Register

Name: SYST_CVR

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| CURRENT |
15 14 13 12 11 10 9 8

| CURRENT |
7 6 5 4 3 2 1 0

| CURRENT |

The SysTick SYST_CVR contains the current value of the SysTick counter.

» CURRENT: SysTick Counter Current Value
Reads return the current value of the SysTick counter.
A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to 0.

SAMA4S Series [DATASHEET 237
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.10.1.4 SysTick Calibration Value Register

Name: SYST_CALIB

Access: Read/Write
31 30 29 28 27 26 25 24

| NOREF | SKEW | - — — - - - |
23 22 21 20 19 18 17 16

| TENMS |
15 14 13 12 11 10 9 8

| TENMS |
7 6 5 4 3 2 1 0

| TENMS |

The SysTick SYST_CSR indicates the SysTick calibration properties.

» NOREF: No Reference Clock

It indicates whether the device provides a reference clock to the processor:

0: Reference clock provided.

1: No reference clock provided.

If your device does not provide a reference clock, the SYST_CSR.CLKSOURCE bit reads-as-one and ignores writes.

o SKEW: TENMS Value Verification

It indicates whether the TENMS value is exact:

0: TENMS value is exact.

1: TENMS value is inexact, or not given.

An inexact TENMS value can affect the suitability of SysTick as a software real time clock.

« TENMS: Ten Milliseconds

The reload value for 10 ms (100 Hz) timing is subject to system clock skew errors. If the value reads as zero, the calibra-
tion value is not known.

The TENMS field default value is 0x000030D4 (12500 decimal).

In order to achieve a 1 ms timebase on SystTick, the TENMS field must be programmed to a value corresponding to the
processor clock frequency (in kHz) divided by 8.

For example, for devices running the processor clock at 48 MHz, the TENMS field value must be 0x0001770
(48000 kHz/8).

238 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.11 Memory Protection Unit (MPU)
The MPU divides the memory map into a number of regions, and defines the location, size, access permissions,
and memory attributes of each region. It supports:
e Independent attribute settings for each region
e Overlapping regions
e Export of memory attributes to the system.
The memory attributes affect the behavior of memory accesses to the region. The Cortex-M4 MPU defines:
e Eight separate memory regions, 0—7
e A background region.
When memory regions overlap, a memory access is affected by the attributes of the region with the highest

number. For example, the attributes for region 7 take precedence over the attributes of any region that overlaps
region 7.

The background region has the same memory access attributes as the default memory map, but is accessible
from privileged software only.

The Cortex-M4 MPU memory map is unified. This means that instruction accesses and data accesses have the
same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a memory
management fault. This causes a fault exception, and might cause the termination of the process in an OS
environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be
executed. Typically, an embedded OS uses the MPU for memory protection.

The configuration of MPU regions is based on memory types (see “Memory Regions, Types and Attributes”).

Table 12-35 shows the possible MPU region attributes. These include Share ability and cache behavior attributes
that are not relevant to most microcontroller implementations. See “MPU Configuration for a Microcontroller” for
guidelines for programming such an implementation.

Table 12-35. Memory Attributes Summary

Memory Type Shareability | Other Attributes Description

All accesses to Strongly-ordered memory occur in program order. All

Strongly-ordered B B Strongly-ordered regions are assumed to be shared.

Shared - Memory-mapped peripherals that several processors share.
Device
Non-shared - Memory-mapped peripherals that only a single processor uses.
Non-cacheable Write-
Shared through Cacheable Normal memory that is shared between several processors.
Write-back Cacheable
Normal

Non-cacheable Write-
Non-shared through Cacheable Normal memory that only a single processor uses.
Write-back Cacheable

12.11.1 MPU Access Permission Attributes

This section describes the MPU access permission attributes. The access permission bits (TEX, C, B, S, AP, and
XN) of the MPU_RASR control the access to the corresponding memory region. If an access is made to an area of
memory without the required permissions, then the MPU generates a permission fault.

SAMA4S Series [DATASHEET 239
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

The table below shows the encodings for the TEX, C, B, and S access permission bits.

Table 12-36. TEX, C, B, and S Encoding

TEX C B S Memory Type Shareability | Other Attributes
0 0 | x® | strongly-ordered | Shareable -
1 | x| Device Shareable -
Not . .
0 0 Normal shareable Oqter and inner write-through. No
b000 write allocate.
1 Shareable
1
0 Not _ _ .
1 Normal shareable Outer and inner write-back. No write
allocate.
1 Shareable
0 Not
0 0 Normal shareable Outer and inner noncacheable.
1 Shareable
1 | x® | Reserved encoding -
b001 0 | x® Implementation defined a
attributes.
1 0 Not _ _ _
1 Normal shareable Outer and inner write-back. Write and
read allocate.
1 Shareable
0 | x® | Device Not Nonshared Device.
0 shareable
b010 1 | x% | Reserved encoding -
1 | x® | x® | Reserved encoding -
0 Not]
biBB | A A Normal shareable Caclulsd memory BB = outer policy,
AA = inner policy.
1 Shareable

Note: 1. The MPU ignores the value of this bit.
Table 12-37 shows the cache policy for memory attribute encodings with a TEX value is in the range 4-7.

Table 12-37. Cache Policy for Memory Attribute Encoding

Encoding, AA or BB Corresponding Cache Policy
00 Non-cacheable
01 Write back, write and read allocate
10 Write through, no write allocate
11 Write back, no write allocate
240 SAMA4S Series [DATASHEET)] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 12-38 shows the AP encodings that define the access permissions for privileged and unprivileged software.

Table 12-38. AP Encoding
Privileged Unprivileged
AP[2:0] | Permissions Permissions Description
000 No access No access All accesses generate a permission fault
001 RW No access Access from privileged software only
010 RW RO Writes by unprivileged software generate a permission
fault
011 RW RW Full access
100 Unpredictable Unpredictable | Reserved
101 RO No access Reads by privileged software only
110 RO RO Read only, by privileged or unprivileged software
111 RO RO Read only, by privileged or unprivileged software

12,1111

MPU Mismatch

When an access violates the MPU permissions, the processor generates a memory management fault, see
“Exceptions and Interrupts” . The MMFSR indicates the cause of the fault. See “MMFSR: Memory Management
Fault Status Subregister” for more information.

12.11.1.2

Updating an MPU Region

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and MPU_RASRSs. Each register
can be programed separately, or a multiple-word write can be used to program all of these registers. MPU_RBAR
and MPU_RASR aliases can be used to program up to four regions simultaneously using an STM instruction.

12.11.1.3

Simple code to configure one region:

Rl = regi on nunber
R2 = sizel/enable
R3 = attributes
R4 = address

LDR RO, =MPU_RNR

STR R1,
STR R4,
STRH R2,
STRH R3,

[RO, #0x0]

[RO, #0x4]
[RO, #0x8]
[RO, #O0xA]

Updating an MPU Region Using Separate Words

OxXEOOOED98, MPU regi on nunber register
Regi on Numrber

Regi on Base Address

Regi on Si ze and Enabl e

Regi on Attribute

Disable a region before writing new region settings to the MPU, if the region being changed was previously
enabled. For example:

Rl = regi on numrber

; R2 = sizel/enable
; R3 = attributes

; R4 = address

LDR RO, =MPU_RNR
STR R1, [RO, #0x0]
BIC R, R2, #1
STRH R2, [RO, #0x8]
STR R4, [RO, #0x4]
STRH R3, [RO, #O0xA]
ORR R2, #1

Atmel

; OXEOOOED98, MPU regi on nunber register
; Regi on Nunber

; Disable

; Region Size and Enabl e

; Regi on Base Address

; Region Attribute

; Enabl e

SAMA4S Series [DATASHEET] 241

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

STRH R2, [RO, #0x8] ; Region Size and Enabl e

The software must use memory barrier instructions:

e Before the MPU setup, if there might be outstanding memory transfers, such as buffered writes, that might
be affected by the change in MPU settings
e After the MPU setup, if it includes memory transfers that must use the new MPU settings.

However, memory barrier instructions are not required if the MPU setup process starts by entering an exception
handler, or is followed by an exception return, because the exception entry and exception return mechanisms
cause memory barrier behavior.

The software does not need any memory barrier instructions during an MPU setup, because it accesses the MPU
through the PPB, which is a Strongly-Ordered memory region.

For example, if the user wants all of the memory access behavior to take effect immediately after the programming
sequence, a DSB instruction and an ISB instruction must be used. A DSB is required after changing MPU settings,
such as at the end of a context switch. An ISB is required if the code that programs the MPU region or regions is
entered using a branch or call. If the programming sequence is entered using a return from exception, or by taking
an exception, then an ISB is not required.

12.11.1.4 Updating an MPU Region Using Multi-word Writes

The user can program directly using multi-word writes, depending on how the information is divided. Consider the
following reprogramming:
; RL = region nunber

; R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register
STR R1, [RO, #0x0] ; Region Nunber

STR R2, [RO, #0x4] ; Region Base Address

STR R3, [RO, #0x8] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:
; RL = region nunber

; R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register

STM RO, {R1l-R3} ; Region Nunber, address, attribute, size and enable

This can be done in two words for pre-packed information. This means that the MPU_RBAR contains the required
region number and had the VALID bit set to 1. See “MPU Region Base Address Register” . Use this when the data
is statically packed, for example in a boot loader:

; RL = address and region nunber in one

; R2 = size and attributes in one

LDR RO, =MPU RBAR ; OxEOOOEDOC, MPU Regi on Base register
STR R1, [RO, #0x0] ; Region base address and

; region nunmber conbined with VALID (bit 4) set to 1
STR R2, [RO, #0x4] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:
; RL = address and regi on nunber in one
; RR = size and attributes in one
LDR RO, =MPU_RBAR ; OXEOOOED9C, MPU Regi on Base regi ster

242 SAMA4S Series [DATASHEET] /ItmeL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

STM RO, {R1l-R2} ; Regi on base address, region nunber and VALID bit,
; and Region Attribute, Size and Enabl e

12.11.1.5 Subregions

Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in the SRD
field of the MPU_RASR field to disable a subregion. See “MPU Region Attribute and Size Register” . The least
significant bit of SRD controls the first subregion, and the most significant bit controls the last subregion. Disabling
a subregion means another region overlapping the disabled range matches instead. If no other enabled region
overlaps the disabled subregion, the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions. With regions of these sizes, the SRD field must be
set to 0x00, otherwise the MPU behavior is unpredictable.

12.11.1.6 Example of SRD Use

Two regions with the same base address overlap. Region 1 is 128 KB, and region 2 is 512 KB. To ensure the
attributes from region 1 apply to the first 128 KB region, set the SRD field for region 2 to bO0000011 to disable the
first two subregions, as in Figure 12-13 below:

Figure 12-13. SRD Use

Region 2, with Offset from
subregions base address
512KB
448KB
384KB
320KB
256KB
Region 1 192KB

128KB
Disabled subregion

64KB
Disabled subregi
Base address of both regions 15a0 ec subregion 0

12.11.1.7 MPU Design Hints And Tips
To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt
handlers might access.
Ensure the software uses aligned accesses of the correct size to access MPU registers:
e Except for the MPU_RASR, it must use aligned word accesses
e Forthe MPU_RASR, it can use byte or aligned halfword or word accesses.
The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent
any previous region settings from affecting the new MPU setup.

MPU Configuration for a Microcontroller

Usually, a microcontroller system has only a single processor and no caches. In such a system, program the MPU
as follows:

Table 12-39. Memory Region Attributes for a Microcontroller

Memory Region | TEX C | B | S | Memory Type and Attributes

Flash memory b000 1 | 0 | 0 | Normal memory, non-shareable, write-through
Internal SRAM b000 1 | 0 | 1 | Normal memory, shareable, write-through

External SRAM b000 1 | 1 | 1 | Normal memory, shareable, write-back, write-allocate
Peripherals b000 0 | 1 | 1 | Device memory, shareable

SAMA4S Series [DATASHEET 243
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

In most microcontroller implementations, the shareability and cache policy attributes do not affect the system
behavior. However, using these settings for the MPU regions can make the application code more portable. The
values given are for typical situations. In special systems, such as multiprocessor designs or designs with a
separate DMA engine, the shareability attribute might be important. In these cases, refer to the recommendations
of the memory device manufacturer.

244 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.11.2 Memory Protection Unit (MPU) User Interface

Table 12-40. Memory Protection Unit (MPU) Register Mapping

Offset Register Name Access Reset

OxXEOOOED90 MPU Type Register MPU_TYPE Read-only 0x00000800
OXEOOOED94 MPU Control Register MPU_CTRL Read/Write | 0x00000000
OXEOOOED98 MPU Region Number Register MPU_RNR Read/Write | 0x00000000
OXEOOOED9C | MPU Region Base Address Register MPU_RBAR Read/Write | 0x00000000
OXEOOOEDAO MPU Region Attribute and Size Register MPU_RASR Read/Write | 0x00000000
OXEOOOEDA4 MPU Region Base Address Register Alias 1 MPU_RBAR_A1 | Read/Write | 0x00000000
OXEOOOEDAS8 MPU Region Attribute and Size Register Alias 1 MPU_RASR_A1l Read/Write | 0x00000000
OXEOOOEDAC | MPU Region Base Address Register Alias 2 MPU_RBAR_A2 | Read/Write | 0x00000000
OxEOOOEDBO MPU Region Attribute and Size Register Alias 2 MPU_RASR_A2 | Read/Write | 0x00000000
OxXEOOOEDB4 | MPU Region Base Address Register Alias 3 MPU_RBAR_A3 | Read/Write | 0x00000000
OXEOOOEDBS MPU Region Attribute and Size Register Alias 3 MPU_RASR_A3 | Read/Write | 0x00000000

Atmel

SAM4S Series [DATASHEET] 245

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.11.2.1 MPU Type Register

Name: MPU_TYPE

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| IREGION |
15 14 13 12 11 10 9 8

| DREGION |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | SEPARATE |

The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it supports.

* IREGION: Instruction Region
Indicates the number of supported MPU instruction regions.
Always contains 0x00. The MPU memory map is unified and is described by the DREGION field.

* DREGION: Data Region
Indicates the number of supported MPU data regions:
0x08 = Eight MPU regions.

» SEPARATE: Separate Instruction
Indicates support for unified or separate instruction and date memory maps:
0: Unified.

246 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.11.2.2 MPU Control Register

Name: MPU_CTRL

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | - | - | - | - |PRIVDEFENA| HENMIENA | ENABLE |

The MPU CTRL register enables the MPU, enables the default memory map background region, and enables the use of
the MPU when in the hard fault, Non-maskable Interrupt (NMI), and FAULTMASK escalated handlers.

 PRIVDEFENA: Privileged Default Memory Map Enable
Enables privileged software access to the default memory map:

0: If the MPU is enabled, disables the use of the default memory map. Any memory access to a location not covered by
any enabled region causes a fault.

1: If the MPU is enabled, enables the use of the default memory map as a background region for privileged software
accesses.

When enabled, the background region acts as a region number -1. Any region that is defined and enabled has priority over
this default map.

If the MPU is disabled, the processor ignores this bit.

* HFNMIENA: Hard Fault and NMI Enable

Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers.

When the MPU is enabled:

0: MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit.
1. The MPU is enabled during hard fault, NMI, and FAULTMASK handlers.

When the MPU is disabled, if this bit is set to 1, the behavior is unpredictable.

« ENABLE: MPU Enable

Enables the MPU:

0: MPU disabled.

1: MPU enabled.

When ENABLE and PRIVDEFENA are both set to 1:

* For privileged accesses, the default memory map is as described in “Memory Model” . Any access by privileged
software that does not address an enabled memory region behaves as defined by the default memory map.

» Any access by unprivileged software that does not address an enabled memory region causes a memory management
fault.

SAMA4S Series [DATASHEET 247
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to function unless
the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled, then only privileged soft-
ware can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes as if the
MPU is not implemented. The default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are
accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an exception with
priority —1 or —2. These priorities are only possible when handling a hard fault or NMI exception, or when FAULTMASK is
enabled. Setting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

248 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.11.2.3 MPU Region Number Register

Name: MPU_RNR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| REGION |

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and MPU_RASRs.

» REGION: MPU Region Referenced by the MPU_RBAR and MPU_RASRs
Indicates the MPU region referenced by the MPU_RBAR and MPU_RASRSs.
The MPU supports 8 memory regions, so the permitted values of this field are 0-7.

Normally, the required region number is written to this register before accessing the MPU_RBAR or MPU_RASR. How-
ever, the region number can be changed by writing to the MPU_RBAR with the VALID bit set to 1; see “MPU Region Base
Address Register” . This write updates the value of the REGION field.

SAMA4S Series [DATASHEET 249
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.11.2.4 MPU Region Base Address Register

Name: MPU_RBAR

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR | VALID | REGION |

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

» ADDR: Region Base Address

Software must ensure that the value written to the ADDR field aligns with the size of the selected region (SIZE field in the
MPU_RASR).

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies
the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB,
for example, at 0x00010000 or 0x00020000.

* VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for
the region specified in the REGION field.

Always reads as zero.

 REGION: MPU Region
For the behavior on writes, see the description of the VALID field.
On reads, returns the current region number, as specified by the MPU_RNR.

250 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.11.2.5 MPU Region Attribute and Size Register

Name: MPU_RASR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - XN - I AP |
23 22 21 20 19 18 17 16

| — | - | TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | - | SIZE | ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and
enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
» The most significant halfword holds the region attributes.
 The least significant halfword holds the region size, and the region and subregion enable bits.

* XN: Instruction Access Disable
0: Instruction fetches enabled.
1: Instruction fetches disabled.

* AP: Access Permission
See Table 12-38.

* TEX, C, B: Memory Access Attributes
See Table 12-36.

* S: Shareable
See Table 12-36.

¢ SRD: Subregion Disable

For each bit in this field:

0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

SAMA4S Series [DATASHEET 251
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

e SIZE: Size of the MPU Protection Region

The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:
(Region size in bytes) = 2(51Z&+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU RBAR.

SIZE Value Region Size Value of N Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1KB 10 -

b10011 (19) 1MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR,; see “MPU Region Base Address Register”

« ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes” .

252 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.11.2.6 MPU Region Base Address Register Alias 1

Name: MPU_RBAR_A1

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR | VALID | REGION |

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

* ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified
by the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies
the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB,
for example, at 0x00010000 or 0x00020000.

* VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for
the region specified in the REGION field.

Always reads as zero.

 REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

SAMA4S Series [DATASHEET 253
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.11.2.7 MPU Region Attribute and Size Register Alias 1

Name: MPU_RASR_A1

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - XN - I AP |
23 22 21 20 19 18 17 16

| - | TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | - | SIZE | ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and
enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
» The most significant halfword holds the region attributes.
 The least significant halfword holds the region size, and the region and subregion enable bits.

* XN: Instruction Access Disable
0: Instruction fetches enabled.
1: Instruction fetches disabled.

* AP: Access Permission
See Table 12-38.

* TEX, C, B: Memory Access Attributes
See Table 12-36.

* S: Shareable
See Table 12-36.

¢ SRD: Subregion Disable

For each bit in this field:

0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

254 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

e SIZE: Size of the MPU Protection Region

The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:
(Region size in bytes) = 2(517&+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU RBAR.

SIZE Value Region Size Value of N Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1KB 10 -

b10011 (19) 1MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR,; see “MPU Region Base Address Register”

« ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes” .

SAMA4S Series [DATASHEET 255
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.11.2.8 MPU Region Base Address Register Alias 2

Name: MPU_RBAR_A2

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR | VALID | REGION |

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

* ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified
by the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies
the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB,
for example, at 0x00010000 or 0x00020000.

* VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for
the region specified in the REGION field.

Always reads as zero.

 REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

256 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.11.2.9 MPU Region Attribute and Size Register Alias 2

Name: MPU_RASR_A2

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - XN - I AP |
23 22 21 20 19 18 17 16

| — | - | TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | - | SIZE | ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and
enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
» The most significant halfword holds the region attributes.
 The least significant halfword holds the region size, and the region and subregion enable bits.

* XN: Instruction Access Disable
0: Instruction fetches enabled.
1: Instruction fetches disabled.

* AP: Access Permission
See Table 12-38.

* TEX, C, B: Memory Access Attributes
See Table 12-36.

* S: Shareable
See Table 12-36.

¢ SRD: Subregion Disable

For each bit in this field:

0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

SAMA4S Series [DATASHEET 257
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

e SIZE: Size of the MPU Protection Region

The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:
(Region size in bytes) = 2(51Z&+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU RBAR.

SIZE Value Region Size Value of N Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1KB 10 -

b10011 (19) 1MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR,; see “MPU Region Base Address Register”

« ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes” .

258 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.11.2.10 MPU Region Base Address Register Alias 3

Name: MPU_RBAR_A3

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR | VALID | REGION |

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

* ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified
by the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies
the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB,
for example, at 0x00010000 or 0x00020000.

* VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for
the region specified in the REGION field.

Always reads as zero.

 REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

SAMA4S Series [DATASHEET 259
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.11.2.11 MPU Region Attribute and Size Register Alias 3

Name: MPU_RASR_A3

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - XN - I AP |
23 22 21 20 19 18 17 16

| — | - | TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | - | SIZE | ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and
enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
» The most significant halfword holds the region attributes.
 The least significant halfword holds the region size, and the region and subregion enable bits.

* XN: Instruction Access Disable
0: Instruction fetches enabled.
1: Instruction fetches disabled.

* AP: Access Permission
See Table 12-38.

* TEX, C, B: Memory Access Attributes
See Table 12-36.

* S: Shareable
See Table 12-36.

¢ SRD: Subregion Disable

For each bit in this field:

0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

260 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

e SIZE: Size of the MPU Protection Region

The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:
(Region size in bytes) = 2(517&+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU RBAR.

SIZE Value Region Size Value of N Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1KB 10 -

b10011 (19) 1MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR,; see “MPU Region Base Address Register”

« ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes” .

SAMA4S Series [DATASHEET 261
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.12 Glossary

This glossary describes some of the terms used in technical documents from ARM.

Abort A mechanism that indicates to a processor that the value associated with a memory access is invalid.

An abort can be caused by the external or internal memory system as a result of attempting to access
invalid instruction or data memory.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the data size is

said to be aligned. Aligned words and halfwords have addresses that are divisible by four and two
respectively. The terms word-aligned and halfword-aligned therefore stipulate addresses that are
divisible by four and two respectively.

Banked register A register that has multiple physical copies, where the state of the processor determines which copy is
used. The Stack Pointer, SP (R13) is a banked register.

Base register . . L . o . . .
9 In instruction descriptions, a register specified by a load or store instruction that is used to hold the

base value for the instruction’s address calculation. Depending on the instruction and its addressing
mode, an offset can be added to or subtracted from the base register value to form the address that is
sent to memory.

See also “Index register” .

Big-endian (BE) Byte ordering scheme in which bytes of decreasing significance in a data word are stored at
increasing addresses in memory.

See also “Byte-invariant” , “Endianness” , “Little-endian (LE)" .

Big-endian memory
Memory in which:
a byte or halfword at a word-aligned address is the most significant byte or halfword within the word at
that address,
a byte at a halfword-aligned address is the most significant byte within the halfword at that address.

See also “Little-endian memory” .

Breakpoint
A breakpoint is a mechanism provided by debuggers to identify an instruction at which program
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of register
contents, memory locations, variable values at fixed points in the program execution to test that the
program is operating correctly. Breakpoints are removed after the program is successfully tested.
262 SAMA4S Series [DATASHEET
[: Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Byte-invariant

Cache

Condition field

Conditional execution

Context

Coprocessor

Debugger

Direct Memory Access
(DMA)

Doubleword

Doubleword-aligned

Endianness

Atmel

In a byte-invariant system, the address of each byte of memory remains unchanged when switching
between little-endian and big-endian operation. When a data item larger than a byte is loaded from or
stored to memory, the bytes making up that data item are arranged into the correct order depending
on the endianness of the memory access.

An ARM byte-invariant implementation also supports unaligned halfword and word memory accesses.
It expects multi-word accesses to be word-aligned.

A block of on-chip or off-chip fast access memory locations, situated between the processor and main
memory, used for storing and retrieving copies of often used instructions, data, or instructions and
data. This is done to greatly increase the average speed of memory accesses and so improve
processor performance.

A four-bit field in an instruction that specifies a condition under which the instruction can execute.

If the condition code flags indicate that the corresponding condition is true when the instruction starts
executing, it executes normally. Otherwise, the instruction does nothing.

The environment that each process operates in for a multitasking operating system. In ARM
processors, this is limited to mean the physical address range that it can access in memory and the
associated memory access permissions.

A processor that supplements the main processor. Cortex-M4 does not support any coprocessors.

A debugging system that includes a program, used to detect, locate, and correct software faults,
together with custom hardware that supports software debugging.

An operation that accesses main memory directly, without the processor performing any accesses to
the data concerned.

A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise stated.

A data item having a memory address that is divisible by eight.

Byte ordering. The scheme that determines the order that successive bytes of a data word are stored
in memory. An aspect of the system’s memory mapping.

See also “Little-endian (LE)” and “Big-endian (BE)” .

SAM4S Series [DATASHEET] 263

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Exception

Exception service routine

Exception vector

Flat address mapping

Halfword

lllegal instruction

Implementation-defined

Implementation-specific

Index register

Instruction cycle count

Interrupt handler

Interrupt vector

264 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

An event that interrupts program execution. When an exception occurs, the processor suspends the
normal program flow and starts execution at the address indicated by the corresponding exception
vector. The indicated address contains the first instruction of the handler for the exception.

An exception can be an interrupt request, a fault, or a software-generated system exception. Faults
include attempting an invalid memory access, attempting to execute an instruction in an invalid
processor state, and attempting to execute an undefined instruction.

See “Interrupt handler” .

See “Interrupt vector” .

A system of organizing memory in which each physical address in the memory space is the same as
the corresponding virtual address.

A 16-bit data item.
An instruction that is architecturally Undefined.

The behavior is not architecturally defined, but is defined and documented by individual
implementations.

The behavior is not architecturally defined, and does not have to be documented by individual
implementations. Used when there are a number of implementation options available and the option
chosen does not affect software compatibility.

In some load and store instruction descriptions, the value of this register is used as an offset to be
added to or subtracted from the base register value to form the address that is sent to memory. Some
addressing modes optionally enable the index register value to be shifted prior to the addition or
subtraction.

See also “Base register” .

The number of cycles that an instruction occupies the Execute stage of the pipeline.

A program that control of the processor is passed to when an interrupt occurs.

One of a number of fixed addresses in low memory, or in high memory if high vectors are configured,
that contains the first instruction of the corresponding interrupt handler.

Atmel

Little-endian (LE)

Little-endian memory

Load/store architecture

Memory Protection Unit
(MPU)

Prefetching

Preserved

Read

Region

Reserved

Thread-safe

Thumb instruction

Atmel

Byte ordering scheme in which bytes of increasing significance in a data word are stored at increasing
addresses in memory.

See also “Big-endian (BE)", “Byte-invariant” , “Endianness” .

Memory in which:

a byte or halfword at a word-aligned address is the least significant byte or halfword within the word at
that address,

a byte at a halfword-aligned address is the least significant byte within the halfword at that address.

See also “Big-endian memory” .

A processor architecture where data-processing operations only operate on register contents, not
directly on memory contents.

Hardware that controls access permissions to blocks of memory. An MPU does not perform any
address translation.

In pipelined processors, the process of fetching instructions from memory to fill up the pipeline before
the preceding instructions have finished executing. Prefetching an instruction does not mean that the
instruction has to be executed.

Preserved by writing the same value back that has been previously read from the same field on the
same processor.

Reads are defined as memory operations that have the semantics of a load. Reads include the Thumb
instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

A partition of memory space.

A field in a control register or instruction format is reserved if the field is to be defined by the
implementation, or produces Unpredictable results if the contents of the field are not zero. These fields
are reserved for use in future extensions of the architecture or are implementation-specific. All
reserved bits not used by the implementation must be written as 0 and read as 0.

In a multi-tasking environment, thread-safe functions use safeguard mechanisms when accessing
shared resources, to ensure correct operation without the risk of shared access conflicts.

One or two halfwords that specify an operation for a processor to perform. Thumb instructions must be
halfword-aligned.

SAM4S Series [DATASHEET] 265

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Unaligned

Undefined

Unpredictable

Warm reset

WA

WB

Word

Write

Write-allocate (WA)

Write-back (WB)

Write buffer

Write-through (WT)

266 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

A data item stored at an address that is not divisible by the number of bytes that defines the data size
is said to be unaligned. For example, a word stored at an address that is not divisible by four.

Indicates an instruction that generates an Undefined instruction exception.

One cannot rely on the behavior. Unpredictable behavior must not represent security holes.
Unpredictable behavior must not halt or hang the processor, or any parts of the system.

Also known as a core reset. Initializes the majority of the processor excluding the debug controller and
debug logic. This type of reset is useful if debugging features of a processor.

See “Write-allocate (WA)” .
See “Write-back (WB)” .
A 32-bit data item.

Writes are defined as operations that have the semantics of a store. Writes include the Thumb
instructions STM, STR, STRH, STRB, and PUSH.

In a write-allocate cache, a cache miss on storing data causes a cache line to be allocated into the
cache.

In a write-back cache, data is only written to main memory when it is forced out of the cache on line
replacement following a cache miss. Otherwise, writes by the processor only update the cache. This is
also known as copyback.

A block of high-speed memory, arranged as a FIFO buffer, between the data cache and main memory,
whose purpose is to optimize stores to main memory.

In a write-through cache, data is written to main memory at the same time as the cache is updated.

Atmel

13. Debug and Test Features

13.1 Description

The SAM4 series microcontrollers feature a number of complementary debug and test capabilities. The Serial
Wire/JTAG Debug Port (SWJ-DP) combining a Serial Wire Debug Port (SW-DP) and JTAG Debug (JTAG-DP) port
is used for standard debugging functions, such as downloading code and single-stepping through programs. It also
embeds a serial wire trace.

13.2 Embedded Characteristics
e Debug access to all memory and registers in the system, including Cortex-M4 register bank when the core is
running, halted, or held in reset
Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access
Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches
Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and system profiling
Instrumentation Trace Macrocell (ITM) for support of printf style debugging
IEEE1149.1 JTAG Boundary scan on all digital pins

Figure 13-1. Debug and Test Block Diagram

T™MS

L) 1

TCK/SWCLK

[]| o

Boundary SWJ-DP i I:l JTAGSEL
TAP I_
I / |:| TDO/TRACESWO
Reset POR
and

Test |:| TST

SAMA4S Series [DATASHEET 267
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

13.3 Application Examples

13.3.1 Debug Environment

Figure 13-2 shows a complete debug environment example. The SWJ-DP interface is used for standard

debugging functions, such as downloading code and single-stepping through the program and viewing core and
peripheral registers.

Figure 13-2. Application Debug Environment Example

/
Host Debugger
PC

SWJ-DP
Emulator/Probe

SWJ-DP
Connector

SAM4

SAM4-based Application Board

13.3.2 Test Environment

Figure 13-3 shows a test environment example (JTAG Boundary scan). Test vectors are sent and interpreted by
the tester. In this example, the “board in test” is designed using a number of JTAG-compliant devices. These
devices can be connected to form a single scan chain.

268 SAMA4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15 /I t m e L

Figure 13-3. Application Test Environment Example

Test Adaptor
Tester
JTAG
Probe
JTAG . :
Connector || Chip np == Chip 2
I
SAM4-based Application Board In Test
13.4 Debug and Test Pin Description
Table 13-1. Debug and Test Signal List

Signal Name Function Type Active Level

Reset/Test
NRST Microcontroller Reset Input/Output Low
TST Test Select Input

SWD/ITAG
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input
TDO/TRACESWO Test Data Out/Trace Asynchronous Data Out Output
TMS/SWDIO Test Mode Select/Serial Wire Input/Output Input
JTAGSEL JTAG Selection Input High

/It L SAMA4S Series [DATASHEET)] 269
me Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

13.5 Functional Description

13.5.1 Test Pin

One dedicated pin, TST, is used to define the device operating mode. When this pin is at low level during power-
up, the device is in normal operating mode. When at high level, the device is in test mode or FFPI mode. The TST
pin integrates a permanent pull-down resistor of about 15 kW,so that it can be left unconnected for normal
operation. Note that when setting the TST pin to low or high level at power up, it must remain in the same state
during the duration of the whole operation.

13.5.2 Debug Architecture
Figure 13-4 shows the Debug Architecture used in the SAM4. The Cortex-M4 embeds five functional units for
debug:
e SWJ-DP (Serial Wire/JTAG Debug Port)
e FPB (Flash Patch Breakpoint)
e DWT (Data Watchpoint and Trace)
e ITM (Instrumentation Trace Macrocell)
e TPIU (Trace Port Interface Unit)
The debug architecture information that follows is mainly dedicated to developers of SWJ-DP Emulators/Probes

and debugging tool vendors for Cortex-M4 based microcontrollers. For further details on SWJ-DP see the Cortex-
M4 technical reference manual.

Figure 13-4. Debug Architecture

DWT

4 watchpoints

FPB
PC sampler SWJ-DP

6 breakpoints

data address sampler
SWD/JTAG
data sampler ™
software trace SWO trace
32 channels
interrupt trace TPIU

time stamping

CPU statistics

13.5.3 Serial Wire/JTAG Debug Port (SWJ-DP)

The Cortex-M4 embeds a SWJ-DP Debug port which is the standard CoreSight™ debug port. It combines Serial
Wire Debug Port (SW-DP), from 2 to 3 pins and JTAG debug Port (JTAG-DP), 5 pins.

By default, the JTAG Debug Port is active. If the host debugger wants to switch to the Serial Wire Debug Port, it
must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables JTAG-DP and
enables SW-DP.

270 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace. The asynchronous TRACE
output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be used with SW-DP, not

JTAG-DP.

Table 13-2. SWJ-DP Pin List
Pin Name JTAG Port Serial Wire Debug Port
TMS/SWDIO T™MS SWDIO
TCK/SWCLK TCK SWCLK
TDI TDI -
TDO/TRACESWO TDO TRACESWO (optional: trace)

SW-DP or JTAG-DP mode is selected when JTAGSEL is low. It is not possible to switch directly between SWJ-DP
and JTAG boundary scan operations. A chip reset must be performed after JTAGSEL is changed.

13.5.3.1 SW-DP and JTAG-DP Selection Mechanism
Debug port selection mechanism is done by sending specific SWDIOTMS sequence. The JTAG-DP is selected by
default after reset.
e Switch from JTAG-DP to SW-DP. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
— Send the 16-bit sequence on SWDIOTMS = 0111100111100111 (0x79E7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
e Switch from SWD to JTAG. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
— Send the 16-bit sequence on SWDIOTMS = 0011110011100111 (Ox3CE7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1

13.5.4 FPB (Flash Patch Breakpoint)

The FPB:
e Implements hardware breakpoints
e Patches code and data from code space to system space.

The FPB unit contains:

e Two literal comparators for matching against literal loads from Code space, and remapping to a
corresponding area in System space.

e Six instruction comparators for matching against instruction fetches from Code space and remapping to a
corresponding area in System space.

e Alternatively, comparators can also be configured to generate a Breakpoint instruction to the processor core
on a match.

13.5.5 DWT (Data Watchpoint and Trace)

The DWT contains four comparators which can be configured to generate the following:
e PC sampling packets at set intervals
e PC or Data watchpoint packets
e Watchpoint event to halt core

SAMA4S Series [DATASHEET 271
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

The DWT contains counters for the items that follow:
e Clock cycle (CYCCNT)
Folded instructions
Load Store Unit (LSU) operations
Sleep Cycles
CPI (all instruction cycles except for the first cycle)
Interrupt overhead

13.5.6 ITM (Instrumentation Trace Macrocell)

The ITM is an application driven trace source that supports printf style debugging to trace Operating System (OS)
and application events, and emits diagnostic system information. The ITM emits trace information as packets
which can be generated by three different sources with several priority levels:

e Software trace: Software can write directly to ITM stimulus registers. This can be done thanks to the “printf”
function. For more information, refer to Section 13.5.6.1 “How to Configure the ITM”.

e Hardware trace: The ITM emits packets generated by the DWT.

e Time stamping: Timestamps are emitted relative to packets. The ITM contains a 21-bit counter to generate
the timestamp.

13.5.6.1 How to Configure the ITM

The following example describes how to output trace data in asynchronous trace mode.

e Configure the TPIU for asynchronous trace mode (refer to Section 13.5.6.3 “5.4.3. How to Configure the
TPIU")

e Enable the write accesses into the ITM registers by writing “OXC5ACCES5” into the Lock Access Register
(Address: 0XEOOOOFBO)

e Write 0x00010015 into the Trace Control Register:
— Enable ITM
— Enable Synchronization packets
— Enable SWO behavior
— Fixthe ATBID to 1
e Write Ox1 into the Trace Enable Register:
— Enable the Stimulus port 0
e Write Ox1 into the Trace Privilege Register:

— Stimulus port 0 only accessed in privileged mode (Clearing a bit in this register will result in the
corresponding stimulus port being accessible in user mode.)

e Write into the Stimulus port O register: TPIU (Trace Port Interface Unit)
The TPIU acts as a bridge between the on-chip trace data and the Instruction Trace Macrocell (ITM).
The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.

13.5.6.2 Asynchronous Mode

The TPIU is configured in asynchronous mode, trace data are output using the single TRACESWO pin. The
TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port. As a consequence, asynchronous
trace mode is only available when the Serial Wire Debug mode is selected since TDO signal is used in JTAG
debug mode.
Two encoding formats are available for the single pin output:

e Manchester encoded stream. This is the reset value.

e NRZ_based UART byte structure

272 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

5.4.3. How to Configure the TPIU

This example only concerns the asynchronous trace mode.
e Setthe TRCENA bit to 1 into the Debug Exception and Monitor Register (OXEOOOEDFC) to enable the use of
trace and debug blocks.

e Write Ox2 into the Selected Pin Protocol Register
— Select the Serial Wire Output — NRZ
Write 0x100 into the Formatter and Flush Control Register

e Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the baud rate of the
asynchronous output (this can be done automatically by the debugging tool).

13.5.7 IEEE® 1149.1 JTAG Boundary Scan

IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when TST is tied to low, while JTAGSEL is high during power-up,
and must be kept in this state during the whole boundary scan operation. The SAMPLE, EXTEST and BYPASS
functions are implemented. In SWD/JTAG debug mode, the ARM processor responds with a non-JTAG chip ID
that identifies the processor. This is not IEEE 1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port operations. A chip reset
must be performed after JTAGSEL is changed.

A Boundary-scan Descriptor Language (BSDL) file is provided on Atmel’s web site to set up the test.

JTAG Boundary-scan Register

The Boundary-scan Register (BSR) contains a number of bits which correspond to active pins and associated
control signals.

Each SAM4 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit contains data that can be
forced on the pad. The INPUT bit facilitates the observability of data applied to the pad. The CONTROL bit selects
the direction of the pad.

For more information, please refer to BDSL files available for the SAM4 Series.

SAMA4S Series [DATASHEET 273
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

13.5.8 ID Code Register

Access: Read-only

31 30 29 28 27 26 25 24
| VERSION PART NUMBER |
23 22 21 20 19 18 17 16

| PART NUMBER |

15 14 13 12 11 10 9 8

| PART NUMBER MANUFACTURER IDENTITY |
7 6 5 4 3 2 1 0

| MANUFACTURER IDENTITY 1 |

* VERSIONJ[31:28]: Product Version Number
Set to 0x0.

* PART NUMBER[27:12]: Product Part Number

Chip Name Chip ID
SAM4S 0x05B32

» MANUFACTURER IDENTITY[11:1]
Set to Ox01F.

» Bit[0] Required by IEEE Std. 1149.1.
Set to Ox1.

Chip Name JTAG ID Code
SAM4S 0x05B3203F

274 SAMA4S Series [DATASHEET] /Itmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

14. Reset Controller (RSTC)

14.1 Description

The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the system without any
external components. It reports which reset occurred last.

The Reset Controller also drives independently or simultaneously the external reset and the peripheral and
processor resets.

14.2 Embedded Characteristics
e Management of All System Resets, Including
— External Devices through the NRST Pin
— Processor Reset
— Processor Peripheral Set Reset
e Based on Embedded Power-on Cell
e Reset Source Status
— Status of the Last Reset
— Either Software Reset, User Reset, Watchdog Reset
e External Reset Signal Shaping

14.3 Block Diagram

Figure 14-1. Reset Controller Block Diagram

Reset Controller

core_backup_reset
——> rstc_irq

vddcore_nreset >

Reset > proc_nreset
user_reset | State
NRST Manager
D_ NRST > periph_nreset
Manager
nrst_out
— exter_nreset

WDRPROC

wd_fault >

SLCK

SAMA4S Series [DATASHEET 275
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

14.4 Functional Description

14.4.1 Reset Controller Overview

The Reset Controller is made up of an NRST manager and a reset state manager. It runs at slow clock and
generates the following reset signals:

e proc_nreset: processor reset line (also resets the Watchdog Timer)
e periph_nreset: affects the whole set of embedded peripherals
e nrst_out: drives the NRST pin

These reset signals are asserted by the Reset Controller, either on events generated by peripherals, events on
NRST pin, or on software action. The reset state manager controls the generation of reset signals and provides a
signal to the NRST manager when an assertion of the NRST pin is required.

The NRST manager shapes the NRST assertion during a programmable time, thus controlling external device
resets.

The Reset Controller Mode Register (RSTC_MR), used to configure the Reset Controller, is powered with VDDIO,
so that its configuration is saved as long as VDDIO is on.

14.4.2 NRST Manager

The NRST manager samples the NRST input pin and drives this pin low when required by the reset state
manager. Figure 14-2 shows the block diagram of the NRST manager.

Figure 14-2. NRST Manager

RSTC_MR

RSTC SR URSTIEN

URSTS
—ID_, rstc_irq
NRSTL [rsTC_MR Other [2

interrupt
URSTEN sources
I > user_reset

NRST | RSTC_MR
mi
| nrst_out

I External Reset Timer fe«—————— exter_nreset

14.4.2.1 NRST Signal or Interrupt

The NRST manager samples the NRST pin at slow clock speed. When the line is detected low, a User Reset is
reported to the reset state manager.

However, the NRST manager can be programmed to not trigger a reset when an assertion of NRST occurs.
Writing a O to the URSTEN bit in the RSTC_MR disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in the Reset Controller Status
Register (RSTC_SR). As soon as the NRST pin is asserted, bit URSTS in the RSTC_SR is set. This bit is cleared
only when the RSTC_SR is read.

The Reset Controller can also be programmed to generate an interrupt instead of generating a reset. To do so, set
the URSTIEN bit in the RSTC_MR.

276 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

14.4.2.2 NRST External Reset Control

The reset state manager asserts the signal exter_nreset to assert the NRST pin. When this occurs, the “nrst_out”
signal is driven low by the NRST manager for a time programmed by field ERSTL in the RSTC_MR. This assertion
duration, named External Reset Length, lasts 2ERSTHD glow clock cycles. This gives the approximate duration of
an assertion between 60 us and 2 seconds. Note that ERSTL at 0 defines a two-cycle duration for the NRST
pulse.

This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that the NRST line is
driven low for a time compliant with potential external devices connected on the system reset.

RSTC_MR is backed up, making it possible to use the ERSTL field to shape the system power-up reset for devices
requiring a longer startup time than that of the slow clock oscillator.
14.4.3 Reset States

The reset state manager handles the different reset sources and generates the internal reset signals. It reports the
reset status in field RSTTYP of the Status Register (RSTC_SR). The update of RSTC_SR.RSTTYP is performed
when the processor reset is released.

14.4.3.1 General Reset

A general reset occurs when a VDDIO power-on-reset is detected, a brownout or a voltage regulation loss is
detected by the Supply Controller. The vddcore_nreset signal is asserted by the Supply Controller when a general
reset occurs.

All the reset signals are released and field RSTC_SR.RSTTYP reports a general reset. As the RSTC_MR is reset,
the NRST line rises two cycles after the vddcore _nreset, as ERSTL defaults at value 0x0.

Figure 14-3 shows how the general reset affects the reset signals.

Figure 14-3. General Reset State

SLCK l_ll_l|||||||

MCK

L L
L L

vddio_nreset

=2 cycles

proc_nreset

RSTTYP XXX 0x0 = General Reset XXX

periph_nreset

NRST
(nrst_out)

)
)
[))
g
)
)
)

External Reset Length
=2 cycles

14.4.3.2 Backup Reset

A backup reset occurs when the chip exits from Backup mode. While exiting Backup mode, the vddcore_nreset
signal is asserted by the Supply Controller.

SAMA4S Series [DATASHEET 277
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Field RSTC_SR.RSTTYP is updated to report a backup reset.

14.4.3.3 Watchdog Reset
The watchdog reset is entered when a watchdog fault occurs. This reset lasts three slow clock cycles.

When in watchdog reset, assertion of the reset signals depends on the WDRPROC bit in the WDT_MR:

e If WDRPROC = 0, the processor reset and the peripheral reset are asserted. The NRST line is also
asserted, depending on how field RSTC_MR.ERSTL is programmed. However, the resulting low level on
NRST does not result in a user reset state.

e IfWDRPROC =1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a processor reset if
WDRSTEN in the WDT_MR is set, the Watchdog Timer is always reset after a watchdog reset, and the Watchdog
is enabled by default and with a period set to a maximum.

When bit WDT_MR.WDRSTEN is reset, the watchdog fault has no impact on the Reset Controller.

Figure 14-4. Watchdog Reset

Any
MCK Freq.

s LT LI L L L L L L
LU

1]

wd_fault /— N

Procgssor Startup
2 cycles
proc_nreset
RSTTYP Any XXX 0x2 = Watchdog Reset

periph_nreset

Only if
WDRPROC =0

NRST
(nrst_out)

I EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

14.4.3.4 Software Reset

The Reset Controller offers commands to assert the different reset signals. These commands are performed by
writing the Control Register (RSTC_CR) with the following bits at 1:

e RSTC_CR.PROCRST: Writing a 1 to PROCRST resets the processor and the watchdog timer.

e RSTC_CR.PERRST: Writing a 1 to PERRST resets all the embedded peripherals including the memory
system, and, in particular, the Remap Command. The Peripheral Reset is generally used for debug
purposes.

Except for debug purposes, PERRST must always be used in conjunction with PROCRST (PERRST and
PROCRST set both at 1 simultaneously).

e RSTC_CR.EXTRST: Writing a 1 to EXTRST asserts low the NRST pin during a time defined by the field

RSTC_MR.ERSTL.

278 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

The software reset is entered if at least one of these bits is set by the software. All these commands can be
performed independently or simultaneously. The software reset lasts three slow clock cycles.

The internal reset signals are asserted as soon as the register write is performed. This is detected on the Master
Clock (MCK). They are released when the software reset has ended, i.e., synchronously to SLCK.

If EXTRST is set, the nrst_out signal is asserted depending on the configuration of field RSTC_MR.ERSTL.
However, the resulting falling edge on NRST does not lead to a user reset.

If and only if the PROCRST bit is set, the Reset Controller reports the software status in field RSTC_SR.RSTTYP.
Other software resets are not reported in RSTTYP.

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Progress) is set in the
RSTC_SR. SRCMP is cleared at the end of the software reset. No other software reset can be performed while the
SRCMP bit is set, and writing any value in the RSTC_CR has no effect.

Figure 14-5.

Software Reset

SLCK ||||

MCK

Write RSTC_CR

proc_nreset
if PROCRST=1

RSTTYP

periph_nreset
if PERRST=1

NRST
(nrst_out)
if EXTRST=1

SRCMP in RSTC_SR

14.4.3.5

User Reset

Any
Freq.

L

U

L L
L 1L

JEpSRSEERENE
JEpEREREEEN

=
L

Resynch/|Processor Startup|
1 cycle =2 cycles
Any XXX 0x3 = Software Reset

//><(

/

EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

-

The user reset is entered when a low level is detected on the NRST pin and bit URSTEN in the RSTC_MR is at 1.
The NRST input signal is resynchronized with SLCK to insure proper behavior of the system.

The user reset is entered as soon as a low level is detected on NRST. The processor reset and the peripheral

reset are asserted.

The user reset ends when NRST rises, after a two-cycle resynchronization time and a three-cycle processor
startup. The processor clock is re-enabled as soon as NRST is confirmed high.

When the processor reset signal is released, field RSTC_SR.RSTTYP is loaded with the value 0x4, indicating a
user reset.

Atmel

SAMA4S Series [DATASHEET]

279

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

The NRST manager guarantees that the NRST line is asserted for External Reset Length slow clock cycles, as
programmed in field RSTC_MR.ERSTL. However, if NRST does not rise after External Reset Length because it is
driven low externally, the internal reset lines remain asserted until NRST actually rises.

Figure 14-6. User Reset State

soc L[LT L L L L e
o pigigigh
NRST \ /

Resynch. Resynch. Processor Startup
2 cycles 2 cycles =2 cycles
proc_nreset /
RSTTYP Any XXX 0x4 = User Reset
periph_nreset /

NRST
(nrst_out)

>= EXTERNAL RESET LENGTH

14.4.4 Reset State Priorities
The reset state manager manages the priorities among the different reset sources. The resets are listed in order of
priority as follows:
1. General reset
2. Backup reset
3. Watchdog reset
4. Software reset
5. User reset

Particular cases are listed below:

e When in user reset:
— Awatchdog event is impossible because the Watchdog Timer is being reset by the proc_nreset signal.
— A software reset is impossible, since the processor reset is being activated.

e When in software reset:
— A watchdog event has priority over the current state.
— The NRST has no effect.

e When in watchdog reset:
— The processor reset is active and so a software reset cannot be programmed.
— A user reset cannot be entered.

280 SAMA4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15 /I t m e L

14.5 Reset Controller (RSTC) User Interface

Table 14-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register RSTC_CR Write-only -

0x04 Status Register RSTC_SR Read-only 0x0000_0000™
0x08 Mode Register RSTC_MR Read/Write 0x0000 0001

Note: 1. This value assumes that a general reset has been performed, subject to change if other types of reset are generated.

SAMA4S Series [DATASHEET 281
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

14.5.1 Reset Controller Control Register
Name: RSTC_CR

Address: 0x400E1400

Access: Write-only

31 30 29 28 27 26 25 24
| KEY |

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
| — | — | - | - | EXTRST | PERRST | - | PROCRST |

* PROCRST: Processor Reset
0: No effect

1: If KEY is correct, resets the processor

 PERRST: Peripheral Reset
0: No effect
1: If KEY is correct, resets the peripherals

* EXTRST: External Reset
0: No effect
1: If KEY is correct, asserts the NRST pin

» KEY: System Reset Key
Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation.

282 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

14.5.2 Reset Controller Status Register

Name: RSTC_SR

Address: 0x400E1404

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - ¢ - ¢ - [- 1}
23 22 21 20 19 18 17 16

| - | - | - | - | - | — | SRCMP | NRSTL |
15 14 13 12 11 10 9 8

. - r - r - & - [- /] RSTTYP |
7 6 5 4 3 2 1 0

. - r - ¢ - - [- [- [- [URSTS]

* URSTS: User Reset Status

A high-to-low transition of the NRST pin sets the URSTS hit. This transition is also detected on the MCK rising edge. If the
user reset is disabled (URSTEN =0 in RSTC_MR) and if the interruption is enabled by the URSTIEN bit in the RSTC_MR,
the URSTS bit triggers an interrupt. Reading the RSTC_SR resets the URSTS bit and clears the interrupt.

0: No high-to-low edge on NRST happened since the last read of RSTC_SR.
1: At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

e RSTTYP: Reset Type
This field reports the cause of the last processor reset. Reading this RSTC SR does not reset this field.

Value Name Description
0 GENERAL_RST First power-up reset
1 BACKUP_RST Return from Backup Mode
2 WDT_RST Watchdog fault occurred
3 SOFT_RST Processor reset required by the software
4 USER_RST NRST pin detected low
5 - Reserved
6 - Reserved
7 - Reserved

* NRSTL: NRST Pin Level
This bit registers the NRST pin level sampled on each Master Clock (MCK) rising edge.

» SRCMP: Software Reset Command in Progress

When set, this bit indicates that a software reset command is in progress and that no further software reset should be per-
formed until the end of the current one. This bit is automatically cleared at the end of the current software reset.

0: No software command is being performed by the Reset Controller. The Reset Controller is ready for a software
command.

1. A software reset command is being performed by the Reset Controller. The Reset Controller is busy.

SAMA4S Series [DATASHEET 283
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

14.5.3 Reset Controller Mode Register

Name: RSTC_MR

Address: 0x400E1408

Access: Read/Write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - - - - |
15 14 13 12 11 10 9 8

I - I - I - I - I ERSTL |
7 6 5 4 3 2 1 0

| — | — | - | URSTIEN | - | - | - | URSTEN |

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_WPMR).

* URSTEN: User Reset Enable
0: The detection of a low level on the NRST pin does not generate a user reset.
1: The detection of a low level on the NRST pin triggers a user reset.

* URSTIEN: User Reset Interrupt Enable
0: USRTS hit in RSTC_SR at 1 has no effect on rstc_irqg.
1: USRTS bit in RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.

 ERSTL: External Reset Length

This field defines the external reset length. The external reset is asserted during a time of 2ERSTHD slow clock cycles. This
allows assertion duration to be programmed between 60 pus and 2 seconds. Note that synchronization cycles must also be
considered when calculating the actual reset length as previously described.

 KEY: Write Access Password

Value Name Description

Writing any other value in this field aborts the write operation.
O0xA5 PASSWD

Always reads as 0.

284 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

15. Real-time Timer (RTT)

15.1 Description

The Real-time Timer (RTT) is built around a 32-bit counter used to count roll-over events of the programmable 16-
bit prescaler driven from the 32-kHz slow clock source. It generates a periodic interrupt and/or triggers an alarm on
a programmed value.

The RTT can also be configured to be driven by the 1Hz RTC signal, thus taking advantage of a calibrated 1Hz
clock.

The slow clock source can be fully disabled to reduce power consumption when only an elapsed seconds count is
required.

15.2 Embedded Characteristics
e 32-bit Free-running Counter on prescaled slow clock or RTC calibrated 1Hz clock
e 16-bit Configurable Prescaler
e Interrupt on Alarm or Counter Increment

15.3 Block Diagram

Figure 15-1. Real-time Timer

RTT_MR RTT_MR RTT_MR

RTTDIS | | RTTRSTl |RTPRES
RTT_MR
reload _ RTTINCIEN
SLCK > 16-bit
Prescaler
0 set
RTT_MR l RTT_SR | RTTINC ||
AT MR RTC 1Hz | RTTRSTHl 0 / reset
— l rtt_int
RTC1HZ H 1 0 / 39.bit -
[> . D_>
Counter read 4
RTT_SR RTT_MR

ALMIEN

reset
RTT_VR | CRTV |
- s |

RTT_SR ALMS

> set

RTT_AR | ALMV

‘

rtt_alarm

SAMA4S Series [DATASHEET 285
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

15.4 Functional Description

The programmable 16-bit prescaler value can be configured through the RTPRES field in the “Real-time Timer
Mode Register” (RTT_MR).

Configuring the RTPRES field value to 0x8000 (default value) corresponds to feeding the real-time counter with a
1Hz signal (if the slow clock is 32.768 kHz). The 32-bit counter can count up to 232 seconds, corresponding to
more than 136 years, then roll over to 0. Bit RTTINC in the “Real-time Timer Status Register” (RTT_SR) is set
each time there is a prescaler roll-over (see Figure 15-2)

The real-time 32-bit counter can also be supplied by the 1Hz RTC clock. This mode is interesting when the RTC
1Hz is calibrated (CORRECTION field # 0 in RTC_MR) in order to guaranty the synchronism between RTC and
RTT counters.

Setting the RTC1HZ bit in the RTT_MR drives the 32-bit RTT counter from the 1Hz RTC clock. In this mode, the
RTPRES field has no effect on the 32-bit counter.

The prescaler roll-over generates an increment of the real-time timer counter if RTC1HZ = 0. Otherwise, if
RTC1HZ = 1, the real-time timer counter is incremented every second. The RTTINC bit is set independently from
the 32-bit counter increment.

The real-time timer can also be used as a free-running timer with a lower time-base. The best accuracy is achieved
by writing RTPRES to 3 in RTT_MR.
Programming RTPRES to 1 or 2 is forbidden.

If the RTT is configured to trigger an interrupt, the interrupt occurs two slow clock cycles after reading the RTT_SR.
To prevent several executions of the interrupt handler, the interrupt must be disabled in the interrupt handler and
re-enabled when the RTT_SR is cleared.

The CRTYV field can be read at any time in the “Real-time Timer Value Register” (RTT_VR). As this value can be
updated asynchronously with the Master Clock, the CRTV field must be read twice at the same value to read a
correct value.

The current value of the counter is compared with the value written in the “Real-time Timer Alarm Register”
(RTT_AR). If the counter value matches the alarm, the ALMS bit in the RTT_SR is set. The RTT_AR is set to its
maximum value (OXFFFF_FFFF) after a reset.

The ALMS flag is always a source of the RTT alarm signal that may be used to exit the system from low power
modes (see Figure 15-1).

The alarm interrupt must be disabled (ALMIEN must be cleared in RTT_MR) when writing a new ALMV value in
the RTT_AR.

The RTTINC bit can be used to start a periodic interrupt, the period being one second when the RTPRES field
value = 0x8000 and the slow clock = 32.768 kHz.

The RTTINCIEN bit must be cleared prior to writing a new RTPRES value in the RTT_MR.
Reading the RTT_SR automatically clears the RTTINC and ALMS bits.

Writing the RTTRST bit in the RTT_MR immediately reloads and restarts the clock divider with the new
programmed value. This also resets the 32-bit counter.

When not used, the Real-time Timer can be disabled in order to suppress dynamic power consumption in this
module. This can be achieved by setting the RTTDIS bit in the RTT_MR.

286 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 15-2. RTT Counting

| 1 1

| | | |

RTPRES - 1 - —
| | |

Prescaler | | |

| | |

0 —t | }

| | | |

| | | |

| | | |

| | | |

L L L L

CRTV 0 ALMVI1 X ALMV | XALMV+1 | X ALMV+2 | X ALMV+3
| | | |
| |
RTTINC (RTT_SR) } \ / .\ L
| .
ALMS (RTT_SR) : / :\
I
APB Interface K:X AN 'EX

[
|

|
|
|

APB cycle read RTT_SR APB cycle

SAMA4S Series [DATASHEET 287
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

15.5 Real-time Timer (RTT) User Interface

Table 15-1. Register Mapping

Offset Register Name Access Reset

0x00 Mode Register RTT_MR Read/Write 0x0000_8000

0x04 Alarm Register RTT_AR Read/Write OxFFFF_FFFF

0x08 Value Register RTT_VR Read-only 0x0000_0000

0x0C Status Register RTT_SR Read-only 0x0000_0000
288 SAMA4S Series [DATASHEET] /It m eL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

15.5.1 Real-time Timer Mode Register

Name: RTT_MR

Address: 0x400E1430

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - | RTCIHZ |
23 22 21 20 19 18 17 16

| — | - | - | RTTDIS | - | RTTRST | RTTINCIEN | ALMIEN |
15 14 13 12 11 10 9 8

| RTPRES |
7 6 5 4 3 2 1 0

| RTPRES |

» RTPRES: Real-time Timer Prescaler Value

Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:
RTPRES = 0: The prescaler period is equal to 2¢ * SLCK periods.

RTPRES = 1 or 2: forbidden.

RTPRES # 0,1 or 2: The prescaler period is equal to RTPRES * SLCK periods.
Note: The RTTINCIEN bit must be cleared prior to writing a new RTPRES value.

* ALMIEN: Alarm Interrupt Enable
0: The bit ALMS in RTT_SR has no effect on interrupt.
1: The bit ALMS in RTT_SR asserts interrupt.

» RTTINCIEN: Real-time Timer Increment Interrupt Enable
0: The bit RTTINC in RTT_SR has no effect on interrupt.
1: The bit RTTINC in RTT_SR asserts interrupt.

» RTTRST: Real-time Timer Restart
0: No effect.

1: Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.

 RTTDIS: Real-time Timer Disable
0: The real-time timer is enabled.

1: The real-time timer is disabled (no dynamic power consumption).
Note: RTTDIS is write only.

* RTC1HZ: Real-Time Clock 1Hz Clock Selection

0: The RTT 32-bit counter is driven by the 16-bit prescaler roll-over events.
1: The RTT 32-bit counter is driven by the 1Hz RTC clock.

Note: RTC1HZ is write only.

SAMA4S Series [DATASHEET 289
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

15.5.2 Real-time Timer Alarm Register

Name: RTT_AR

Address: 0x400E1434

Access: Read/Write
31 30 29 28 27 26 25 24

| ALMV |
23 22 21 20 19 18 17 16

| ALMV |
15 14 13 12 11 10 9 8

| ALMV |
7 6 5 4 3 2 1 0

| ALMV |

« ALMV: Alarm Value

When the CRTV value in RTT_VR equals the ALMYV field, the ALMS flag is set in RTT_SR. As soon as the ALMS flag
rises, the CRTV value equals ALMV+1 (refer to Figure 15-2).

Note: The alarm interrupt must be disabled (ALMIEN must be cleared in RTT_MR) when writing a new ALMV value.

200 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

15.5.3 Real-time Timer Value Register

Name: RTT_VR

Address: 0x400E1438

Access: Read-only
31 30 29 28 27 26 25 24

| CRTV |
23 22 21 20 19 18 17 16

| CRTV |
15 14 13 12 11 10 9 8

| CRTV |
7 6 5 4 3 2 1 0

| CRTV |

* CRTV: Current Real-time Value
Returns the current value of the Real-time Timer.
Note: As CRTV can be updated asynchronously, it must be read twice at the same value.

SAMA4S Series [DATASHEET 291
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

15.5.4 Real-time Timer Status Register

Name: RTT_SR

Address: 0x400E143C

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - ¢ - ¢ - [- 1}
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

. - r - ¢ - - - rr - ¢ - [- /]
7 6 5 4 3 2 1 0

| - | - | - | - | - | - [RTTINC | ALMS |

ALMS: Real-time Alarm Status (cleared on read)

o

: The Real-time Alarm has not occurred since the last read of RTT_SR.
1: The Real-time Alarm occurred since the last read of RTT_SR.

RTTINC: Prescaler Roll-over Status (cleared on read)

o

: No prescaler roll-over occurred since the last read of the RTT_SR.

[

: Prescaler roll-over occurred since the last read of the RTT_SR.

292 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16. Real-time Clock (RTC)

16.1 Description

The Real-time Clock (RTC) peripheral is designed for very low power consumption. For optimal functionality, the
RTC requires an accurate external 32.768 kHz clock, which can be provided by a crystal oscillator.

It combines a complete time-of-day clock with alarm and a Gregorian or Persian calendar, complemented by a
programmable periodic interrupt. The alarm and calendar registers are accessed by a 32-bit data bus.

The time and calendar values are coded in binary-coded decimal (BCD) format. The time format can be 24-hour
mode or 12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel capture on the 32-bit
data bus. An entry control is performed to avoid loading registers with incompatible BCD format data or with an
incompatible date according to the current month/year/century.

A clock divider calibration circuitry can be used to compensate for crystal oscillator frequency inaccuracy.

An RTC output can be programmed to generate several waveforms, including a prescaled clock derived from
32.768 kHz.

16.2 Embedded Characteristics
e Ultra Low Power Consumption
Full Asynchronous Design
Gregorian Calendar up to 2099 or Persian Calendar
Programmable Periodic Interrupt
Safety/security features:
— Valid Time and Date Programmation Check
— On-The-Fly Time and Date Validity Check
e Crystal Oscillator Clock Calibration
e Waveform Generation
e Register Write Protection

SAMA4S Series [DATASHEET 293
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16.3

Block Diagram

Figure 16-1. RTC Block Diagram

16.4

16.4.1

16.4.2

16.5

16.5.1

294

! }
Slow Clock: SLCK 32768 Divider T Dat Wave > RTCOUTO
ime ate Generator —» RTCOUT1

=i 1
3 b1

Entry Interrupt
System Bus <@g User Interface Control Alarm Control RTC Interrupt

Product Dependencies

Power Management

The Real-time Clock is continuously clocked at 32.768 kHz. The Power Management Controller has no effect on
RTC behavior.

Interrupt

RTC interrupt line is connected on one of the internal sources of the interrupt controller. RTC interrupt requires the
interrupt controller to be programmed first.

Table 16-1. Peripheral IDs

Instance ID

RTC 2

Functional Description

The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year (with leap years),
month, date, day, hours, minutes and seconds reported in RTC Time Register (RTC_TIMR) and RTC Calendar
Register (RTC_CALR).

The valid year range is up to 2099 in Gregorian mode (or 1300 to 1499 in Persian mode).
The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years except 1900). This is correct up to
the year 2099.

The RTC can generate configurable waveforms on RTCOUTO0/1 outputs.

Reference Clock
The reference clock is the Slow Clock (SLCK). It can be driven internally or by an external 32.768 kHz crystal.

During low power modes of the processor, the oscillator runs and power consumption is critical. The crystal
selection has to take into account the current consumption for power saving and the frequency drift due to
temperature effect on the circuit for time accuracy.

SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16.5.2

16.5.3

16.5.4

Timing
The RTC is updated in real time at one-second intervals in normal mode for the counters of seconds, at one-
minute intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain that the value read
in the RTC registers (century, year, month, date, day, hours, minutes, seconds) are valid and stable, it is
necessary to read these registers twice. If the data is the same both times, then it is valid. Therefore, a minimum of
two and a maximum of three accesses are required.

Alarm
The RTC has five programmable fields: month, date, hours, minutes and seconds.

Each of these fields can be enabled or disabled to match the alarm condition:
e If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted and an interrupt
generated if enabled) at a given month, date, hour/minute/second.
e If only the “seconds” field is enabled, then an alarm is generated every minute.

Depending on the combination of fields enabled, a large number of possibilities are available to the user ranging
from minutes to 365/366 days.

Hour, minute and second matching alarm (SECEN, MINEN, HOUREN) can be enabled independently of SEC,
MIN, HOUR fields.

Note: To change one of the SEC, MIN, HOUR, DATE, MONTH fields, it is recommended to disable the field before changing
the value and then re-enable it after the change has been made. This requires up to three accesses to the
RTC_TIMALR or RTC_CALALR. The first access clears the enable corresponding to the field to change (SECEN,
MINEN, HOUREN, DATEEN, MTHEN). If the field is already cleared, this access is not required. The second access
performs the change of the value (SEC, MIN, HOUR, DATE, MONTH). The third access is required to re-enable the
field by writing 1 in SECEN, MINEN, HOUREN, DATEEN, MTHEN fields.

Error Checking when Programming

Verification on user interface data is performed when accessing the century, year, month, date, day, hours,
minutes, seconds and alarms. A check is performed on illegal BCD entries such as illegal date of the month with
regard to the year and century configured.

If one of the time fields is not correct, the data is not loaded into the register/counter and a flag is set in the validity
register. The user can not reset this flag. It is reset as soon as an acceptable value is programmed. This avoids
any further side effects in the hardware. The same procedure is followed for the alarm.
The following checks are performed:
1. Century (check ifitis in range 19-20 or 13-14 in Persian mode)
Year (BCD entry check)
Date (check range 01-31)
Month (check if it is in BCD range 01-12, check validity regarding “date”)
Day (check range 1-7)
Hour (BCD checks: in 24-hour mode, check range 00—23 and check that AM/PM flag is not set if RTC is set
in 24-hour mode; in 12-hour mode check range 01-12)
7. Minute (check BCD and range 00-59)
8. Second (check BCD and range 00-59)

Note: If the 12-hour mode is selected by means of the RTC Mode Register (RTC_MR), a 12-hour value can be programmed
and the returned value on RTC_TIMR will be the corresponding 24-hour value. The entry control checks the value of
the AM/PM indicator (bit 22 of RTC_TIMR) to determine the range to be checked.

ok wN

SAMA4S Series [DATASHEET 295
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16.5.5 RTC Internal Free Running Counter Error Checking

To improve the reliability and security of the RTC, a permanent check is performed on the internal free running
counters to report non-BCD or invalid date/time values.

An error is reported by TDERR bit in the status register (RTC_SR) if an incorrect value has been detected. The
flag can be cleared by setting the TDERRCLR bit in the Status Clear Command Register (RTC_SCCR).

Anyway the TDERR error flag will be set again if the source of the error has not been cleared before clearing the
TDERR flag. The clearing of the source of such error can be done either by reprogramming a correct value on
RTC_CALR and/or RTC_TIMR.

The RTC internal free running counters may automatically clear the source of TDERR due to their roll-over (i.e.,
every 10 seconds for SECONDSJ[3:0] field in RTC_TIMR). In this case the TDERR is held high until a clear
command is asserted by TDERRCLR bit in RTC_SCCR.

16.5.6 Updating Time/Calendar

To update any of the time/calendar fields, the user must first stop the RTC by setting the corresponding field in the
Control Register (RTC_CR). Bit UPDTIM must be set to update time fields (hour, minute, second) and bit UPDCAL
must be set to update calendar fields (century, year, month, date, day).

The ACKUPD bit is automatically set within a second after setting the UPDTIM and/or UPDCAL bit (meaning one
second is the maximum duration of the polling or wait for interrupt period). Once ACKUPD is set, it is mandatory to
clear this flag by writing the corresponding bit in the RTC_SCCR, after which the user can write to the Time
Register, the Calendar Register, or both.

Once the update is finished, the user must clear UPDTIM and/or UPDCAL in the RTC_CR.

When entering programming mode of the calendar fields, the time fields remain enabled. When entering the
programming mode of the time fields, both time and calendar fields are stopped. This is due to the location of the
calendar logic circuity (downstream for low-power considerations). It is highly recommended to prepare all the
fields to be updated before entering programming mode. In successive update operations, the user must wait at
least one second after resetting the UPDTIM/UPDCAL bit in the RTC_CR before setting these bits again. This is
done by waiting for the SEC flag in the RTC_SR before setting UPDTIM/UPDCAL bit. After clearing
UPDTIM/UPDCAL, the SEC flag must also be cleared.

206 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 16-2. Update Sequence

Begin

Prepare Time or Calendar Fields

Set UPDTIM and/or UPDCAL
bit(s) in RTC_CR

<€
Read RTC_SR
Polling or
IRQ (if enabled)
ACKUPD No
=17
Yes

Clear ACKUPD bit in RTC_SCCR

Update Time and/or Calendar values in
RTC_TIMR/RTC_CALR

Clear UPDTIM and/or UPDCAL bit in
RTC _CR

End

SAMA4S Series [DATASHEET 297
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16.5.7 RTC Accurate Clock Calibration
The crystal oscillator that drives the RTC may not be as accurate as expected mainly due to temperature variation.
The RTC is equipped with circuitry able to correct slow clock crystal drift.
To compensate for possible temperature variations over time, this accurate clock calibration circuitry can be
programmed on-the-fly and also programmed during application manufacturing, in order to correct the crystal
frequency accuracy at room temperature (20—25°C). The typical clock drift range at room temperature is +20 ppm.
In the device operating temperature range, the 32.768 kHz crystal oscillator clock inaccuracy can be up to -200
ppm.
The RTC clock calibration circuitry allows positive or negative correction in a range of 1.5 ppm to 1950 ppm.

The calibration circuitry is fully digital. Thus, the configured correction is independent of temperature, voltage,
process, etc., and no additional measurement is required to check that the correction is effective.

If the correction value configured in the calibration circuitry results from an accurate crystal frequency measure,
the remaining accuracy is bounded by the values listed below:

e Below 1 ppm, for an initial crystal drift between 1.5 ppm up to 20 ppm, and from 30 ppm to 90 ppm

e Below 2 ppm, for an initial crystal drift between 20 ppm up to 30 ppm, and from 90 ppm to 130 ppm

e Below 5 ppm, for an initial crystal drift between 130 ppm up to 200 ppm
The calibration circuitry does not modify the 32.768 kHz crystal oscillator clock frequency but it acts by slightly
modifying the 1 Hz clock period from time to time. When the period is modified, depending on the sign of the

correction, the 1 Hz clock period increases or reduces by around 4 ms. Depending on the CORRECTION,
NEGPPM and HIGHPPM values configured in RTC_MR, the period interval between two correction events differs.

Figure 16-3. Calibration circuitry

RTC
32.768 kHz . Divider by 32768 1Hz | Time/Calendar
E = Add Suppress -
N ry t
@© 32.768 kHz|
I:l 2 I(I;(t)en?‘;aatroattor<_ EEEEE;TION, HIGHPPM
L
> Other Logic
298 SAMA4S Series [DATASHEET)] AtmeL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 16-4.

Monotonic 1Hz
Counter value

32.768 kHz +50ppm

Calibration circuitry waveforms

Nominal 32.768 kHz
. A

: 32.768 kHz -50ppm

‘ Crystal frequency
; remains unadjuste
|

A -
Phase adjustment A .
(~4ms) .
|
A I
_ ~ I
S |
i ‘ Internal 1Hz clock
L 1 ! is adjusted
| { ? > Time
! I
User configurable period
(integer multiple of 1s or 20s)
Crystal clock

|

!

!
-

|

!

!

!
- !
|

«—» > Time
-50ppm correction period !

I
I
I
“
=

-25ppm correction period‘l

Clock pulse periodically suppressed

!/_when correction period elapses

Internally divided

clock (128

Hz)

' 128 Hz clock eng delayed by 3,906 ms

1.000 second
1.003906 second |

when correction period elapses

Internally divided clock (256Hz)

Internally divided clock (128Hz)

v/—Clock edge peri
when correction period elapses

odically added

Internally divided clock (64Hz)

POSITIVE CORRECTION

0.996094 second

128 Hz clock edge delayed by 3,906 ms
when correction period elapses

1.000 second

The inaccuracy of a crystal oscillator at typical room temperature (20 ppm at 20-25 °C) can be compensated if a
reference clock/signal is used to measure such inaccuracy. This kind of calibration operation can be set up during

Atmel

SAM4S Series [DATASHEET] 299

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

the final product manufacturing by means of measurement equipment embedding such a reference clock. The
correction of value must be programmed into the (RTC_MR), and this value is kept as long as the circuitry is
powered (backup area). Removing the backup power supply cancels this calibration. This room temperature
calibration can be further processed by means of the networking capability of the target application.

To ease the comparison of the inherent crystal accuracy with the reference clock/signal during manufacturing, an
internal prescaled 32.768 kHz clock derivative signal can be assigned to drive RTC output. To accommodate the
measure, several clock frequencies can be selected among 1 Hz, 32 Hz, 64 Hz, 512 Hz.

The clock calibration correction drives the internal RTC counters but can also be observed in the RTC output when
one of the following three frequencies 1 Hz, 32 Hz or 64 Hz is configured. The correction is not visible in the RTC
output if 512 Hz frequency is configured.

In any event, this adjustment does not take into account the temperature variation.

The frequency drift (up to -200 ppm) due to temperature variation can be compensated using a reference time if
the application can access such a reference. If a reference time cannot be used, a temperature sensor can be
placed close to the crystal oscillator in order to get the operating temperature of the crystal oscillator. Once
obtained, the temperature may be converted using a lookup table (describing the accuracy/temperature curve of
the crystal oscillator used) and RTC_MR configured accordingly. The calibration can be performed on-the-fly. This
adjustment method is not based on a measurement of the crystal frequency/drift and therefore can be improved by
means of the networking capability of the target application.

If no crystal frequency adjustment has been done during manufacturing, it is still possible to do it. In the case
where a reference time of the day can be obtained through LAN/WAN network, it is possible to calculate the drift of
the application crystal oscillator by comparing the values read on RTC Time Register (RTC_TIMR) and
programming the HIGHPPM and CORRECTION fields on RTC_MR according to the difference measured
between the reference time and those of RTC_TIMR.

16.5.8 Waveform Generation

Waveforms can be generated by the RTC in order to take advantage of the RTC inherent prescalers while the RTC
is the only powered circuitry (low power mode of operation, backup mode) or in any active modes. Going into
backup or low power operating modes does not affect the waveform generation outputs.

The RTC outputs (RTCOUTO and RTCOUT1) have a source driver selected among seven possibilities.

The first selection choice sticks the associated output at O (This is the reset value and it can be used at any time to
disable the waveform generation).

Selection choices 1 to 4 respectively select 1 Hz, 32 Hz, 64 Hz and 512 Hz.

32 Hz or 64 Hz can drive, for example, a TN LCD backplane signal while 1 Hz can be used to drive a blinking
character like “:” for basic time display (hour, minute) on TN LCDs.

Selection choice 5 provides a toggling signal when the RTC alarm is reached.

Selection choice 6 provides a copy of the alarm flag, so the associated output is set high (logical 1) when an alarm
occurs and immediately cleared when software clears the alarm interrupt source.

Selection choice 7 provides a 1 Hz periodic high pulse of 15 pus duration that can be used to drive external devices
for power consumption reduction or any other purpose.

PIO lines associated to RTC outputs are automatically selecting these waveforms as soon as RTC_MR
corresponding fields OUTO and OUT1 differ from O.

300 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 16-5. Waveform Generation

so! _> N 507 _> N
1Hz —>»|1 1Hz —>» |1
32Hz —>»|2 32Hz —»|2
64 Hz —>»|3 64 Hz —» (3
—>» RTCOUTO —>» RTCOUT1
512Hz —>» |4 512Hz —>» |4
toggle_alarm —3» |5 toggle_alarm —» |5
flag_alarm —>» (6 flag_alarm —>» (6
pulse —>» |7 pulse —>» |7
RTC_MR(OUTO) RTC_MR(OUT1)
alarm match alarm match
event 1 event 2
flag_alarm
| |
| RTC_SCCR(ALRCLR) | RTC_SCCR(ALRCLR)
toggle_alarm

[N

| | .
ﬁ Thigh / | / |
| Tperiod)I < Tperiod |

SAMA4S Series [DATASHEET 301
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16.6 Real-time Clock (RTC) User Interface

Table 16-2. Register Mapping

Offset Register Name Access Reset
0x00 Control Register RTC_CR Read/Write 0x0
0x04 Mode Register RTC_MR Read/Write 0x0
0x08 Time Register RTC_TIMR Read/Write 0x0
0x0C Calendar Register RTC_CALR Read/Write 0x01A11020
0x10 Time Alarm Register RTC_TIMALR Read/Write 0x0
0x14 Calendar Alarm Register RTC_CALALR Read/Write 0x01010000
0x18 Status Register RTC_SR Read-only 0x0
0x1C Status Clear Command Register RTC_SCCR Write-only -
0x20 Interrupt Enable Register RTC_IER Write-only -
0x24 Interrupt Disable Register RTC_IDR Write-only -
0x28 Interrupt Mask Register RTC_IMR Read-only 0x0
0x2C Valid Entry Register RTC_VER Read-only 0x0

0x30-0xC8 Reserved - - -
0xDO Reserved - - -
0xD4—-0xF8 Reserved - - -

OxFC Reserved - - -

Note: If an offset is not listed in the table it must be considered as reserved.

302 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16.6.1 RTC Control Register

Name: RTC_CR

Address: 0x400E1460

Access: Read/Write
31 30 29 28 27 26 25 24

- - T - [- T - T - S
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | CALEVSEL |
15 14 13 12 11 10 9 8

| _ | _ | _ | _ | _ | _ | TIMEVSEL |
7 6 5 4 3 2 1 0

| — | _ | —_ | — | — | _ | upbcaL | upDTIVM |

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_WPMR).

» UPDTIM: Update Request Time Register
0: No effect.
1: Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and
acknowledged by the bit ACKUPD of the RTC_SR.

* UPDCAL: Update Request Calendar Register
0: No effect.
1: Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once
this bit is set and acknowledged by the bit ACKUPD of the RTC_SR.

* TIMEVSEL: Time Event Selection
The event that generates the flag TIMEV in RTC_SR depends on the value of TIMEVSEL.

Value Name Description
0 MINUTE Minute change
1 HOUR Hour change
2 MIDNIGHT Every day at midnight
3 NOON Every day at noon

Atmel

SAM4S Series [DATASHEET] 303

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

¢ CALEVSEL: Calendar Event Selection
The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL

Value Name Description
0 WEEK Week change (every Monday at time 00:00:00)
1 MONTH Month change (every 01 of each month at time 00:00:00)
2 YEAR Year change (every January 1 at time 00:00:00)
304 SAMA4S Series [DATASHEET)] /It m eL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16.6.2 RTC Mode Register

Name: RTC_MR

Address: 0x400E1464

Access: Read/Write
31 30 29 28 27 26 25 24

| — | — | TPERIOD | — | THIGH |
23 22 21 20 19 18 17 16

| — | ouUT1 | — | ouTO |
15 14 13 12 11 10 9 8

[HiIGHPPM | CORRECTION |
7 6 5 4 3 2 1 0

| - | - | - [NEGPPM | - | - | PERSIAN [HRMOD |

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_WPMR).

« HRMOD: 12-/24-hour Mode
0: 24-hour mode is selected.
1: 12-hour mode is selected.

¢ PERSIAN: PERSIAN Calendar
0: Gregorian calendar.

1: Persian calendar.

+ NEGPPM: NEGative PPM Correction
0: Positive correction (the divider will be slightly higher than 32768).
1: Negative correction (the divider will be slightly lower than 32768).

Refer to CORRECTION and HIGHPPM field descriptions.
Note: NEGPPM must be cleared to correct a crystal slower than 32.768 kHz.

» CORRECTION: Slow Clock Correction
0: No correction

1-127: The slow clock will be corrected according to the formula given in HIGHPPM description.

* HIGHPPM: HIGH PPM Correction
0: Lower range ppm correction with accurate correction.
1: Higher range ppm correction with accurate correction.

If the absolute value of the correction to be applied is lower than 30 ppm, it is recommended to clear HIGHPPM. HIGHPPM
set to 1 is recommended for 30 ppm correction and above.

Formula:

If HIGHPPM = 0, then the clock frequency correction range is from 1.5 ppm up to 98 ppm. The RTC accuracy is less
than 1 ppm for a range correction from 1.5 ppm up to 30 ppm.

The correction field must be programmed according to the required correction in ppm; the formula is as follows:

SAMA4S Series [DATASHEET 305
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

3906

CORRECTION = ——
20 X ppm

The value obtained must be rounded to the nearest integer prior to being programmed into CORRECTION field.

If HIGHPPM = 1, then the clock frequency correction range is from 30.5 ppm up to 1950 ppm. The RTC accuracy is
less than 1 ppm for a range correction from 30.5 ppm up to 90 ppm.

The correction field must be programmed according to the required correction in ppm; the formula is as follows:

CORRECTION = 3%6_,
ppm

The value obtained must be rounded to the nearest integer prior to be programmed into CORRECTION field.

If NEGPPM is set to 1, the ppm correction is negative (used to correct crystals that are faster than the nominal 32.768
kHz).

e OUTO: RTCOUTO OutputSource Selection

Value Name Description
0 NO_WAVE No waveform, stuck at ‘0’
1 FREQ1HZ 1 Hz square wave
2 FREQ32HZ 32 Hz square wave
3 FREQ64HZ 64 Hz square wave
4 FREQ512HZ 512 Hz square wave
5 ALARM_TOGGLE Output toggles when alarm flag rises
6 ALARM_FLAG Output is a copy of the alarm flag
7 PROG_PULSE Duty cycle programmable pulse

« OUT1: RTCOUT1 Output Source Selection

Value Name Description
0 NO_WAVE No waveform, stuck at ‘0’
1 FREQ1HZ 1 Hz square wave
2 FREQ32HZ 32 Hz square wave
3 FREQ64HZ 64 Hz square wave
4 FREQ512HZ 512 Hz square wave
5 ALARM_TOGGLE Output toggles when alarm flag rises
6 ALARM_FLAG Output is a copy of the alarm flag
7 PROG_PULSE Duty cycle programmable pulse

e THIGH: High Duration of the Output Pulse

Value Name Description
0 H_31MS 31.2ms
1 H_16MS 15.6 ms
2 H_4MS 3.91ms

306 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Value Name Description
3 H_976US 976 ps
4 H_488US 488 ps
5 H_122US 122 us
6 H_30US 30.5 us
7 H_15US 15.2 pys

« TPERIOD: Period of the Output Pulse

Value Name Description
0 P_1S 1 second
1 P_500MS 500 ms
2 P_250MS 250 ms
3 P_125MS 125 ms

Atmel

SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

307

16.6.3 RTC Time Register

Name: RTC_TIMR

Address: 0x400E1468

Access: Read/Write
31 30 29 28 27 26 25 24

1 T - - - -]
23 22 21 20 19 18 17 16

| - | Avem] HOUR |
15 14 13 12 11 10 9 8

| - | MIN |
7 6 5 4 3 2 1 0

| - | SEC |

» SEC: Current Second
The range that can be set is 0-59 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

* MIN: Current Minute
The range that can be set is 0-59 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

* HOUR: Current Hour
The range that can be set is 1-12 (BCD) in 12-hour mode or 0—23 (BCD) in 24-hour mode.

 AMPM: Ante Meridiem Post Meridiem Indicator
This bit is the AM/PM indicator in 12-hour mode.

0: AM.

1. PM.

All non-significant bits read zero.

308 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16.6.4 RTC Calendar Register

Name: RTC_CALR

Address: 0x400E146C

Access: Read/Write
31 30 29 28 27 26 25 24

| - | - | DATE |
23 22 21 20 19 18 17 16

| DAY MONTH |
15 14 13 12 11 10 9 8

| YEAR |
7 6 5 4 3 2 1 0

| - | CENT |

e CENT: Current Century

The range that can be set is 19-20 (gregorian) or 13-14 (persian) (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

* YEAR: Current Year

The range that can be set is 00-99 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

e MONTH: Current Month

The range that can be set is 01-12 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

» DAY: Current Day in Current Week

The range that can be set is 1-7 (BCD).

The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.

e DATE: Current Day in Current Month
The range that can be set is 01-31 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

All non-significant bits read zero.

Atmel

SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

309

16.6.5 RTC Time Alarm Register

Name: RTC_TIMALR

Address: 0x400E1470

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

[HOUREN [Awpm | HOUR |
15 14 13 12 11 10 9 8

[MINEN | MIN |
7 6 5 4 3 2 1 0

| SECEN | SEC |

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register

(SYSC_WPMR).

Note: To change one of the SEC, MIN, HOUR fields, it is recommended to disable the field before changing the value and then re-
enable it after the change has been made. This requires up to three accesses to the RTC_TIMALR. The first access clears the
enable corresponding to the field to change (SECEN, MINEN, HOUREN). If the field is already cleared, this access is not
required. The second access performs the change of the value (SEC, MIN, HOUR). The third access is required to re-enable the
field by writing 1 in SECEN, MINEN, HOUREN fields.

» SEC: Second Alarm

This field is the alarm field corresponding to the BCD-coded second counter.

* SECEN: Second Alarm Enable
0: The second-matching alarm is disabled.
1: The second-matching alarm is enabled.

* MIN: Minute Alarm
This field is the alarm field corresponding to the BCD-coded minute counter.

* MINEN: Minute Alarm Enable
0: The minute-matching alarm is disabled.
1: The minute-matching alarm is enabled.

* HOUR: Hour Alarm
This field is the alarm field corresponding to the BCD-coded hour counter.

« AMPM: AM/PM Indicator
This field is the alarm field corresponding to the BCD-coded hour counter.

« HOUREN: Hour Alarm Enable
0: The hour-matching alarm is disabled.
1: The hour-matching alarm is enabled.

310 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16.6.6 RTC Calendar Alarm Register

Name: RTC_CALALR

Address: 0x400E1474

Access: Read/Write
31 30 29 28 27 26 25 24

| DATEEN | — | DATE |
23 22 21 20 19 18 17 16

[MTHEN | — | — | MONTH |
15 14 13 12 11 10 9 8

. - r - ¢ - - [- [- | - [-]
7 6 5 4 3 2 1 0

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_WPMR).

Note: To change one of the DATE, MONTH fields, it is recommended to disable the field before changing the value and then re-enable
it after the change has been made. This requires up to three accesses to the RTC_CALALR. The first access clears the enable
corresponding to the field to change (DATEEN, MTHEN). If the field is already cleared, this access is not required. The second
access performs the change of the value (DATE, MONTH). The third access is required to re-enable the field by writing 1 in
DATEEN, MTHEN fields.

¢ MONTH: Month Alarm
This field is the alarm field corresponding to the BCD-coded month counter.

+ MTHEN: Month Alarm Enable
0: The month-matching alarm is disabled.
1: The month-matching alarm is enabled.

* DATE: Date Alarm
This field is the alarm field corresponding to the BCD-coded date counter.

» DATEEN: Date Alarm Enable
0: The date-matching alarm is disabled.
1: The date-matching alarm is enabled.

SAMA4S Series [DATASHEET 311
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16.6.7 RTC Status Register

Name: RTC_SR

Address: 0x400E1478

Access: Read-only
31 30 29 28 27 26 25 24

. - r - r - -+ - 1 - ¢ - [- |
23 22 21 20 19 18 17 16

. - r - r - -+ - 1 - ¢ - [- |
15 14 13 12 11 10 9 8

. - r - r - -+ - 1 - @ - [- |
7 6 5 4 3 2 1 0

| - | - | ToERR [calev | TiMev | sec | ALARM [AckupD |

 ACKUPD: Acknowledge for Update

Value Name Description
0 FREERUN Time and calendar registers cannot be updated.
1 UPDATE Time and calendar registers can be updated.

* ALARM: Alarm Flag

Value Name Description
0 NO_ALARMEVENT | No alarm matching condition occurred.
1 ALARMEVENT An alarm matching condition has occurred.

SEC: Second Event

Value Name Description
0 NO_SECEVENT No second event has occurred since the last clear.
1 SECEVENT At least one second event has occurred since the last clear.

TIMEV: Time Event

Value Name Description
0 NO_TIMEVENT No time event has occurred since the last clear.
1 TIMEVENT At least one time event has occurred since the last clear.

Note: The time event is selected in the TIMEVSEL field in the Control Register (RTC_CR) and can be any one of the following events:

minute change, hour change, noon, midnight (day change).

« CALEV: Calendar Event

Value Name Description
0 NO_CALEVENT No calendar event has occurred since the last clear.
1 CALEVENT At least one calendar event has occurred since the last clear.

Note: The calendar event is selected in the CALEVSEL field in the Control Register (RTC_CR) and can be any one of the following
events: week change, month change and year change.

312

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

« TDERR: Time and/or Date Free Running Error

Value Name Description
0 CORRECT Thellnternal free running counters are carrying valid values since the last read of the Status
Register (RTC_SR).
1 ERR_TIMEDATE The internal free running counters have been corrupted (invalid date or time, non-BCD

values) since the last read and/or they are still invalid.

SAMA4S Series [DATASHEET)] 313
/I t m eL Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16.6.8 RTC Status Clear Command Register

Name: RTC_SCCR

Address: 0x400E147C

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | - | TDERRCIR [cAlctR | T7IMClR | secctR | ALRCIR | AckclR |

* ACKCLR: Acknowledge Clear
0: No effect.
1: Clears corresponding status flag in the Status Register (RTC_SR).

* ALRCLR: Alarm Clear
0: No effect.
1: Clears corresponding status flag in the Status Register (RTC_SR).

» SECCLR: Second Clear
0: No effect.
1: Clears corresponding status flag in the Status Register (RTC_SR).

e TIMCLR: Time Clear
0: No effect.
1: Clears corresponding status flag in the Status Register (RTC_SR).

» CALCLR: Calendar Clear
0: No effect.
1: Clears corresponding status flag in the Status Register (RTC_SR).

 TDERRCLR: Time and/or Date Free Running Error Clear
0: No effect.
1: Clears corresponding status flag in the Status Register (RTC_SR).

314 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16.6.9 RTC Interrupt Enable Register

Name: RTC_IER

Address: 0x400E1480

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | - | TDERREN [calteN | TiMEN | seceN | ALREN | ACKEN |

» ACKEN: Acknowledge Update Interrupt Enable
0: No effect.
1: The acknowledge for update interrupt is enabled.

 ALREN: Alarm Interrupt Enable
0: No effect.
1: The alarm interrupt is enabled.

» SECEN: Second Event Interrupt Enable
0: No effect.
1: The second periodic interrupt is enabled.

* TIMEN: Time Event Interrupt Enable
0: No effect.
1: The selected time event interrupt is enabled.

e CALEN: Calendar Event Interrupt Enable
0: No effect.
1: The selected calendar event interrupt is enabled.

 TDERREN: Time and/or Date Error Interrupt Enable
0: No effect.
1: The time and date error interrupt is enabled.

SAMA4S Series [DATASHEET 315
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16.6.10 RTC Interrupt Disable Register

Name: RTC_IDR

Address: 0x400E1484

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | - | TDERRDIS | calbis | TivDis | secbis | AlRDis | Ackpis |

* ACKDIS: Acknowledge Update Interrupt Disable
0: No effect.
1: The acknowledge for update interrupt is disabled.

e ALRDIS: Alarm Interrupt Disable
0: No effect.
1: The alarm interrupt is disabled.

» SECDIS: Second Event Interrupt Disable
0: No effect.
1: The second periodic interrupt is disabled.

» TIMDIS: Time Event Interrupt Disable
0: No effect.
1: The selected time event interrupt is disabled.

e CALDIS: Calendar Event Interrupt Disable
0: No effect.
1: The selected calendar event interrupt is disabled.

 TDERRDIS: Time and/or Date Error Interrupt Disable
0: No effect.
1: The time and date error interrupt is disabled.

316 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16.6.11 RTC Interrupt Mask Register

Name: RTC_IMR

Address: 0x400E1488

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

[_ | - | T™ERR | cAL [Tv | sec [AR | Ack |

» ACK: Acknowledge Update Interrupt Mask
0: The acknowledge for update interrupt is disabled.
1: The acknowledge for update interrupt is enabled.

e ALR: Alarm Interrupt Mask
0: The alarm interrupt is disabled.
1: The alarm interrupt is enabled.

» SEC: Second Event Interrupt Mask
0: The second periodic interrupt is disabled.
1: The second periodic interrupt is enabled.

* TIM: Time Event Interrupt Mask
0: The selected time event interrupt is disabled.
1: The selected time event interrupt is enabled.

e CAL: Calendar Event Interrupt Mask
0: The selected calendar event interrupt is disabled.
1: The selected calendar event interrupt is enabled.

« TDERR: Time and/or Date Error Mask
0: The time and/or date error event is disabled.
1: The time and/or date error event is enabled.

SAMA4S Series [DATASHEET 317
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

16.6.12 RTC Valid Entry Register

Name: RTC_VER

Address: 0x400E148C

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | - | - | — | NvcalALR [NvTIMALR [Nveal | nvTiv |

* NVTIM: Non-valid Time
0: No invalid data has been detected in RTC_TIMR (Time Register).
1: RTC_TIMR has contained invalid data since it was last programmed.

» NVCAL: Non-valid Calendar
0: No invalid data has been detected in RTC_CALR (Calendar Register).
1: RTC_CALR has contained invalid data since it was last programmed.

* NVTIMALR: Non-valid Time Alarm
0: No invalid data has been detected in RTC_TIMALR (Time Alarm Register).
1: RTC_TIMALR has contained invalid data since it was last programmed.

* NVCALALR: Non-valid Calendar Alarm
0: No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).
1: RTC_CALALR has contained invalid data since it was last programmed.

318 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

17. Watchdog Timer (WDT)

17.1 Description

The Watchdog Timer (WDT) is used to prevent system lock-up if the software becomes trapped in a deadlock. It
features a 12-bit down counter that allows a watchdog period of up to 16 seconds (slow clock around 32 kHz). It
can generate a general reset or a processor reset only. In addition, it can be stopped while the processor is in
debug mode or idle mode.

17.2 Embedded Characteristics
e 12-bit Key-protected Programmable Counter
e Watchdog Clock is Independent from Processor Clock
e Provides Reset or Interrupt Signals to the System
e Counter May Be Stopped while the Processor is in Debug State or in Idle Mode

SAMA4S Series [DATASHEET 319
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

17.3 Block Diagram

Figure 17-1. Watchdog Timer Block Diagram

WDT_CR

| WDRSTT |

write WDT_MR

WDT_MR
WDV

reload
o/

A

12-bit Down
Counter
WDT_MR \
WDD Current
|_J Value <

\ reload

<=WDD

=

I_1/1 28 SLCK

WDT_MR

WDRSTEN
tl N wdt_fault

set

set

(to Reset Controller)

wdt_int

read WDT_SR reset
or

reset

320 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

N
WDUNF |
Areset
WDFIEN

WDT_MR

Atmel

17.4 Functional Description

The Watchdog Timer is used to prevent system lock-up if the software becomes trapped in a deadlock. It is
supplied with VDDCORE. It restarts with initial values on processor reset.

The watchdog is built around a 12-bit down counter, which is loaded with the value defined in the field WDV of the
Mode Register (WDT_MR). The Watchdog Timer uses the slow clock divided by 128 to establish the maximum
watchdog period to be 16 seconds (with a typical slow clock of 32.768 kHz).

After a processor reset, the value of WDV is OxFFF, corresponding to the maximum value of the counter with the
external reset generation enabled (field WDRSTEN at 1 after a backup reset). This means that a default watchdog
is running at reset, i.e., at power-up. The user can either disable the WDT by setting bit WDT_MR.WDDIS or
reprogram the WDT to meet the maximum watchdog period the application requires.

If the watchdog is restarted by writing into the Control Register (WDT_CR), WDT_MR must not be programmed
during a period of time of three slow clock periods following the WDT_CR write access. In any case, programming
a new value in WDT_MR automatically initiates a restart instruction.

WDT_MR can be written only once. Only a processor reset resets it. Writing WDT_MR reloads the timer with the
newly programmed mode parameters.

In normal operation, the user reloads the watchdog at regular intervals before the timer underflow occurs, by
setting bit WDT_CR.WDRSTT. The watchdog counter is then immediately reloaded from WDT_MR and restarted,
and the slow clock 128 divider is reset and restarted. WDT_CR is write-protected. As a result, writing WDT_CR
without the correct hard-coded key has no effect. If an underflow does occur, the “wdt_fault” signal to the Reset
Controller is asserted if bit WDT_MR.WDRSTEN is set. Moreover, the bit WDUNF is set in the Status Register
(WDT_SR).

To prevent a software deadlock that continuously triggers the watchdog, the reload of the watchdog must occur
while the watchdog counter is within a window between 0 and WDD, WDD is defined in WDT_MR.

Any attempt to restart the watchdog while the watchdog counter is between WDV and WDD results in a watchdog
error, even if the watchdog is disabled. The bit WDT_SR.WDERR is updated and the “wdt_fault” signal to the
Reset Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the WDV value. In
such a configuration, restarting the Watchdog Timer is permitted in the whole range [0; WDV] and does not
generate an error. This is the default configuration on reset (the WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an interrupt, provided the bit
WDT_MR.WDFIEN is set. The signal “wdt_fault” to the Reset Controller causes a watchdog reset if the
WDRSTEN bit is set as already explained in the Reset Controller documentation. In this case, the processor and
the Watchdog Timer are reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared, and the “wdt_fault”
signal to the reset controller is deasserted.

Writing WDT_MR reloads and restarts the down counter.

While the processor is in debug state or in idle mode, the counter may be stopped depending on the value
programmed for the bits WDIDLEHLT and WDDBGHLT in WDT_MR.

SAMA4S Series [DATASHEET 321
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 17-2. Watchdog Behavior

FFF.

Watchdog Error

Watchdog Underflow ———

if WDRSTEN is 1

WDV-

Normal behavior

if WDRSTEN is 0

Forbidden
Window

ad

WDD

Permitted
Window

NN
\

NI

N

/

.Watchdog
Fault

322 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

WDT_CR.WDRSTT=1

Atmel

17.5 Watchdog Timer (WDT) User Interface

Table 17-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register WDT_CR Write-only -
0x04 Mode Register WDT_MR Read/Write Once Ox3FFF_2FFF
0x08 Status Register WDT_SR Read-only 0x0000_0000
SAMA4S Series [DATASHEET 323
Atmel [:

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

17.5.1 Watchdog Timer Control Register

Name: WDT_CR
Address: 0x400E1450
Access: Write-only
31 30 29 28 27 26 25 24
| KEY |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
. - r - 1 - &£ - 1 - [- [- [WDRSTT |
« WDRSTT: Watchdog Restart
0: No effect.
1: Restarts the watchdog if KEY is written to OxA5.
« KEY: Password
Value Name Description
OxA5 PASSWD Writing any other value in this field aborts the write operation.

324 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

17.5.2 Watchdog Timer Mode Register

Name: WDT_MR

Address: 0x400E1454

Access: Read/Write Once
31 30 29 28 27 26 25 24

| - [- [WDIDLEHLT | WDDBGHLT WDD |
23 22 21 20 19 18 17 16

| WDD |
15 14 13 12 11 10 9 8

[wDDIS WDRPROC | WDRSTEN WDFIEN WDV |
7 6 5 4 3 2 1 0

| WDV |

Note: The first write access prevents any further modification of the value of this register. Read accesses remain possible.
Note: The WDD and WDV values must not be modified within three slow clock periods following a restart of the watchdog performed by

a write access in WDT_CR. Any modification will cause the watchdog to trigger an end of period earlier than expected.
« WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit watchdog counter.

 WDFIEN: Watchdog Fault Interrupt Enable
0: A watchdog fault (underflow or error) has no effect on interrupt.

1: A watchdog fault (underflow or error) asserts interrupt.

« WDRSTEN: Watchdog Reset Enable
0: A watchdog fault (underflow or error) has no effect on the resets.

1. A watchdog fault (underflow or error) triggers a watchdog reset.

» WDRPROC: Watchdog Reset Processor
0: If WDRSTEN is 1, a watchdog fault (underflow or error) activates all resets.
1: If WDRSTEN is 1, a watchdog fault (underflow or error) activates the processor reset.

« WDDIS: Watchdog Disable
0: Enables the Watchdog Timer.
1: Disables the Watchdog Timer.

» WDD: Watchdog Delta Value

Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, setting bit WDT_CR.WDRSTT restarts the timer.
If the Watchdog Timer value is greater than WDD, setting bit WDT_CR.WDRSTT causes a watchdog error.

SAMA4S Series [DATASHEET 325
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

« WDDBGHLT: Watchdog Debug Halt
0: The watchdog runs when the processor is in debug state.
1: The watchdog stops when the processor is in debug state.

« WDIDLEHLT: Watchdog Idle Halt
0: The watchdog runs when the system is in idle mode.

1: The watchdog stops when the system is in idle state.

326 SAMA4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15 /I t m e L

17.5.3 Watchdog Timer Status Register

Name: WDT_SR

Address: 0x400E1458

Access Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [- /]
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

. - r - ¢ - - - rr - ¢ - [- 1]
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | WDERR | WDUNF |

WDUNF: Watchdog Underflow (cleared on read)
: No watchdog underflow occurred since the last read of WDT_SR.

o

1: At least one watchdog underflow occurred since the last read of WDT_SR.

WDERR: Watchdog Error (cleared on read)
: No watchdog error occurred since the last read of WDT_SR.

= O

: At least one watchdog error occurred since the last read of WDT_SR.

SAMA4S Series [DATASHEET 327
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

18. Supply Controller (SUPC)

18.1 Description

The Supply Controller (SUPC) controls the supply voltages of the system and manages the Backup mode. In this
mode, current consumption is reduced to a few microamps for backup power retention. Exit from this mode is
possible on multiple wake-up sources. The SUPC also generates the slow clock by selecting either the low-power
RC oscillator or the low-power crystal oscillator.

18.2 Embedded Characteristics

Manages the Core Power Supply VDDCORE and Backup Mode by Controlling the Embedded Voltage
Regulator

A Supply Monitor Detection on VDDIO or a Brownout Detection on VDDCORE Triggers a Core Reset

Generates the Slow Clock SLCK by Selecting Either the 22-42 kHz Low-Power RC Oscillator or the 32 kHz
Low-Power Crystal Oscillator

Low-power Tamper Detection on Two Inputs
Anti-tampering by Immediate Clear of the General-purpose Backup Registers
Supports Multiple Wake-up Sources for Exit from Backup Mode

16 Wake-up Inputs with Programmable Debouncing

Real-Time Clock Alarm

Real-Time Timer Alarm

Supply Monitor Detection on VDDIO, with Programmable Scan Period and Voltage Threshold

328 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

18.3 Block Diagram

Figure 18-1. Supply Controller Block Diagram

BODDIS

OSCBYPASS

XIN32
XOuT32

SMEN
WKUPO-WKUP15
LPDBC
LPDBCENO
LPDBCEN1
LPDBCCLR
WKUPENO..15
WKUPTO..15
WKUPDBC

SMSMPL SMTH

Supply Controller

por_core_out

BODRSTEN

SMRSTEN

Supply
Monitor
Controller

XTALSEL

Slow
Clock
Controller

Wake-Up
Controller

ONREG

Voltage Regulator
Controller

VROFF

Atmel

supc_irq

vddcore_nreset

Interrupt
Controller

Reset
Controller

. NRST

proc_nreset
periph_nreset
ice_nreset

SLCK

Real-Time
Timer

Real-Time
Clock

RTCOUTO
RTCOUT1

General-Purpose
Backup Registers

VDDIN

VDDOUT

SAM4S Series [DATASHEET] 329

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

18.4 Functional Description

18.4.1 Overview

The device is divided into two power supply areas:

e VDDIO power supply: includes the Supply Controller, part of the Reset Controller, the slow clock switch, the
general-purpose backup registers, the supply monitor and the clock which includes the Real-time Timer and
the Real-time Clock.

e Core power supply: includes part of the Reset Controller, the Brownout Detector, the processor, the SRAM
memory, the Flash memory and the peripherals.

The Supply Controller (SUPC) controls the supply voltage of the core power supply. The SUPC intervenes when
the VDDIO power supply rises (when the system is starting) or when Backup mode is entered.

The SUPC also integrates the slow clock generator, which is based on a 32 kHz crystal oscillator, and an
embedded 32 kHz RC oscillator. The slow clock defaults to the RC oscillator, but the software can enable the
crystal oscillator and select it as the slow clock source.

The SUPC and the VDDIO power supply have a reset circuitry based on a zero-power power-on reset cell. The
zero-power power-on reset allows the SUPC to start correctly as soon as the VDDIO voltage becomes valid.

At start-up of the system, once the backup voltage VDDIO is valid and the embedded 32 kHz RC oscillator is
stabilized, the SUPC starts up the core by sequentially enabling the internal voltage regulator. The SUPC waits
until the core voltage VDDCORE is valid, then releases the reset signal of the core vddcore_nreset signal.

Once the system has started, the user can program a supply monitor and/or a brownout detector. If the supply
monitor detects a voltage level on VDDIO that is too low, the SUPC asserts the reset signal of the core
vddcore_nreset signal until VDDIO is valid. Likewise, if the brownout detector detects a core voltage level
VDDCORE that is too low, the SUPC asserts the reset signal vddcore_nreset until VDDCORE is valid.

When Backup mode is entered, the SUPC sequentially asserts the reset signal of the core power supply
vddcore_nreset and disables the voltage regulator, in order to supply only the VDDIO power supply. Current
consumption is reduced to a few microamps for the backup part retention. Exit from this mode is possible on
multiple wake-up sources including an event on WKUP pins, or a clock alarm. To exit this mode, the SUPC
operates in the same way as system start-up.

330 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

18.4.2 Slow Clock Generator

The SUPC embeds a slow clock generator that is supplied with the VDDIO power supply. As soon as the VDDIO is
supplied, both the crystal oscillator and the embedded RC oscillator are powered up, but only the embedded RC
oscillator is enabled. When the RC oscillator is selected as the slow clock source, the slow clock stabilizes more
quickly than when the crystal oscillator is selected.

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more accurate
frequency than the RC oscillator. The crystal oscillator is selected by setting the XTALSEL bit in the SUPC Control
register (SUPC_CR). The following sequence must be used to switch from the RC oscillator to the crystal
oscillator:

1. The PIO lines multiplexed with XIN32 and XOUT32 are configured to be driven by the oscillator.

2. The crystal oscillator is enabled.

3. A number of slow RC oscillator clock periods is counted to cover the start-up time of the crystal oscillator
(refer to the Electrical Characteristics for information on 32 kHz crystal oscillator start-up time).

4. The slow clock is switched to the output of the crystal oscillator.
5. The RC oscillator is disabled to save power.
The switching time may vary depending on the slow RC oscillator clock frequency range. The switch of the slow

clock source is glitch-free. The OSCSEL bit of the SUPC Status register (SUPC_SR) indicates when the switch
sequence is finished.

Reverting to the RC oscillator as a slow clock source is only possible by shutting down the VDDIO power supply.
If the user does not need the crystal oscillator, the XIN32 and XOUT32 pins should be left unconnected.

The user can also set the crystal oscillator in Bypass mode instead of connecting a crystal. In this case, the user
has to provide the external clock signal on XIN32. The input characteristics of the XIN32 pin are given in the
section ‘Electrical Characteristics. To enter Bypass mode, the OSCBYPASS bit in the Mode register (SUPC_MR)
must be set before setting XTALSEL.

18.4.3 Core Voltage Regulator Control/Backup Low-power Mode
The SUPC can be used to control the embedded voltage regulator.

The voltage regulator automatically adapts its quiescent current depending on the required load current. More
information can be found in the Electrical Characteristics.

The user can switch off the voltage regulator, and thus put the device in Backup mode, by writing a 1 to the
VROFF bit in SUPC_CR.

This asserts the vddcore_nreset signal after the write resynchronization time, which lasts two slow clock cycles
(worst case). Once the vddcore_nreset signal is asserted, the processor and the peripherals are stopped one slow
clock cycle before the core power supply shuts off.

When the internal voltage regulator is not used and VDDCORE is supplied by an external supply, the voltage
regulator can be disabled by writing a 1 to the ONREG bit in SUPC_MR.

18.4.4 Supply Monitor
The SUPC embeds a supply monitor located in the VDDIO power supply and which monitors VDDIO power
supply.

The supply monitor can be used to prevent the processor from falling into an unpredictable state if the main power
supply drops below a certain level.

The threshold of the supply monitor is programmable in the SMTH field of the Supply Monitor Mode register
(SUPC_SMMR). Refer to the VDDIO Supply Monitor characteristics in the section Electrical Characteristics.

SAMA4S Series [DATASHEET 331
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

The supply monitor can also be enabled during one slow clock period on every one of either 32, 256 or 2048 slow
clock periods, depending on the user selection. This is configured in the SMSMPL field in SUPC_SMMR.

Enabling the supply monitor for such reduced times divides the typical supply monitor power consumption by
factors of 2, 16 and 128, respectively, if continuous monitoring of the VDDIO power supply is not required.

A supply monitor detection generates either a reset of the core power supply or a wake-up of the core power
supply. Generating a core reset when a supply monitor detection occurs is enabled by setting the SMRSTEN bit in
SUPC_SMMR.

Waking up the core power supply when a supply monitor detection occurs can be enabled by setting the SMEN bit
in the Wake-up Mode register (SUPC_WUMR).

The SUPC provides two status bits in the SUPC_SR for the supply monitor that determine whether the last wake-
up was due to the supply monitor:
e The SMOS bit provides real-time information, updated at each measurement cycle or updated at each slow
clock cycle, if the measurement is continuous.
e The SMS bit provides saved information and shows a supply monitor detection has occurred since the last
read of SUPC_SR.

The SMS flag generates an interrupt if the SMIEN bit is set in SUPC_SMMR.

Figure 18-2. Supply Monitor Status Bit and Associated Interrupt
Continuous Sampling (SMSMPL = 1)

|

e - -
Supply Monitor ON ! | | | |A/ Periodic Sampling | |

|

|

|

T

3.3V

|

Threshold lf\

N
|

|
|
I
ov -
|
|

l Read SUPC_SR

]

SMS and SUPC interrupt

18.4.5 Backup Power Supply Reset

18.45.1 Raising the Backup Power Supply

When the backup voltage VDDIO rises, the RC oscillator is powered up and the zero-power power-on reset cell
maintains its output low as long as VDDIO has not reached its target voltage. During this period, the SUPC is
reset. When the VDDIO voltage becomes valid and the zero-power power-on reset signal is released, a counter is
started for five slow clock cycles. This is the time required for the 32 kHz RC oscillator to stabilize.

After this time, the voltage regulator is enabled. The core power supply rises and the brownout detector provides
the bodcore_in signal as soon as the core voltage VDDCORE is valid. This results in releasing the vddcore_nreset
signal to the Reset Controller after the bodcore_in signal has been confirmed as being valid for at least one slow
clock cycle.

332 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 18-3. Raising the VDDIO Power Supply

7 x Slow Clock Cycles Ton Voltage 3 x Slow Clock 2 x Slow Clock 6.5 x Slow Clock
(5 for startup slow RC + 2 for synchro.), Regulator, Cycles . Cycles , Cycles

Backup Power Supply R .
Zero-Power Power-On F : , 1 . I
Reset Cell output A ' | I
' i : : I

22 - 42 kHz RC ||||||||||||||||||||||||||||||:||||!_

Oscillator output |

: S R B
| 1 — !

vr_on

Core Power Supply

Fast RC
Oscillator output

bodcore_in

d ' Il
STC.ERSTI
Fdefault=2:' Il

-

vddcore_nreset

NRST
(no ext. drive assumed)

periph_nreset

%

proc_nreset

Note: After “proc_nreset” rising, the core starts fetching instructions from Flash at 4 MHz.

18.4.6 Core Reset

The Supply Controller manages the vddcore _nreset signal to the Reset Controller, as described in Section 18.4.5
"Backup Power Supply Reset”. The vddcore_nreset signal is normally asserted before shutting down the core
power supply and released as soon as the core power supply is correctly regulated.
There are two additional sources which can be programmed to activate vddcore_nreset:

e a supply monitor detection

e a brownout detection

18.4.6.1 Supply Monitor Reset

The supply monitor is capable of generating a reset of the system. This is enabled by setting the SMRSTEN bit in
SUPC_SMMR.

If SMRSTEN is set and if a supply monitor detection occurs, the vddcore_nreset signal is immediately activated for
a minimum of one slow clock cycle.

18.4.6.2 Brownout Detector Reset

The brownout detector provides the bodcore_in signal to the SUPC. This signal indicates that the voltage
regulation is operating as programmed. If this signal is lost for longer than 1 slow clock period while the voltage
regulator is enabled, the SUPC asserts vddcore_nreset if BODRSTEN is written to 1 in SUPC_MR.

SAMA4S Series [DATASHEET 333
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

If BODRSTEN is set and the voltage regulation is lost (output voltage of the regulator too low), the vddcore_nreset
signal is asserted for a minimum of one slow clock cycle and then released if bodcore_in has been reactivated.
The BODRSTS bit in SUPC_SR indicates the source of the last reset.

Until bodcore_in is deactivated, the vddcore_nreset signal remains active.

18.4.7 Wake-up Sources

The wake-up events allow the device to exit Backup mode. When a wake-up event is detected, the SUPC
performs a sequence that automatically reenables the core power supply.

Figure 18-4. Wake-up Sources
SMEN ™~
smout _ ———— | Vj
RTCEN T\
rtc_alarm ___ —————— | /)
RTTEN ™\
rtt_alarm) seeccccecescsssscsssssssessssoas
1 Low-power WKUPT] | "=======secmccmeenacncanaanaans + | _LPDBC :
: Tamper Detection RTCOUTO FDBCST H
! Logic LPDBCEN LS :
, Falling/Rising T :
! Edge Detect Debouncer - :
— RTCOUTO 2 gﬁrr)eply
: LPDBCENO| LpoBCS0| Lt Restart
' Falling/Rising L : esta
: Edge Detect Debouncer ® v
WKUPTO !
[wkuPENO | [wKkuPISO | mmmmmmemmemmeemene oo
wwoso [febess
I— SLCK WKUPS
WKUPT1 [wkupPeNt | | wkupist | Lt J
| Debouncer ®
[———>]
WKUP1 | I Falling/Rising LPDBCS1
Edge Detect GPBR Clear
! LPDBCS0
1
LPDBCCLR
| WKUPT15 [wkuPEN15| [WKUPIS15] | LPDECCLR]
1
1

Falling/Rising
WKUP15 | I Edge Detect

18.4.7.1 Wake-up Inputs

The wake-up inputs, WKUPX, can be programmed to perform a wake-up of the core power supply. Each input can
be enabled by writing a 1 to the corresponding bit, WKUPENYX, in the Wake-up Inputs register (SUPC_WUIR). The
wake-up level can be selected with the corresponding polarity bit, WKUPTX, also located in SUPC_WUIR.

The resulting signals are wired-ORed to trigger a debounce counter, which is programmed with the WKUPDBC
field in SUPC_WUMR. The WKUPDBC field selects a debouncing period of 3, 32, 512, 4,096 or 32,768 slow clock
cycles. The duration of these periods corresponds, respectively, to about 100 us, about 1 ms, about 16 ms, about
128 ms and about 1 second (for a typical slow clock frequency of 32 kHz). Programming WKUPDBC to 0x0 selects
an immediate wake-up, i.e., an enabled WKUP pin must be active according to its polarity during a minimum of
one slow clock period to wake up the core power supply.

334 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

If an enabled WKUP pin is asserted for a duration longer than the debouncing period, a wake-up of the core power
supply is started and the signals, WKUPO to WKUPx as shown in Figure 18-4 "Wake-up Sources", are latched in
SUPC_SR. This allows the user to identify the source of the wake-up. However, if a new wake-up condition
occurs, the primary information is lost. No new wake-up can be detected since the primary wake-up condition has
disappeared.

Before instructing the system to enter Backup mode, if the field WKUPDBC > 0, it must be checked that none of
the WKUPXx pins that are enabled for a wake-up (exit from Backup mode) holds an active polarity. This is checked
by reading the pin status in the PIO Controller. If WKUPENx=1 and the pin WKUPx holds an active polarity, the
system must not be instructed to enter Backup mode.

Figure 18-5. Entering and Exiting Backup Mode with a WKUP Pin

WKUPDBC >0
WKUPTx=0
WKUPX Edge detect + Edge detect +
(debounce time debounce time
[] VROFF=1 D\ []| VROFF=1
YVvy VYV
System Active BACKUP Active BACKUP Active BACKUP
: i check !
.)) " ! ¢ WKUPX
active runtime ' active runtime ! status
ch.éck ’ .
WKUPX

status

18.4.7.2 Low-power Tamper Detection and Anti-Tampering

Low-power debouncer inputs (WKUPO, WKUP1) can be used for tamper detection. If the tamper sensor is biased
through a resistor and constantly driven by the power supply, this leads to power consumption as long as the
tamper detection switch is in its active state. To prevent power consumption when the switch is in active state, the
tamper sensor circuitry must be intermittently powered, and thus a specific waveform must be applied to the
sensor circuitry.

The waveform is generated using RTCOUTX in all modes including Backup mode. Refer to the RTC section for
waveform generation.

Separate debouncers are embedded, one for WKUPO input, one for WKUP1 input.

The WKUPO and/or WKUP1 inputs perform a system wake-up upon tamper detection. This is enabled by setting
the LPDBCENO/1 bit in the SUPC_WUMR.

WKUPO and/or WKUP1 inputs can also be used when VDDCORE is powered to detect a tamper.

When the bit LPDBCENX is written to 1, WKUPXx pins must not be configured to act as a debouncing source for the
WKUPDBC counter (WKUPENx must be cleared in SUPC_WUIR).

Low-power tamper detection or debounce requires RTC output (RTCOUTX) to be configured to generate a duty
cycle programmable pulse (i.e., OUTO = 0x7 in RTC_MR) in order to create the sampling points of both
debouncers. The sampling point is the falling edge of the RTCOUTx waveform.

Figure 18-6 shows an example of an application where two tamper switches are used. RTCOUTx powers the
external pull-up used by the tamper sensor circuitry.

SAMA4S Series [DATASHEET 335
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 18-6. Low-power Debouncer (Push-to-Make Switch, Pull-up Resistors)

MCU
J-l ” < RTCOUTx
Pull-up
Resistor
‘ »[WKUPO
-\~ > Pull-up
Resistor
GND WKUP1
S\, 1
GND
GND

Figure 18-7. Low-power Debouncer (Push-to-Break Switch, Pull-down Resistors)

MCU
J-l ” <—I RTCOUTX
<_ —_—
1 »| WKUPO
(_ —_—
WKUP1
Pull-down J_
Resistors GND
GND GND

The debouncing period duration is configurable. The period is set for all debouncers (i.e., the duration cannot be
adjusted for each debouncer). The number of successive identical samples to wake up the system can be
configured from 2 up to 8 in the LPDBC field of SUPC_WUMR. The period of time between two samples can be
configured by programming the TPERIOD field in the RTC_MR. Power parameters can be adjusted by modifying
the period of time in the THIGH field in RTC_MR.

The wake-up polarity of the inputs can be independently configured by writing WKUPTO and/ or WKUPT1 fields in
SUPC_WUMR.

In order to determine which wake-up/tamper pin triggers the system wake-up, a status flag is associated for each
low-power debouncer. These flags are read in SUPC_SR.

A debounce event (tamper detection) can perform an immediate clear (0 delay) on the first half the general-
purpose backup registers (GPBR). The LPDBCCLR bit must be set in SUPC_WUMR.

Note that it is not mandatory to use the RTCOUTX pin when using the WKUPO/WKUPL1 pins as tampering inputs in
any mode. Using the RTCOUTX pin provides a “sampling mode” to further reduce the power consumption of the

336 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

tamper detection circuitry. If RTCOUTX is not used, the RTC must be configured to create an internal sampling

point for the debouncer logic. The period of time between two samples can be configured by programming the
TPERIOD field in RTC_MR.

Figure 18-8 illustrates the use of WKUPXx without the RTCOUTX pin.

Figure 18-8. Using WKUP Pins Without RTCOUTx Pins
VDDIO

MCU

Pull-up
Resistor

»| WKUPO

.

-\~ > Pull-up
Resistor

GND

WKUP1

_};, gN_D

The RTC and the RTT alarms can generate a wake-up of the core power supply. This can be enabled by setting,
respectively, the bits RTCEN and RTTEN in SUPC_WUMR.

18.4.7.3 Clock Alarms

The Supply Controller does not provide any status as the information is available in the user interface of either the
Real-Time Timer or the Real-Time Clock.

18.4.7.4 Supply Monitor Detection

The supply monitor can generate a wake-up of the core power supply. See Section 18.4.4 "Supply Monitor”.

SAMA4S Series [DATASHEET 337
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

18.4.8 Register Write Protection

To prevent any single software error from corrupting SYSC behavior, certain registers in the address space can be
write-protected by setting the WPEN bit in the "System Controller Write Protection Mode Register”
(SYSC_WPMR).

The following registers can be write-protected:

RSTC Mode Register

RTT Mode Register

RTT Alarm Register

RTC Control Register

RTC Mode Register

RTC Time Alarm Register

RTC Calendar Alarm Register

General Purpose Backup Registers
Supply Controller Control Register

Supply Controller Supply Monitor Mode Register
Supply Controller Mode Register

Supply Controller Wake-up Mode Register
Supply Controller Wake-up Inputs Register

18.4.9 Register Bits in Backup Domain (VDDIO)

The following configuration registers, or certain bits of the registers, are physically located in the product backup
domain:

RSTC Mode Register (all bits)

RTT Mode Register (all bits)

RTT Alarm Register (all bits)

RTC Control Register (all bits)

RTC Mode Register (all bits)

RTC Time Alarm Register (all bits)

RTC Calendar Alarm Register (all bits)

General Purpose Backup Registers (all bits)

Supply Controller Control Register (see register description for details)
Supply Controller Supply Monitor Mode Register (all bits)

Supply Controller Mode Register (see register description for details)
Supply Controller Wake-up Mode Register (all bits)

Supply Controller Wake-up Inputs Register (all bits)

Supply Controller Status Register (all bits)

338 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

18.5 Supply Controller (SUPC) User Interface

The user interface of the Supply Controller is part of the System Controller user interface.

18.5.1 System Controller (SYSC) User Interface

Table 18-1. System Controller Registers

Offset System Controller Peripheral Name
0x00-0x0c Reset Controller RSTC
0x10-0x2C Supply Controller SUPC
0x30-0x3C Real Time Timer RTT
0x50-0x5C Watchdog Timer WDT
0x60-0x8C Real Time Clock RTC
0x90-0xDC General Purpose Backup Register GPBR

OxEO Reserved -

OXE4 Write Protection Mode Register SYSC_WPMR
OxE8-0xF8 Reserved -

18.5.2 Supply Controller (SUPC) User Interface

Table 18-2. Register Mapping

Offset Register Name Access Reset
0x00 Supply Controller Control Register SUPC_CR Write-only -

0x04 Supply Controller Supply Monitor Mode Register SUPC_SMMR Read/Write 0x0000_0000
0x08 Supply Controller Mode Register SUPC_MR Read/Write 0x0000_5A00
0x0C Supply Controller Wake-up Mode Register SUPC_WUMR Read/Write 0x0000_0000
0x10 Supply Controller Wake-up Inputs Register SUPC_WUIR Read/Write 0x0000_0000
0x14 Supply Controller Status Register SUPC_SR Read-only 0x0000_0000
0x18 Reserved - - -

SAMA4S Series [DATASHEET 339
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

18.5.3 Supply Controller Control Register

Name: SUPC_CR

Address: 0x400E1410

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - | - - I - I - | - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | XTALSEL | VROFF | - | - |

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_MR).

* VROFF: Voltage Regulator Off
0 (NO_EFFECT): No effect.

1 (STOP_VREG): If KEY is correct, VROFF asserts the vddcore_nreset and stops the voltage regulator.
Note: This bit is located in the VDDIO domain.

» XTALSEL: Crystal Oscillator Select
0 (NO_EFFECT): No effect.

1 (CRYSTAL_SEL): If KEY is correct, XTALSEL switches the slow clock on the crystal oscillator output.
Note: This bit is located in the VDDIO domain.

 KEY: Password

Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation.

340 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

18.5.4 Supply Controller Supply Monitor Mode Register

Name: SUPC_SMMR

Address: 0x400E1414

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | SMIEN |SMRSTEN| - | SMSMPL |
7 6 5 4 3 2 1 0

I - I - I - I - I SMTH |

This register is located in the VDDIO domain.

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_MR).

* SMTH: Supply Monitor Threshold
Selects the threshold voltage of the supply monitor. Refer to the Electrical Characteristics for voltage values.

* SMSMPL: Supply Monitor Sampling Period

Value Name Description
0x0 SMD Supply Monitor disabled
0x1 CSM Continuous Supply Monitor
0x2 32SLCK Supply Monitor enabled one SLCK period every 32 SLCK periods
0x3 256SLCK Supply Monitor enabled one SLCK period every 256 SLCK periods
0x4 2048SLCK Supply Monitor enabled one SLCK period every 2,048 SLCK periods

» SMRSTEN: Supply Monitor Reset Enable
0 (NOT_ENABLE): The core reset signal vddcore_nreset is not affected when a supply monitor detection occurs.

1 (ENABLE): The core reset signal, vddcore_nreset is asserted when a supply monitor detection occurs.

e SMIEN: Supply Monitor Interrupt Enable
0 (NOT_ENABLE): The SUPC interrupt signal is not affected when a supply monitor detection occurs.
1 (ENABLE): The SUPC interrupt signal is asserted when a supply monitor detection occurs.

SAM4S Series [DATASHEET] 341

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

18.5.5 Supply Controller Mode Register

Name: SUPC_MR

Address: 0x400E1418

Access: Read/Write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

[- T - T - qosemwss[- [- [- [-]
15 14 13 12 11 10 9 8

| - | ONREG | BODDIS | BODRSTEN | - | - | - | - |
7 6 5 4 3 2 1 0

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_MR).

» BODRSTEN: Brownout Detector Reset Enable
0 (NOT_ENABLE): The core reset signal vddcore_nreset is not affected when a brownout detection occurs.

1 (ENABLE): The core reset signal, vddcore_nreset is asserted when a brownout detection occurs.
Note: This bit is located in the VDDIO domain.

» BODDIS: Brownout Detector Disable
0 (ENABLE): The core brownout detector is enabled.

1 (DISABLE): The core brownout detector is disabled.
Note: This bit is located in the VDDIO domain.

* ONREG: Voltage Regulator Enable
0 (ONREG_UNUSED): Internal voltage regulator is not used (external power supply is used).

1 (ONREG_USED): Internal voltage regulator is used.
Note: This bit is located in the VDDIO domain.

* OSCBYPASS: Oscillator Bypass
0 (NO_EFFECT): No effect. Clock selection depends on the value of XTALSEL (SUPC_CR).

1 (BYPASS): The 32 kHz crystal oscillator is bypassed if XTALSEL (SUPC_CR) is set. OSCBYPASS must be set prior to
setting XTALSEL.
Note: This bit is located in the VDDIO domain.

» KEY: Password Key

Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation.

342 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

18.5.6 Supply Controller Wake-up Mode Register

Name: SUPC_WUMR

Address: 0x400E141C

Access: Read/Write
31 30 29 28 27 26 25 24

- T - T - T - T = T - - —]
23 22 21 20 19 18 17 16

I - I - I - I - I - I LPDBC |
15 14 13 12 11 10 9 8

| - | WKUPDBC | - | - | - | - |
7 6 5 4 3 2 1 0

| LPDBCCLR | LPDBCEN1 | LPDBCENO | - | RTCEN | RTTEN | SMEN | - |

This register is located in the VDDIO domain.

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_MR).

* SMEN: Supply Monitor Wake-up Enable
0 (NOT_ENABLE): The supply monitor detection has no wake-up effect.
1 (ENABLE): The supply monitor detection forces the wake-up of the core power supply.

 RTTEN: Real-time Timer Wake-up Enable
0 (NOT_ENABLE): The RTT alarm signal has no wake-up effect.
1 (ENABLE): The RTT alarm signal forces the wake-up of the core power supply.

 RTCEN: Real-time Clock Wake-up Enable
0 (NOT_ENABLE): The RTC alarm signal has no wake-up effect.
1 (ENABLE): The RTC alarm signal forces the wake-up of the core power supply.

 LPDBCENO: Low-power Debouncer Enable WKUPO
0 (NOT_ENABLE): The WKUPO input pin is not connected to the low-power debouncer.
1 (ENABLE): The WKUPO input pin is connected to the low-power debouncer and forces a system wake-up.

 LPDBCENL1: Low-power Debouncer Enable WKUP1
0 (NOT_ENABLE): The WKUPL1 input pin is not connected to the low-power debouncer.
1 (ENABLE): The WKUP1 input pin is connected to the low-power debouncer and forces a system wake-up.

e LPDBCCLR: Low-power Debouncer Clear
0 (NOT_ENABLE): A low-power debounce event does not create an immediate clear on the first half of GPBR registers.

1 (ENABLE): A low-power debounce event on WKUPO or WKUP1 generates an immediate clear on the first half of GPBR
registers.

SAMA4S Series [DATASHEET 343
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

+ WKUPDBC: Wake-up Inputs Debouncer Period

Value Name Description
0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge.
1 3_SCLK WKUPXx shall be in its active state for at least 3 SLCK periods
2 32_SCLK WKUPXx shall be in its active state for at least 32 SLCK periods
3 512_SCLK WKUPXx shall be in its active state for at least 512 SLCK periods
4 4096_SCLK WKUPX shall be in its active state for at least 4,096 SLCK periods
5 32768_SCLK WKUPX shall be in its active state for at least 32,768 SLCK periods

* LPDBC: Low-power Debouncer Period

Value Name Description

0 DISABLE Disable the low-power debouncers.

1 2_RTCOUTO WKUPO/1 in active state for at least 2 RTCOUTXx clock periods
2 3_RTCOUTO WKUPO/1 in active state for at least 3 RTCOUTX clock periods
3 4 RTCOUTO WKUPO/1 in active state for at least 4 RTCOUTX clock periods
4 5 RTCOUTO WKUPO/1 in active state for at least 5 RTCOUTX clock periods
5 6_RTCOUTO WKUPO/1 in active state for at least 6 RTCOUTX clock periods
6 7_RTCOUTO WKUPO/1 in active state for at least 7 RTCOUTXx clock periods
7 8_RTCOUTO WKUPO/1 in active state for at least 8 RTCOUTXx clock periods

344 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

18.5.7 Supply Controller Wake-up Inputs Register

Name: SUPC_WUIR

Address: 0x400E1420

Access: Read/Write
31 30 29 28 27 26 25 24

| WKUPT15 | WKUPT14 | WKUPT13 | WKUPT12 | WKUPT11 | WKUPT10 | WKUPT9 | WKUPTS8 |
23 22 21 20 19 18 17 16

| WKUPT7 | WKUPT6 | WKUPT5 | WKUPT4 | WKUPT3 | WKUPT2 | WKUPT1 | WKUPTO |
15 14 13 12 11 10 9 8

| WKUPEN15 | WKUPEN14 | WKUPEN13 | WKUPEN12 | WKUPEN11 | WKUPEN10 | WKUPEN9 | WKUPENS8 |

7 6 5 4 3 2 1 0
| WKUPEN7 | WKUPENG6 | WKUPEN5 | WKUPEN4 | WKUPEN3 | WKUPEN2 | WKUPEN1 | WKUPENO |

This register is located in the VDDIO domain.

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_MR).

« WKUPENO - WKUPENXx: Wake-up Input Enable 0 to x
0 (DISABLE): The corresponding wake-up input has no wake-up effect.
1 (ENABLE): The corresponding wake-up input is enabled for a wake-up of the core power supply.

« WKUPTO - WKUPTx: Wake-up Input Type 0 to x

0 (LOW): A falling edge followed by a low level for a period defined by WKUPDBC on the corresponding wake-up input
forces the wake-up of the core power supply.

1 (HIGH): A rising edge followed by a high level for a period defined by WKUPDBC on the corresponding wake-up input
forces the wake-up of the core power supply.

SAMA4S Series [DATASHEET 345
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

18.5.8 Supply Controller Status Register

Name: SUPC_SR

Address: 0x400E1424

Access: Read-only
31 30 29 28 27 26 25 24

| WKUPIS15 | WKUPIS14 | WKUPIS13 | WKUPIS12 | WKUPIS11 | WKUPIS10 | WKUPIS9 | WKUPIS8 |
23 22 21 20 19 18 17 16

| WKUPIS7 | WKUPIS6 | WKUPIS5 | WKUPIS4 | WKUPIS3 | WKUPIS2 | WKUPIS1 | WKUPISO |
15 14 13 12 11 10 9 8

| - | LPDBCS1 | LPDBCSO | - | - | - | - | - |
7 6 5 4 3 2 1 0

| OSCSEL | SMOS | SMS | SMRSTS | BODRSTS | SMWS | WKUPS | - |

Note: Because of the asynchronism between the Slow Clock (SLCK) and the System Clock (MCK), the status register flag reset is taken
into account only 2 slow clock cycles after the read of the SUPC_SR.

This register is located in the VDDIO domain.

« WKUPS: WKUP Wake-up Status (cleared on read)
0 (NO): No wake-up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.
1 (PRESENT): At least one wake-up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

* SMWS: Supply Monitor Detection Wake-up Status (cleared on read)
0 (NO): No wake-up due to a supply monitor detection has occurred since the last read of SUPC_SR.
1 (PRESENT): At least one wake-up due to a supply monitor detection has occurred since the last read of SUPC_SR.

« BODRSTS: Brownout Detector Reset Status (cleared on read)
0 (NO): No core brownout rising edge event has been detected since the last read of the SUPC_SR.
1 (PRESENT): At least one brownout output rising edge event has been detected since the last read of the SUPC_SR.

When the voltage remains below the defined threshold, there is no rising edge event at the output of the brownout detec-
tion cell. The rising edge event occurs only when there is a voltage transition below the threshold.

« SMRSTS: Supply Monitor Reset Status (cleared on read)
0 (NO): No supply monitor detection has generated a core reset since the last read of the SUPC_SR.
1 (PRESENT): At least one supply monitor detection has generated a core reset since the last read of the SUPC_SR.

* SMS: Supply Monitor Status (cleared on read)
0 (NO): No supply monitor detection since the last read of SUPC_SR.
1 (PRESENT): At least one supply monitor detection since the last read of SUPC_SR.

e SMOS: Supply Monitor Output Status
0 (HIGH): The supply monitor detected VDDIO higher than its threshold at its last measurement.
1 (LOW): The supply monitor detected VDDIO lower than its threshold at its last measurement.

346 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

* OSCSEL: 32-kHz Oscillator Selection Status
0 (RC): The slow clock, SLCK, is generated by the embedded 32 kHz RC oscillator.
1 (CRYST): The slow clock, SLCK, is generated by the 32 kHz crystal oscillator.

» LPDBCSO: Low-power Debouncer Wake-up Status on WKUPO (cleared on read)
0 (NO): No wake-up due to the assertion of the WKUPO pin has occurred since the last read of SUPC_SR.
1 (PRESENT): At least one wake-up due to the assertion of the WKUPO pin has occurred since the last read of SUPC_SR.

e LPDBCS1: Low-power Debouncer Wake-up Status on WKUP1 (cleared on read)
0 (NO): No wake-up due to the assertion of the WKUP1 pin has occurred since the last read of SUPC_SR.
1 (PRESENT): At least one wake-up due to the assertion of the WKUP1 pin has occurred since the last read of SUPC_SR.

 WKUPISx: WKUPXx Input Status (cleared on read)

0 (DIS): The corresponding wake-up input is disabled, or was inactive at the time the debouncer triggered a wake-up
event.

1 (EN): The corresponding wake-up input was active at the time the debouncer triggered a wake-up event since the last
read of SUPC_SR.

SAMA4S Series [DATASHEET 347
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

18.5.9 System Controller Write Protection Mode Register

Name: SYSC_WPMR

Access: Read/Write
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - WPEN |

* WPEN: Write Protection Enable
0: Disables the write protection if WPKEY corresponds to 0x525443 (“RTC” in ASCII).
1: Enables the write protection if WPKEY corresponds to 0x525443 (“RTC” in ASCII).

See Section 18.4.8 "Register Write Protection” for the list of registers that can be write-protected.

« WPKEY: Write Protection Key.

Value Name Description

Writing any other value in this field aborts the write operation of the WPEN bit.
Always reads as 0.

0x525443 PASSWD

348 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

19. General Purpose Backup Registers (GPBR)

19.1 Description
The System Controller embeds 256 bits of General Purpose Backup registers organized as Eight 32-bit registers.

It is possible to generate an immediate clear of the content of General Purpose Backup registers 0 to 3 (first half) if
a Low-power Debounce event is detected on one of the wakeup pins, WKUPO or WKUP1. The content of the other
General Purpose Backup registers (second half) remains unchanged.

The Supply Controller module must be programmed accordingly. In the register SUPC_WUMR in the Supply
Controller module, LPDBCCLR, LPDBCENO and/or LPDBCEN1 bit must be configured to 1 and LPDBC must be
other than 0.

If a Tamper event has been detected, it is not possible to write to the General Purpose Backup registers while the
LPDBCSO0 or LPDBCS1 flags are not cleared in the Supply Controller Status Register (SUPC_SR).

19.2 Embedded Characteristics
e 256 bits of General Purpose Backup Registers

SAMA4S Series [DATASHEET 349
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

19.3 General Purpose Backup Registers (GPBR) User Interface

Table 19-1. Register Mapping

Offset Register Name Access Reset
0x0 General Purpose Backup Register 0 SYS_GPBRO Read/Write | 0x00000000
0x1C General Purpose Backup Register 7 SYS_GPBR7 Read/Write | 0x00000000

350 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

19.3.1 General Purpose Backup Register x

Name: SYS_GPBRX

Address: 0x400E1490

Access: Read/Write
31 30 29 28 27 26 25 24

| GPBR_VALUE |
23 22 21 20 19 18 17 16

| GPBR_VALUE |
15 14 13 12 11 10 9 8

| GPBR_VALUE |
7 6 5 4 3 2 1 0

| GPBR_VALUE |

These registers are reset at first power-up and on each loss of VVDIO.

» GPBR_VALUE: Value of GPBR x

If a Tamper event has been detected, it is not possible to write GPBR_VALUE as long as the LPDBCSO0 or LPDBCSL flag
has not been cleared in the Supply Controller Status Register (SUPC_SR).

SAMA4S Series [DATASHEET 351
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

20.

20.1

Enhanced Embedded Flash Controller (EEFC)

Description
The Enhanced Embedded Flash Controller (EEFC) provides the interface of the Flash block with the 32-bit internal

bus.

Its 128-bit or 64-bit wide memory interface increases performance. It also manages the programming, erasing,
locking and unlocking sequences of the Flash using a full set of commands. One of the commands returns the
embedded Flash descriptor definition that informs the system about the Flash organization, thus making the
software generic.

20.2 Embedded Characteristics
Increases Performance in Thumb-2 Mode with 128-bit or 64-bit-wide Memory Interface up to 120 MHz

Code Loop Optimization

256 Lock Bits, Each Protecting a Lock Region
GPNVMx General-purpose GPNVM Bits

One-by-one Lock Bit Programming
Commands Protected by a Keyword
Erase the Entire Flash

Erase by Plane

Erase by Sector

Erase by Page

Provides Unique Identifier

Provides 512-byte User Signature Area
Supports Erasing before Programming
Locking and Unlocking Operations
Supports Read of the Calibration Bits

20.3 Product Dependencies

20.3.1 Power Management

20.3.2

352

The Enhanced Embedded Flash Controller (EEFC) is continuously clocked. The Power Management Controller
has no effect on its behavior.

Interrupt Sources

The EEFC interrupt line is connected to the interrupt controller. Using the EEFC interrupt requires the interrupt
controller to be programmed first. The EEFC interrupt is generated only if the value of bit EEFC_FMR.FRDY is 1.

Table 20-1. Peripheral IDs

Instance ID
EFCO 6
EFC1 7

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

20.4 Functional Description

20.4.1 Embedded Flash Organization

The embedded Flash interfaces directly with the internal bus. The embedded Flash is composed of:

One memory plane organized in several pages of the same size for the code
A separate 2 x 512-byte memory area which includes the unique chip identifier
A separate 512-byte memory area for the user signature

Two 128-bit or 64-bit read buffers used for code read optimization

One 128-bit or 64-bit read buffer used for data read optimization

One write buffer that manages page programming. The write buffer size is equal to the page size. This buffer
is write-only and accessible all along the 1 Mbyte address space, so that each word can be written to its final
address.

Several lock bits used to protect write/erase operation on several pages (lock region). A lock bit is
associated with a lock region composed of several pages in the memory plane.

Several bits that may be set and cleared through the EEFC interface, called general-purpose non-volatile
memory bits (GPNVM bits)

The embedded Flash size, the page size, the organization of lock regions and the definition of GPNVM bits are
specific to the device. The EEFC returns a descriptor of the Flash controller after a ‘Get Flash Descriptor’
command has been issued by the application (see Section 20.4.3.1 "Get Flash Descriptor Command”).

Atmel

SAM4S Series [DATASHEET] 353

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 20-1. Flash Memory Areas
L 8
2

T rS\g
: A‘Zy
[
. |@FBA+0x010
.1 | | @FBA+0x000

Write “Stgp Unique Identifier”,

(Flash Gbmmand SPU, Write “Start Unique Identifier”

@FBA+Ox3FF 7 (Flash Command STUI)
=
Unique {dentifier
@FBA+0X1 FF op User signature” Write “Start User Signature”
(FlastyCommand SPUS) (Flash Command STUS)
@FBA+0x000 FBA = Flash Base Address
354 SAMA4S Series [DATASHEET)]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

Figure 20-2. Organization of Embedded Flash for Code

Memory Plane

.. —> e
Start Address 2
Lock Region 0 <—— LockBit0
Page (m-1) B SO
Lock Region 1 <— LockBit1
(

Start Address + Flash size -1

Page (n*m-1)

SAMA4S Series [DATASHEET 355
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

20.4.2 Read Operations

An optimized controller manages embedded Flash reads, thus increasing performance when the processor is
running in Thumb-2 mode by means of the 128- or 64-bit-wide memory interface.

The Flash memory is accessible through 8-, 16- and 32-bit reads.

As the Flash block size is smaller than the address space reserved for the internal memory area, the embedded
Flash wraps around the address space and appears to be repeated within it.

The read operations can be performed with or without wait states. Wait states must be programmed in the field
FWS in the Flash Mode register (EEFC_FMR). Defining FWS as 0 enables the single-cycle access of the
embedded Flash. For mre details, refer to the section “Electrical Characteristics” of this datasheet.

20.4.2.1 128- or 64-bit Access Mode

By default, the read accesses of the Flash are performed through a 128-bit wide memory interface. It improves
system performance especially when two or three wait states are needed.

For systems requiring only 1 wait state, or to focus on current consumption rather than performance, the user can
select a 64-bit wide memory access via the bit EEFC_FMR.FAM.

For more details, refer to the section “Electrical Characteristics” of this datasheet.

20.4.2.2 Code Read Optimization
Code read optimization is enabled if the bit EEFC_FMR.SCOD is cleared.
A system of 2 x 128-bit or 2 x 64-bit buffers is added in order to optimize sequential code fetch.
Note: Immediate consecutive code read accesses are not mandatory to benefit from this optimization.

The sequential code read optimization is enabled by default. If the bit EEFC_FMR.SCOD is set to 1, these buffers
are disabled and the sequential code read is no longer optimized.

Another system of 2 x 128-bit or 2 x 64-bit buffers is added in order to optimize loop code fetch. Refer to
Section 20.4.2.3 "Code Loop Optimization” for more details.

Figure 20-3. Code Read Optimization for FWS =0

Master Clock _I | I | | | | | | | | | | | I_I_

SE 0 SN AN S S SN S S S

@0 @-+4 @ +8 @+12 @+16 @+20 @+24 @+28 @+32

: ant|<:|pat|on of @16-31
X Byte;\O 15 XBytes(.q.6 31X XBytes 32-47X X X

Flash Access

Buffer 0 (128 bits) X X+ K = ——— | Bytes 015 X Bytes 3247
Buffer 1 (128 bits) X \ :xxx \ X\ Bytes 16-31
Datato ARM XXX X Bytes 0-3 X Bytds 47 X Byt(—i‘s 8-11 XByte:S 12-15 X(Bytes 16-19 YBytes 20-23 X Bytes 24-27 XBytes 28-31
Note: When FWS is equal to 0, all the accesses are performed in a single-cycle access.
356 SAMA4S Series [DATASHEET] AtmeL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 20-4. Code Read Optimization for FWS =3

Master Clock Illllllllllllll|||||||||||||||||

g SRR NN EENE

@0 @|+4 @+8 @+16 @+20 @+24 @+32 @+:46 @+40 @+44 @+48 @+52

wait 3 Cysles before

128-bit data Tsstable ' ' antlmpation of @16-31 antlmpahon of @32-47
@0’4/ 8/12 aré ready @16/20/24/28 are ready

!

:

Flash Access XXXXX\ theso 15 XXXXX Bytés 16-31 XXXXXBytes3Z 47 XXXX XBytes486
g ATy N \ Y \

| X BytesO A5 | w.Bytes 32-47 | |

NN Y \;

Ry Y A W T Y
XXX X(;—é?) 4:—7 XB 11 X12—15 MZO 23X24 27X28 31X32 :35X36 39X40—43X44 47X48 51

Note: When FWS is between 1 and 3, in case of sequential reads, the first access takes (FWS + 1) cycles. The following accesses take
only one cycle.

Buffer 0 (128 bits)

Buffer 1 (128 bits)

Data to ARM

20.4.2.3 Code Loop Optimization
Code loop optimization is enabled when the bit EEFC_FMR.CLOE is set to 1.

When a backward jump is inserted in the code, the pipeline of the sequential optimization is broken and becomes
inefficient. In this case, the loop code read optimization takes over from the sequential code read optimization to
prevent the insertion of wait states. The loop code read optimization is enabled by default. In EEFC_FMR, if the bit
CLOE is reset to 0 or the bit SCOD is set to 1, these buffers are disabled and the loop code read is not optimized.

When code loop optimization is enabled, if inner loop body instructions L, to L, are positioned from the 128-bit
Flash memory cell M, to the memory cell M, after recognition of a first backward branch, the first two Flash
memory cells My, and M, targeted by this branch are cached for fast access from the processor at the next loop
iteration.

Then by combining the sequential prefetch (described in Section 20.4.2.2 "Code Read Optimization”) through the
loop body with the fast read access to the loop entry cache, the entire loop can be iterated with no wait state.

Figure 20-5 illustrates code loop optimization.

Figure 20-5. Code Loop Optimization
Backward address jump

Flash Memory |
128-bit words

My MpO Mp1

|

|

|

| I |

| |]
| | L L] L[L] || [Ls | o [Lo | oo | Lo [L | | |

| | |

Pb, Py P, Py . P, Py Py Py

Y .

2x128-bit loop entry 2x128-bit prefetch
cache buffer
Mpo Branch Cache 0 Lo Loop Entry instruction Mo Prefetch Buffer 0
My Branch Cache 1 L, Loop End instruction M, Prefetch Buffer 1
/ItmeL SAMA4S Series [DATASHEET)] 357

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

20.4.2.4 Data Read Optimization

The organization of the Flash in 128 bits or 64 bits is associated with two 128-bit or 64-bit prefetch buffers and one
128-bit or 64-bit data read buffer, thus providing maximum system performance. This buffer is added in order to
store the requested data plus all the data contained in the 128-bit or 64-bit aligned data. This speeds up sequential
data reads if, for example, FWS is equal to 1 (see Figure 20-6). The data read optimization is enabled by default. If
the bit EEFC_FMR.SCOD is set to 1, this buffer is disabled and the data read is no longer optimized.

Note: No consecutive data read accesses are mandatory to benefit from this optimization.

Figure 20-6. Data Read Optimization for FWS =1

yeeeg=e< S I N I A O
(= S S S S M S S S S

@Byte 0 @4 @8 @12 @16 @20 @24 @28 @32 @ 36
Flash Access xxx X Bytes0-15 X X Bytes16-31 X X Bytes 32-47
Buffer (128 bits) X XXX X Bytes 0-15 X Bytes 16-31

Data to ARM X XXX YeresosX a7 X 8-11 X 12-15 X X619 20-23 X 24-27 X 28-31 X Xz2-35

20.4.3 Flash Commands

The EEFC offers a set of commands to manage programming the Flash memory, locking and unlocking lock
regions, consecutive programming, locking and full Flash erasing, etc.

The commands are listed in the following table.

Table 20-2. Set of Commands

Command Value Mnemonic
Get Flash descriptor 0x00 GETD
Write page 0x01 WP
Write page and lock 0x02 WPL
Erase page and write page 0x03 EWP
Erase page and write page then lock 0x04 EWPL
Erase all 0x05 EA
Erase pages 0x07 EPA
Set lock bit 0x08 SLB
Clear lock bit 0x09 CLB
Get lock bit O0x0A GLB
Set GPNVM bit 0x0B SGPB
Clear GPNVM bit 0x0C CGPB

358 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 20-2. Set of Commands (Continued)

Command Value Mnemonic
Get GPNVM bit 0x0D GGPB
Start read unique identifier OxOE STUI

Stop read unique identifier OxOF SPUI

Get CALIB bit 0x10 GCALB
Erase sector 0x11 ES

Write user signature 0x12 WuUS
Erase user signature 0x13 EUS

Start read user signature 0x14 STUS
Stop read user signature 0x15 SPUS

In order to execute one of these commands, select the required command using the FCMD field in the Flash
Command register (EEFC_FCR). As soon as EEFC_FCR is written, the FRDY flag and the FVALUE field in the
Flash Result register (EEFC_FRR) are automatically cleared. Once the current command has completed, the
FRDY flag is automatically set. If an interrupt has been enabled by setting the bit EEFC_FMR.FRDY, the
corresponding interrupt line of the interrupt controller is activated. (Note that this is true for all commands except
for the STUI command. The FRDY flag is not set when the STUI command has completed.)

All the commands are protected by the same keyword, which must be written in the eight highest bits of
EEFC_FCR.

Writing EEFC_FCR with data that does not contain the correct key and/or with an invalid command has no effect
on the whole memory plane, but the FCMDE flag is set in the Flash Status register (EEFC_FSR). This flag is
automatically cleared by a read access to EEFC_FSR.

When the current command writes or erases a page in a locked region, the command has no effect on the whole
memory plane, but the FLOCKE flag is set in EEFC_FSR. This flag is automatically cleared by a read access to
EEFC_FSR.

SAMA4S Series [DATASHEET 359
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 20-7. Command State Chart

Read Status: EEFC_FSR

A

Check if FRDY flag Set

Write FCMD and PAGENB in Flash Command Register

Y

Read Status: EEFC_FSR

A

No

Check if FRDY flag Set

Check if FLOCKE flag Set

Locking region violation

Check if FCMDE flag Set Bad keyword violation

Command Successful

20.4.3.1 Get Flash Descriptor Command

This command provides the system with information on the Flash organization. The system can take full
advantage of this information. For instance, a device could be replaced by one with more Flash capacity, and so
the software is able to adapt itself to the new configuration.

To get the embedded Flash descriptor, the application writes the GETD command in EEFC_FCR. The first word of
the descriptor can be read by the software application in EEFC_FRR as soon as the FRDY flag in EEFC_FSR
rises. The next reads of EEFC_FRR provide the following word of the descriptor. If extra read operations to
EEFC_FRR are done after the last word of the descriptor has been returned, the EEFC_FRR value is 0 until the
next valid command.

360 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 20-3. Flash Descriptor Definition

Symbol Word Index Description

FL_ID 0 Flash interface description

FL_SIZE 1 Flash size in bytes

FL_PAGE_SIZE 2 Page size in bytes

FL_NB_PLANE 3 Number of planes

FL_PLANE[O] 4 Number of bytes in the plane
FL_LOCK]O] 4 + FL_NB_PLANE + 1 | Number of bytes in the first lock region

20.4.3.2 Write Commands
Several commands are used to program the Flash.

Only 0 values can be programmed using Flash technology; 1 is the erased value. In order to program words in a
page, the page must first be erased. Commands are available to erase the full memory plane or a given number of
pages. With the EWP and EWPL commands, a page erase is done automatically before a page programming.

After programming, the page (the entire lock region) can be locked to prevent miscellaneous write or erase
sequences. The lock bit can be automatically set after page programming using WPL or EWPL commands.

Data to be programmed in the Flash must be written in an internal latch buffer before writing the programming
command in EEFC_FCR. Data can be written at their final destination address, as the latch buffer is mapped into
the Flash memory address space and wraps around within this Flash address space.

Byte and half-word AHB accesses to the latch buffer are not allowed. Only 32-bit word accesses are supported.

32-bit words must be written continuously, in either ascending or descending order. Writing the latch buffer in a
random order is not permitted. This prevents mapping a C-code structure to the latch buffer and accessing the
data of the structure in any order. It is instead recommended to fill in a C-code structure in SRAM and copy it in the
latch buffer in a continuous order.

Write operations in the latch buffer are performed with the number of wait states programmed for reading the
Flash.

The latch buffer is automatically re-initialized, i.e., written with logical 1, after execution of each programming
command. However, after power-up, the latch buffer is not initialized. If only part of the page is to be written with
user data, the remaining part must be erased (written with 1).
The programming sequence is the following:

1. Write the data to be programmed in the latch buffer.

2. Write the programming command in EEFC_FCR. This automatically clears the bit EEFC_FSR.FRDY.

3. When Flash programming is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by

setting the bit EEFC_FMR.FRDY, the interrupt line of the EEFC is activated.

Three errors can be detected in EEFC_FSR after a programming sequence:

e Command Error: A bad keyword has been written in EEFC_FCR.

e Lock Error: The page to be programmed belongs to a locked region. A command must be run previously to
unlock the corresponding region.

e Flash Error: When programming is completed, the WriteVerify test of the Flash memory has failed.

Only one page can be programmed at a time. It is possible to program all the bits of a page (full page
programming) or only some of the bits of the page (partial page programming).

SAMA4S Series [DATASHEET 361
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Depending on the number of bits to be programmed within the page, the EEFC adapts the write operations
required to program the Flash.

When a ‘Write Page’ (WP) command is issued, the EEFC starts the programming sequence and all the bits written
at 0 in the latch buffer are cleared in the Flash memory array.

During programming, i.e., until EEFC_FSR.FDRY rises, access to the Flash is not allowed.

Full Page Programming

To program a full page, all the bits of the page must be erased before writing the latch buffer and issuing the WP
command. The latch buffer must be written in ascending order, starting from the first address of the page. See
Figure 20-8 "Full Page Programming".

Partial Page Programming

To program only part of a page using the WP command, the following constraints must be respected:
e Data to be programmed must be contained in integer multiples of 64-bit address-aligned
words.

e 64-bit words can be programmed only if all the corresponding bits in the Flash array are
erased (at logical value 1).

See Figure 20-9 "Partial Page Programming".
Programming Bytes

Individual bytes can be programmed using the Partial page programming mode.
In this case, an area of 64 bits must be reserved for each byte.

Refer to Figure 20-10 "Programming Bytes in the Flash".

362 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 20-8. Full Page Programming
32 bits wide 32 bits wide

/_J; /_J/
o ~
CA FE CA FE FF FF FF FF
CA FE CA FE | oxXxicC FF FF FF FF 0xX1C
FF FF FF FF | O0xX18

CA FE CA FE | 0xX18 address space

CA FE CA FE | 0xX14 for FF FF FF FF | OxX14

CA FE CA FE | oxxi0 Page N FF FF FF FF 0xX10

CA FE CA FE | oxXxoC FF FF FF FF | OxXOC

CA FE CA FE | 0xx08 FF FF FF FF | OxXO08

CA FE CA FE | oxxo4 FF FF FF FF | 0xX04

CA FE CA FE | 0xX00 FF FF FF FF | 0xX00
Before programming: Unerased page in Flash array Step 1: Flash array after page erase

1 I —
S ~
DE CA DE CA DE CA DE CA
DE CA DE CA| 0xX1C DE CA DE CA]| 0xX1C
DE CA DE CA| 0xX18
DE CA DE CA| 0xx18 address space address space
DE CA DE CA| 0xX14 for DE CA DE CA| 0xX14 for
DE CA DE CA| oxx10 | latch buffer DE CA DE CA[0xX10 Page N
DE CA DE CA| oxXxocC DE CA DE CA| oxXxoC
DE CA DE CA| 0xXo08 DE CA DE CA/| 0oxXxo08
DE CA DE CA| 0xX04 DE CA DE CA| 0xX04
DE CA DE CA| 0xX00 DE CA DE CA| 0xX00
Step 2: Writing a page in the latch buffer Step 3: Page in Flash array after issuing

WP command and FRDY=1

SAMA4S Series [DATASHEET)] 363
/I t m eL Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 20-9. Partial Page Programming

32 bits wide 32 bits wide
)’/_,—Jﬁ)’/:__—Jj
e T
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF | OxXi1C
FF FF FF FF FF FF FF FF | O0xX18

address space

FF FF FF FF for FF FF FF FF | OxX14
FF FF FF FF Page N FF FF FF FF | O0xX10
FF FF FF FF CA FE CA FE | OxXOC
FF FF FF FF CA FE CA FE [0xXo8
| FF FF FF FF | FF FF FF FF | OxX04
FF FF FF FF FF FF FF FF | OxX00
Step 1: Flash array after page erase Step 2: Flash array after programming

64-bit at address 0xX08 (write latch buffer + WP)

32 bits wide 32 bhits wide
I jp Eu—
T — = —
FF FF FF FF FF FF FF FF
FF FF FF FF | OxXiC CA FE CA FE | OxXl1C
FF FF FF FF [0xX18 CA FE CA FE [0xX18
FF FF FF FF | OxX14 [cA FE CA FE | OxXx14
FF FF FF FF | 0xX10 CA FE CA FE | 0xX10
CA FE CA FE | OxX0OC CA EFE CA EE | OxXoc
CA FE CA FE 0xX08 CA FE CA FE 0xX08
CA FE CA FE | Oxx04 CA EFE CA EE | 0xxo04
CA FE CA FE | O0xX00 CA FE CA FE | Oxx00
Step 3: Flash array after programming Step 4: Flash array after programming
a second 64-bit data at address 0xX00 a 128-bit data word at address 0xX10
(write latch buffer + WP) (write latch buffer + WP)

364 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 20-10. Programming Bytes in the Flash

32 bits wide 32 bits wide
—) —
] b
FF FF FF FF FF FF FF FF
FF FF FF FF | OxX1C FF FF FF FF | OxX1C
ax32bits= || FF FF FF FF | OXX18| . space FF FF FF FF | O0xXx18
1Flashword || FF FF FF FF | 0xX14 for FF FF FF FF | Oxx14
FF FF FF FF [0xX10 Page N FF FF FF FF | OxX10
FF FF FF FF | 0OxX0C XX XX XX XX 0xXoC
4 x 32 bits = FF FF FF FF 0xX08 XX XX xx 55 0xX08
1 Flash word XXX XX XX 0xX04 XX XX XX XX 0xX04
XX XX xx AA 0xX00 XX XX XX AA 0xX00
Step 1: Flash array after programming first byte (OXAA) Step 2: Flash array after programming second byte (0x55)
64-bit used at address 0xX00 (write latch buffer + WP) 64-bit used at address 0xX08 (write latch buffer + WP)

Note: The byte location shown here is for example only, it can be any byte location within a 64-bit word.

20.4.3.3 Erase Commands
Erase commands are allowed only on unlocked regions. Depending on the Flash memory, several commands can
be used to erase the Flash:
e Erase All Memory (EA): All memory is erased. The processor must not fetch code from the Flash memory.
e FErase Pages (EPA): 8 or 16 pages are erased in the Flash sector selected. The first page to be erased is
specified in the FARG[15:2] field of the EEFC_FCR. The first page number must be a multiple of 8, 16 or 32
depending on the number of pages to erase at the same time.
e Erase Sector (ES): A full memory sector is erased. Sector size depends on the Flash memory.
EEFC_FCR.FARG must be set with a page number that is in the sector to be erased.

If the processor is fetching code from the Flash memory while the EPA or ES command is being executed, the
processor accesses are stalled until the EPA command is completed. To avoid stalling the processor, the code can
be run out of internal SRAM.

SAMA4S Series [DATASHEET 365
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

The erase sequence is the following:

1. Erase starts as soon as one of the erase commands and the FARG field are written in EEFC_FCR.

— For the EPA command, the two lowest bits of the FARG field define the number of pages to be erased
(FARG[1:0]):

Table 20-4. EEFC_FCR.FARG Field for EPA Command

FARGJ1:0] Number of pages to be erased with EPA command
0 4 pages (only valid for small 8 KB sectors)
1 8 pages
2 16 pages
3 32 pages (not valid for small 8 KB sectors)

2. When erasing is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the
bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Three errors can be detected in EEFC_FSR after an erasing sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.

e Lock Error: At least one page to be erased belongs to a locked region. The erase command has been
refused, no page has been erased. A command must be run previously to unlock the corresponding region.

e Flash Error: At the end of the erase period, the EraseVerify test of the Flash memory has failed.
20.4.34 Lock Bit Protection
Lock bits are associated with several pages in the embedded Flash memory plane. This defines lock regions in the
embedded Flash memory plane. They prevent writing/erasing protected pages.
The lock sequence is the following:

1. Execute the ‘Set Lock Bit' command by writing EEFC_FCR.FCMD with the SLB command and
EEFC_FCR.FARG with a page number to be protected.

2. When the locking completes, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the
bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

3. The result of the SLB command can be checked running a ‘Get Lock Bit' (GLB) command.

Note: The value of the FARG argument passed together with SLB command must not exceed the higher lock bit index
available in the product.

Two errors can be detected in EEFC_FSR after a programming sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.
e Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has
failed.

It is possible to clear lock bits previously set. After the lock bits are cleared, the locked region can be erased or
programmed. The unlock sequence is the following:

1. Execute the ‘Clear Lock Bit' command by writing EEFC_FCR.FCMD with the CLB command and
EEFC_FCR.FARG with a page number to be unprotected.

2. When the unlock completes, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the
bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note: The value of the FARG argument passed together with CLB command must not exceed the higher lock bit index
available in the product.

Two errors can be detected in EEFC_FSR after a programming sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.

366 SAMA4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15 A t m eL

e Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has
failed.

The status of lock bits can be returned by the EEFC. The ‘Get Lock Bit’ sequence is the following:

1. Execute the ‘Get Lock Bit' command by writing EEFC_FCR.FCMD with the GLB command. Field
EEFC_FCR.FARG is meaningless.
2.

Lock bits can be read by the software application in EEFC_FRR. The first word read corresponds to the 32

first lock bits, next reads providing the next 32 lock bits as long as it is meaningful. Extra reads to
EEFC_FRR return 0.

For example, if the third bit of the first word read in EEFC_FRR is set, the third lock region is locked.
Two errors can be detected in EEFC_FSR after a programming sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.

e Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has
failed.

Note: Access to the Flash in read is permitted when a ‘Set Lock Bit', ‘Clear Lock Bit’ or ‘Get Lock Bit' command is executed
20.4.3.5 GPNVM Bit

GPNVM bits do not interfere with the embedded Flash memory plane. For more details, refer to the section
“Memories” of this datasheet.

The ‘Set GPNVM Bit’ sequence is the following:

1.

Execute the ‘Set GPNVM Bit' command by writing EEFC_FCR.FCMD with the SGPB command and
EEFC_FCR.FARG with the number of GPNVM bits to be set.

2. When the GPNVM bit is set, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled by setting the bit
EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.
3. The result of the SGPB command can be checked by running a ‘Get GPNVM Bit' (GGPB) command.
Note:

The value of the FARG argument passed together with SGPB command must not exceed the higher GPNVM index
available in the product. Flash data content is not altered if FARG exceeds the limit. Command Error is detected only if
FARG is greater than 8.

Two errors can be detected in EEFC_FSR after a programming sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.

e Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has

failed.

It is possible to clear GPNVM bits previously set. The ‘Clear GPNVM Bit’ sequence is the following:

1. Execute the ‘Clear GPNVM Bit' command by writing EEFC_FCR.FCMD with the CGPB command and
EEFC_FCR.FARG with the number of GPNVM bits to be cleared.

When the clear completes, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the bit

EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.
Note:

The value of the FARG argument passed together with CGPB command must not exceed the higher GPNVM index

available in the product. Flash data content is not altered if FARG exceeds the limit. Command Error is detected only if
FARG is greater than 8.

Two errors can be detected in EEFC_FSR after a programming sequence:

e Command Error: A bad keyword has been written in EEFC_FCR.
[

Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has
failed.

The status of GPNVM bits can be returned by the EEFC. The sequence is the following:

SAMA4S Series [DATASHEET 367
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Execute the ‘Get GPNVM Bit' command by writing EEFC_FCR.FCMD with the GGPB command. Field
EEFC_FCR.FARG is meaningless.

GPNVM bits can be read by the software application in EEFC_FRR. The first word read corresponds to the

32 first GPNVM bits, following reads provide the next 32 GPNVM bits as long as it is meaningful. Extra reads
to EEFC_FRR return O.

For example, if the third bit of the first word read in EEFC_FRR is set, the third GPNVM bit is active.
One error can be detected in EEFC_FSR after a programming sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.

Note: Access to the Flash in read is permitted when a ‘Set GPNVM Bit’, ‘Clear GPNVM Bit’ or ‘Get GPNVM Bit' command is
executed.

20.4.3.6 Calibration Bit
Calibration bits do not interfere with the embedded Flash memory plane.
The calibration bits cannot be modified.
The status of calibration bits are returned by the EEFC. The sequence is the following:

1. Execute the ‘Get CALIB Bit' command by writing EEFC_FCR.FCMD with the GCALB command. Field
EEFC_FCR.FARG is meaningless.

Calibration bits can be read by the software application in EEFC_FRR. The first word read corresponds to

the first 32 calibration bits. The following reads provide the next 32 calibration bits as long as it is meaningful.
Extra reads to EEFC_FRR return 0.

The 4/8/12 MHz fast RC oscillator is calibrated in production. This calibration can be read through the GCALB
command. The following table shows the bit implementation for each frequency.

Table 20-5. Calibration Bit Indexes

RC Calibration Frequency EEFC_FRR Bits
8 MHz output [28-22]
12 MHz output [38-32]

The RC calibration for the 4 MHz is set to ‘1000000’
20.4.3.7 Security Bit Protection

When the security bit is enabled, access to the Flash through the SWD interface or through the Fast Flash
Programming interface is forbidden. This ensures the confidentiality of the code programmed in the Flash.
The security bit is GPNVMO.

Disabling the security bit can only be achieved by asserting the ERASE pin at ‘1’, and after a full Flash erase is
performed. When the security bit is deactivated, all accesses to the Flash are permitted.

20.4.3.8 Unique Identifier Area

Each device is programmed with a 128 bits unique identifier area . See Figure 20-1 "Flash Memory Areas".

The sequence to read the unique identifier area is the following:
1. Execute the ‘Start Read Unique Identifier’ command by writing EEFC_FCR.FCMD with the STUI com-

mand. Field EEFC_FCR.FARG is meaningless.

Wait until the bit EEFC_FSR.FRDY falls to read the unique identifier area. The unique identifier field is

located in the first 128 bits of the Flash memory mapping. The ‘Start Read Unique Identifier’ command

reuses some addresses of the memory plane for code, but the unique identifier area is physically different
from the memory plane for code.

368 SAMA4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15 A t m eL

3. To stop reading the unique identifier area, execute the ‘Stop Read Unique Identifier’ command by writing
EEFC_FCR.FCMD with the SPUI command. Field EEFC_FCR.FARG is meaningless.

4. When the SPUI command has been executed, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled
by setting the bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note that during the sequence, the software cannot be fetched from the Flash.
20.4.3.9 User Signature Area

Each product contains a user signature area of 512-bytes. It can be used for storage. Read, write and erase of this
area is allowed.

See Figure 20-1 "Flash Memory Areas".
The sequence to read the user signature area is the following:

1. Execute the ‘Start Read User Signature’ command by writing EEFC_FCR.FCMD with the STUS com-
mand. Field EEFC_FCR.FARG is meaningless.

2. Wait until the bit EEFC_FSR.FRDY falls to read the user signature area. The user signature area is located
in the first 512 bytes of the Flash memory mapping. The ‘Start Read User Signature’ command reuses some
addresses of the memory plane but the user signature area is physically different from the memory plane

3. To stop reading the user signature area, execute the ‘Stop Read User Signature’ command by writing
EEFC_FCR.FCMD with the SPUS command. Field EEFC_FCR.FARG is meaningless.

4. When the SPUI command has been executed, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled
by setting the bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note that during the sequence, the software cannot be fetched from the Flash or from the second plane in case of
dual plane.

One error can be detected in EEFC_FSR after this sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.
The sequence to write the user signature area is the following:

1. Write the full page, at any page address, within the internal memory area address space.

2. Execute the ‘Write User Signature’ command by writing EEFC_FCR.FCMD with the WUS command. Field
EEFC_FCR.FARG is meaningless.

3. When programming is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by
setting the bit EEFC_FMR.FRDY, the corresponding interrupt line of the interrupt controller is activated.

Two errors can be detected in EEFC_FSR after this sequence:

e Command Error: A bad keyword has been written in EEFC_FCR.

e Flash Error: At the end of the programming, the WriteVerify test of the Flash memory has failed.
The sequence to erase the user signature area is the following:

1. Execute the ‘Erase User Signature’ command by writing EEFC_FCR.FCMD with the EUS command.
Field EEFC_FCR.FARG is meaningless.

2. When programming is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by
setting the bit EEFC_FMR.FRDY, the corresponding interrupt line of the interrupt controller is activated.

Two errors can be detected in EEFC_FSR after this sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.
e Flash Error: At the end of the programming, the EraseVerify test of the Flash memory has failed.

SAMA4S Series [DATASHEET 369
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

20.5 Enhanced Embedded Flash Controller (EEFC) User Interface
The User Interface of the Embedded Flash Controller (EEFC) is integrated within the System Controller with base address

0x400EOAO0O.
Table 20-6. Register Mapping
Offset Register Name Access Reset State
0x00 EEFC Flash Mode Register EEFC_FMR Read/Write 0x0400_0000
0x04 EEFC Flash Command Register EEFC_FCR Write-only -
0x08 EEFC Flash Status Register EEFC_FSR Read-only 0x0000_0001
0x0C EEFC Flash Result Register EEFC_FRR Read-only 0x0
0x10-0x14 Reserved - - -
0x18-0xE4 Reserved - - -
370 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

20.5.1 EEFC Flash Mode Register

Name: EEFC_FMR

Address: 0x400EO0AO00 (0), 0x400E0CO00 (1)

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - | CLOE | - | FAM |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - | Scob |
15 14 13 12 11 10 9 8

I - I - I - I - I FWS |
7 6 5 4 3 2 1 0

1 - 1T - 1T - T - - - FROV]

» FRDY: Flash Ready Interrupt Enable
0: Flash ready does not generate an interrupt.
1: Flash ready (to accept a new command) generates an interrupt.

* FWS: Flash Wait State
This field defines the number of wait states for read and write operations:
FWS = Number of cycles for Read/Write operations - 1

* SCOD: Sequential Code Optimization Disable

0: The sequential code optimization is enabled.

1: The sequential code optimization is disabled.

No Flash read should be done during change of this field.

* FAM: Flash Access Mode

0: 128-bit access in Read mode only, to enhance access speed.

1: 64-bit access in Read mode only, to enhance power consumption.
No Flash read should be done during change of this field.

* CLOE: Code Loop Optimization Enable
0: The opcode loop optimization is disabled.
1: The opcode loop optimization is enabled.
No Flash read should be done during change of this field.

SAMA4S Series [DATASHEET 371
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

20.5.2 EEFC Flash Command Register

Name: EEFC_FCR
Address: 0x400E0A04 (0), 0x400E0CO04 (1)
Access: Write-only
31 30 29 28 27 26 25 24
| FKEY |
23 22 21 20 19 18 17 16
| FARG |
15 14 13 12 11 10 9 8
| FARG |
7 6 5 4 3 2 1 0
| FCMD |
* FCMD: Flash Command
Value Name Description
0x00 GETD Get Flash descriptor
0x01 WP Write page
0x02 WPL Write page and lock
0x03 EWP Erase page and write page
0x04 EWPL Erase page and write page then lock
0x05 EA Erase all
0x07 EPA Erase pages
0x08 SLB Set lock bit
0x09 CLB Clear lock bit
0x0A GLB Get lock bit
0x0B SGPB Set GPNVM bit
0xoC CGPB Clear GPNVM bit
0x0D GGPB Get GPNVM bit
Ox0E STUI Start read unique identifier
OxOF SPUI Stop read unique identifier
0x10 GCALB Get CALIB bit
0x11 ES Erase sector
0x12 WuUS Write user signature
0x13 EUS Erase user signature
0x14 STUS Start read user signature
0x15 SPUS Stop read user signature

372 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

* FARG: Flash Command Argument

GETD, GLB, Commands
GGPB, STUI, requiring no
SPUI, GCALB, arqumergn includin FARG is meaningless, must be written with 0
WUS, EUS, STUS, Ergse all (':omman(?
SPUS, EA
ES Erase sector FARG must be written with any page number within the sector to be erased
command
FARG[1:0] defines the number of pages to be erased
The start page must be written in FARG[15:2].
FARG[1:0] = 0: Four pages to be erased. FARG[15:2] = Page_Number / 4
FARGJ1:0] = 1: Eight pages to be erased. FARG[15:3] = Page_Number / 8, FARG[2]=0
EPA Erase pages .
command FARG[1:0] = 2: Sixteen pages to be erased. FARG[15:4] = Page_Number / 16,
FARG[3:2]=0
FARGI1:0] = 3: Thirty-two pages to be erased. FARG[15:5] = Page_Number / 32,
FARG[4:2]=0
Refer to Table 20-4 “EEFC_FCR.FARG Field for EPA Command”.
WP, WPL, EWP, Programming . .
EWPL commands FARG must be written with the page number to be programmed
SLB, CLB Lock bit commands | FARG defines the page number to be locked or unlocked
SGPB, CGPB GPNVM commands | FARG defines the GPNVM number to be programmed
e FKEY: Flash Writing Protection Key
Value Name Description
The Ox5A value enables the command defined by the bits of the register. If the field is written with a
O0x5A PASSWD . o s
different value, the write is not performed and no action is started.
SAMA4S Series [DATASHEET 373
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

20.5.3 EEFC Flash Status Register

Name: EEFC_FSR

Address: 0x400EOA08 (0), 0x400E0CO08 (1)

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | — | - | - | FLERR | FLOCKE | FCMDE | FRDY |

* FRDY: Flash Ready Status (cleared when Flash is busy)

0: The EEFC is busy.

1: The EEFC is ready to start a new command.

When set, this flag triggers an interrupt if the FRDY flag is set in EEFC_FMR.
This flag is automatically cleared when the EEFC is busy.

* FCMDE: Flash Command Error Status (cleared on read or by writing EEFC_FCR)
0: No invalid commands and no bad keywords were written in EEFC_FMR.
1: Aninvalid command and/or a bad keyword was/were written in EEFC_FMR.

* FLOCKE: Flash Lock Error Status (cleared on read)

0: No programming/erase of at least one locked region has happened since the last read of EEFC_FSR.
1: Programming/erase of at least one locked region has happened since the last read of EEFC_FSR.
This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

 FLERR: Flash Error Status (cleared when a programming operation starts)
0: No Flash memory error occurred at the end of programming (EraseVerify or WriteVerify test has passed).
1: A Flash memory error occurred at the end of programming (EraseVerify or WriteVerify test has failed).

374 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

20.5.4 EEFC Flash Result Register

Name: EEFC_FRR

Address: 0x400EOAOC (0), 0x400EOCOC (1)

Access: Read-only
31 30 29 28 27 26 25 24

| FVALUE |
23 22 21 20 19 18 17 16

| FVALUE |
15 14 13 12 11 10 9 8

| FVALUE |
7 6 5 4 3 2 1 0

| FVALUE |

 FVALUE: Flash Result Value

The result of a Flash command is returned in this register. If the size of the result is greater than 32 bits, the next resulting
value is accessible at the next register read.

SAMA4S Series [DATASHEET 375
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

21. Fast Flash Programming Interface (FFPI)

21.1 Description
The Fast Flash Programming Interface (FFPI) provides parallel high-volume programming using a standard gang
programmer. The parallel interface is fully handshaked and the device is considered to be a standard EEPROM.
Additionally, the parallel protocol offers an optimized access to all the embedded Flash functionalities.
Although the Fast Flash Programming mode is a dedicated mode for high volume programming, this mode is not
designed for in-situ programming.

21.2 Embedded Characteristics

e Programming Mode for High-volume Flash Programming Using Gang Programmer
— Offers Read and Write Access to the Flash Memory Plane
— Enables Control of Lock Bits and General-purpose NVM Bits
— Enables Security Bit Activation
— Disabled Once Security Bit is Set

e Parallel Fast Flash Programming Interface
— Provides an 16-bit Parallel Interface to Program the Embedded Flash
— Full Handshake Protocol

376 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

21.3 Parallel Fast Flash Programming

21.3.1 Device Configuration

In Fast Flash Programming mode, the device is in a specific test mode. Only a certain set of pins is significant. The
rest of the PIOs are used as inputs with a pull-up. The crystal oscillator is in bypass mode. Other pins must be left
unconnected.

Figure 21-1. 16-bit Parallel Programming Interface

VDDIO —>{ TST
VDDIO —> PGMENO
VDDIO —> PGMEN1
l«—— VDDCORE
NCMD ——>! pGMNCMD —— Vbpo
RDY <«—|PGMRDY < VDDPLL
NOE ——{ PGMNOE «— GND
NVALID <«— PGMNVALID
MODE[3:0] —»| PGMM[3:0]
DATA[15:0] «<—>PGMDI[15:0]
0-50MHz — | XIN
Table 21-1. Signal Description List
Active
Signal Name Function Type Level Comments
Power
VDDIO 1/0 Lines Power Supply Power - -
VDDCORE Core Power Supply Power - -
VDDPLL PLL Power Supply Power - -
GND Ground Ground - -
Clocks
Main Clock Input.
XIN This input can bg tied to GND. In this Input _ 32 KHz to 50 MHz
case, the device is clocked by the internal
RC oscillator.
Test
TST Test Mode Select Input High Must be connected to VDDIO
PGMENO Test Mode Select Input High Must be connected to VDDIO
PGMEN1 Test Mode Select Input High Must be connected to VDDIO
PGMEN2 Test Mode Select Input Low Must be connected to GND
PIO
PGMNCMD ‘ Valid command available Input ‘ Low ’ Pulled-up input at reset

SAMA4S Series [DATASHEET 377
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 21-1. Signal Description List (Continued)
Active

Signal Name Function Type Level Comments
0: Device is busy))

PGMRDY o Output High Pulled-up input at reset
1: Device is ready for a new command

PGMNOE Output Enable (active high) Input Low Pulled-up input at reset
0: DATA[15:0] is in input mode)

PGMNVALID o Output Low Pulled-up input at reset
1: DATA[15:0] is in output mode

PGMM[3:0] Specifies DATA type (see Table 21-2) Input - Pulled-up input at reset

PGMDI[15:0] Bi-directional data bus Input/Output - Pulled-up input at reset

21.3.2 Signal Names
Depending on the MODE settings, DATA is latched in different internal registers.

Table 21-2. Mode Coding
MODE[3:0] Symbol Data
0000 CMDE Command Register
0001 ADDRO Address Register LSBs
0010 ADDR1 -
0011 ADDR2 -
0100 ADDR3 Address Register MSBs
0101 DATA Data Register
Default IDLE No register

When MODE is equal to CMDE, then a new command (strobed on DATA[15:0] signals) is stored in the command

register.

Table 21-3. Command Bit Coding
DATA[15:0] Symbol Command Executed
0x0011 READ Read Flash
0x0012 WP Write Page Flash
0x0022 WPL Write Page and Lock Flash
0x0032 EWP Erase Page and Write Page
0x0042 EWPL Erase Page and Write Page then Lock
0x0013 EA Erase All
0x0014 SLB Set Lock Bit
0x0024 CLB Clear Lock Bit
0x0015 GLB Get Lock Bit
0x0034 SGPB Set General Purpose NVM bit
0x0044 CGPB Clear General Purpose NVM bit
0x0025 GGPB Get General Purpose NVM bit
0x0054 SSE Set Security Bit

378 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

Table 21-3. Command Bit Coding (Continued)

DATA[15:0] Symbol Command Executed
0x0035 GSE Get Security Bit
0x001F WRAM Write Memory
0x001E GVE Get Version

21.3.3 Entering Programming Mode

The following algorithm puts the device in Parallel Programming mode:
1. Apply the supplies as described in Table 21-1.
2. Apply XIN clock within tpogr reser if @an external clock is available.
3. Wait for tpor reser)
4. Start a read or write handshaking.

Note: After reset, the device is clocked by the internal RC oscillator. Before clearing RDY signal, if an external clock (> 32
kHz) is connected to XIN, then the device switches on the external clock. Else, XIN input is not considered. A higher
frequency on XIN speeds up the programmer handshake.

21.3.4 Programmer Handshaking

An handshake is defined for read and write operations. When the device is ready to start a new operation (RDY
signal set), the programmer starts the handshake by clearing the NCMD signal. The handshaking is achieved once
NCMD signal is high and RDY is high.

21.34.1 Write Handshaking

For details on the write handshaking sequence, refer to Figure 21-2 and Table 21-4.

Figure 21-2. Parallel Programming Timing, Write Sequence

NCMD j@ /@
RDY ﬁ@ ©ﬁ

NOE

NVALID

@)

Table 21-4. Write Handshake

Step Programmer Action Device Action Data I/O
1 Sets MODE and DATA signals Waits for NCMD low Input
2 Clears NCMD signal Latches MODE and DATA Input
3 Waits for RDY low Clears RDY signal Input
SAMA4S Series [DATASHEET 379
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 21-4. Write Handshake (Continued)
Step Programmer Action Device Action Data I/0
4 Releases MODE and DATA signals Executes command and polls NCMD high Input
5 Sets NCMD signal Executes command and polls NCMD high Input
6 Waits for RDY high Sets RDY Input
21.3.4.2 Read Handshaking

For details on the read handshaking sequence, refer to Figure 21-3 and Table 21-5.

Figure 21-3. Parallel Programming Timing, Read Sequence
NCMD (@) @/
v T \D Q-
NOE @\ ®/
NVALID @w
@ ® ©®
DATA[15:0] >< Adress IN >< z >< Data OUT M
Table 21-5. Read Handshake
Step Programmer Action Device Action DATA I/O
1 Sets MODE and DATA signals Waits for NCMD low Input
2 Clears NCMD signal Latch MODE and DATA Input
3 Waits for RDY low Clears RDY signal Input
4 Sets DATA signal in tristate Waits for NOE Low Input
5 Clears NOE signal - Tristate
6 Waits for NVALID low Sets DATA bus in output mode and outputs Output
the flash contents.
7 - Clears NVALID signal Output
8 Reads value on DATA Bus Waits for NOE high Output
9 Sets NOE signal Output
10 Waits for NVALID high Sets DATA bus in input mode X
11 Sets DATA in output mode Sets NVALID signal Input
12 Sets NCMD signal Waits for NCMD high Input
13 Waits for RDY high Sets RDY signal Input

380 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

21.3.5 Device Operations

Several commands on the Flash memory are available. These commands are summarized in Table 21-3. Each
command is driven by the programmer through the parallel interface running several read/write handshaking
sequences.

When a new command is executed, the previous one is automatically achieved. Thus, chaining a read command
after a write automatically flushes the load buffer in the Flash.

21.35.1 Flash Read Command

This command is used to read the contents of the Flash memory. The read command can start at any valid
address in the memory plane and is optimized for consecutive reads. Read handshaking can be chained; an
internal address buffer is automatically increased.

Table 21-6. Read Command

Step Handshake Sequence | MODE[3:0] DATA[15:0]

1 Write handshaking CMDE READ

2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address

4 Read handshaking DATA *Memory Address++
5 Read handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+l Write handshaking ADDR1 Memory Address

n+2 Read handshaking DATA *Memory Address++
n+3 Read handshaking DATA *Memory Address++

21.3.5.2 Flash Write Command
This command is used to write the Flash contents.

The Flash memory plane is organized into several pages. Data to be written are stored in a load buffer that
corresponds to a Flash memory page. The load buffer is automatically flushed to the Flash:

e Dbefore access to any page other than the current one

e when a new command is validated (MODE = CMDE)

The Write Page command (WP) is optimized for consecutive writes. Write handshaking can be chained; an
internal address buffer is automatically increased.

Table 21-7. Write Command

Step Handshake Sequence | MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WP or WPL or EWP or EWPL
2 Write handshaking ADDRO Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++

5 Write handshaking DATA *Memory Address++

n Write handshaking ADDRO Memory Address LSB

SAMA4S Series [DATASHEET 381
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 21-7. Write Command (Continued)

Step Handshake Sequence | MODE[3:0] DATA[15:0]

n+1 Write handshaking ADDR1 Memory Address
n+2 Write handshaking DATA *Memory Address++
n+3 Write handshaking DATA *Memory Address++

The Flash command Write Page and Lock (WPL) is equivalent to the Flash Write Command. However, the lock
bit is automatically set at the end of the Flash write operation. As a lock region is composed of several pages, the
programmer writes to the first pages of the lock region using Flash write commands and writes to the last page of
the lock region using a Flash write and lock command.

The Flash command Erase Page and Write (EWP) is equivalent to the Flash Write Command. However, before
programming the load buffer, the page is erased.

The Flash command Erase Page and Write the Lock (EWPL) combines EWP and WPL commands.

21.35.3 Flash Full Erase Command
This command is used to erase the Flash memory planes.
All lock regions must be unlocked before the Full Erase command by using the CLB command. Otherwise, the
erase command is aborted and no page is erased.

Table 21-8. Full Erase Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE EA
2 Write handshaking DATA 0

21.35.4 Flash Lock Commands

Lock bits can be set using WPL or EWPL commands. They can also be set by using the Set Lock command
(SLB). With this command, several lock bits can be activated. A Bit Mask is provided as argument to the
command. When bit 0 of the bit mask is set, then the first lock bit is activated.

In the same way, the Clear Lock command (CLB) is used to clear lock bits.

Table 21-9. Set and Clear Lock Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE SLB or CLB
2 Write handshaking DATA Bit Mask

Lock bits can be read using Get Lock Bit command (GLB). The n'" lock bit is active when the bit n of the bit mask
is set.

Table 21-10. Get Lock Bit Command

Step Handshake Sequence MODE]3:0] DATA[15:0]
1 Write handshaking CMDE GLB
Lock Bit Mask Status
2 Read handshaking DATA 0 = Lock bit is cleared
1 = Lock bit is set

382 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

21.355 Flash General-purpose NVM Commands

General-purpose NVM bits (GP NVM bits) can be set using the Set GPNVM command (SGPB). This command
also activates GP NVM bits. A bit mask is provided as argument to the command. When bit 0 of the bit mask is set,
then the first GP NVM bit is activated.

In the same way, the Clear GPNVM command (CGPB) is used to clear general-purpose NVM bits. The general-
purpose NVM bit is deactivated when the corresponding bit in the pattern value is set to 1.

Table 21-11. Set/Clear GP NVM Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE SGPB or CGPB
2 Write handshaking DATA GP NVM bit pattern value

General-purpose NVM bits can be read using the Get GPNVM Bit command (GGPB). The n'" GP NVM bit is
active when bit n of the bit mask is set.

Table 21-12. Get GP NVM Bit Command

Step Handshake Sequence MODE]3:0] DATA[15:0]

1 Write handshaking CMDE GGPB

GP NVM Bit Mask Status
2 Read handshaking DATA 0 = GP NVM bhit is cleared
1 =GP NVM bit is set

21.3.5.6 Flash Security Bit Command

A security bit can be set using the Set Security Bit command (SSE). Once the security bit is active, the Fast Flash
programming is disabled. No other command can be run. An event on the Erase pin can erase the security bit
once the contents of the Flash have been erased.

Table 21-13. Set Security Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE SSE
2 Write handshaking DATA 0

Once the security bit is set, it is not possible to access FFPI. The only way to erase the security bit is to erase the
Flash.

In order to erase the Flash, the user must perform the following:

Power-off the chip.

Power-on the chip with TST = 0.

Assert Erase during a period of more than 220 ms.

4. Power-off the chip.

wn e

Then it is possible to return to FFPI mode and check that Flash is erased.

21.3.5.7 Memory Write Command
This command is used to perform a write access to any memory location.

SAMA4S Series [DATASHEET 383
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

The Memory Write command (WRAM) is optimized for consecutive writes. Write handshaking can be chained; an
internal address buffer is automatically increased.

Table 21-14. Write Command

Step Handshake Sequence | MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WRAM

2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++
5 Write handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+l Write handshaking ADDR1 Memory Address

n+2 Write handshaking DATA *Memory Address++
n+3 Write handshaking DATA *Memory Address++

21.3.5.8 Get Version Command
The Get Version (GVE) command retrieves the version of the FFPI interface.

Table 21-15. Get Version Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE GVE
2 Read handshaking DATA Version
384 SAMA4S Series [DATASHEET)] /ItmeL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

22.

22.1

22.2

Atmel

Cortex-M Cache Controller (CMCC)

Description

The Cortex-M Cache Controller (CMCC) is a 4-Way set associative unified cache controller. It integrates a
controller, a tag directory, data memory, metadata memory and a configuration interface.

Embedded Characteristics

Physically addressed and physically tagged

L1 data cache set to 2 Kbytes

L1 cache line size set to 16 Bytes

L1 cache integrates 32-bit bus master interface

Unified direct mapped cache architecture

Unified 4-Way set associative cache architecture

Write through cache operations, read allocate

Round Robin victim selection policy

Event Monitoring, with one programmable 32-bit counter
Configuration registers accessible through Cortex-M Private Peripheral Bus (PPB)
Cache interface includes cache maintenance operations registers

SAM4S Series [DATASHEET] 385

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

22.3 Block Diagram

Figure 22-1. Block Diagram
Cortex-M Memory Interface Bus

Cortex-M Interface

Cache META INFO RAM
Controller
RAM
Interface DATA RAM
Cortex-M Registers
PPB Interface TAG RAM

Memory Interface

System Memory Bus

22.4 Functional Description

22.4.1 Cache Operation

On reset, the cache controller data entries are all invalidated and the cache is disabled. The cache is transparent
to processor operations. The cache controller is activated with its configuration registers. The configuration
interface is memory-mapped in the private peripheral bus.
Use the following sequence to enable the cache controller:

1. Verify that the cache controller is disabled by reading the value of the CSTS (Cache Controller Status) bit
of the Status register (CMCC_SR).

2. Enable the cache controller by writing a one to the CEN (Cache Enable) bit of the Control register
(CMCC_CTRL).

22.4.2 Cache Maintenance

If the contents seen by the cache have changed, the user must invalidate the cache entries. This can be done line-
by-line or for all cache entries.

386 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

22.4.2.1 Cache Invalidate-by-Line Operation

When an invalidate-by-line command is issued, the cache controller resets the valid bit information of the decoded
cache line. As the line is no longer valid, the replacement counter points to that line.

Use the following sequence to invalidate one line of cache:

1. Disable the cache controller by clearing the CEN bit of CMCC_CTRL.

2. Check the CSTS bit of CMCC_SR to verify that the cache is successfully disabled.

3. Perform an invalidate-by-line by configuring the bits INDEX and WAY in the Maintenance Register 1
(CMCC_MAINT1).

4.

Enable the cache controller by writing a one the CEN bit of the CMCC_CTRL.
22.4.2.2 Cache Invalidate All Operation

To invalidate all cache entries, write a one to the INVALL bit of the Maintenance Register 0 (CMCC_MAINTO).

22.4.3 Cache Performance Monitoring

The Cortex-M cache controller includes a programmable 32-bit monitor counter. The monitor can be configured to
count the number of clock cycles, the number of data hits or the number of instruction hits.

Use the following sequence to activate the counter:

1. Configure the monitor counter by writing to the MODE field of the Monitor Configuration register
(CMCC_MCFQG).
2. Enable the counter by writing a one to the MENABLE bit of the Monitor Enable register (CMCC_MEN).
3. If required, clear the counter by writing a one to the SWRST bit of the Monitor Control register
(CMCC_MCTRL).
4. Check the value of the monitor counter by reading the EVENT_CNT field of the CMCC_MSR.
/ItmeL SAMA4S Series [DATASHEET] 387

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

22.5 Cortex-M Cache Controller (CMCC) User Interface

Table 22-1. Register Mapping

Offset Register Name Access Reset

0x00 Cache Controller Type Register CMCC_TYPE Read-only -

0x04 Cache Controller Configuration Register CMCC_CFG Read/Write 0x00000000
0x08 Cache Controller Control Register CMCC_CTRL Write-only -

0x0C Cache Controller Status Register CMCC_SR Read-only 0x00000001
0x10-0x1C Reserved - - -

0x20 Cache Controller Maintenance Register 0 CMCC_MAINTO Write-only -

0x24 Cache Controller Maintenance Register 1 CMCC_MAINT1 Write-only -

0x28 Cache Controller Monitor Configuration Register CMCC_MCFG Read/Write 0x00000000
0x2C Cache Controller Monitor Enable Register CMCC_MEN Read/Write 0x00000000
0x30 Cache Controller Monitor Control Register CMCC_MCTRL Write-only -

0x34 Cache Controller Monitor Status Register CMCC_MSR Read-only 0x00000000
0x38-0xFC Reserved - - -

388 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

22.5.1 Cache Controller Type Register

Name: CMCC_TYPE

Address: 0x4007C000

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - ¢ - ¢ - [- 1}
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | | CLSIZE | CSIZE |
7 6 5 4 3 2 1 0

| LCKDOWN | WAYNUM | RRP LRUP | RANDP GCLK AP |

» AP: Access Port Access Allowed
0: Access Port Access is disabled.
1: Access Port Access is enabled.

e GCLK: Dynamic Clock Gating Supported
0: Cache controller does not support clock gating.
1: Cache controller uses dynamic clock gating.

 RANDP: Random Selection Policy Supported
0: Random victim selection is not supported.
1: Random victim selection is supported.

* LRUP: Least Recently Used Policy Supported
0: Least Recently Used Policy is not supported.
1: Least Recently Used Policy is supported.

 RRP: Random Selection Policy Supported
0: Random Selection Policy is not supported.
1: Random Selection Policy is supported.

« WAYNUM: Number of Ways

Value Name Description
0 DMAPPED Direct Mapped Cache
1 ARCH2WAY 2-way set associative
2 ARCH4WAY 4-way set associative
3 ARCH8WAY 8-way set associative

SAMA4S Series [DATASHEET 389
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

¢ LCKDOWN: Lockdown Supported
0: Lockdown is not supported.
1: Lockdown is supported.

*« CSIZE: Data Cache Size

Value Name Description
0 CSIZE_1KB Data cache size is 1 Kbyte
1 CSIZE_2KB Data cache size is 2 Khytes
2 CSIZE_4KB Data cache size is 4 Kbytes
3 CSIZE_8KB Data cache size is 8 Kbytes

¢ CLSIZE: Cache LIne Size

Value Name Description
0 CLSIZE_1KB Cache line size is 4 bytes
1 CLSIZE_2KB Cache line size is 8 bytes
2 CLSIZE_4KB Cache line size is 16 bytes
3 CLSIZE_8KB Cache line size is 32 bytes

390 SAMA4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15 /I t m e L

22.5.2 Cache Controller Configuration Register

Name: CMCC_CFG

Address: 0x4007C004

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | GCLKDIS |

* GCLKDIS: Disable Clock Gating
0: Clock gating is activated.
1: Clock gating is disabled.

SAMA4S Series [DATASHEET 391
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

22.5.3 Cache Controller Control Register

Name: CMCC_CTRL

Address: 0x4007C008

Access: Write-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - ¢ - ¢ - [- 1}
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

. - r - ¢ - - - rr - ¢ - [- /]
7 6 5 4 3 2 1 0

[- | - | - | - | - | - | - [CEN |

¢ CEN: Cache Controller Enable
0: The cache controller is disabled.
1: The cache controller is enabled.

392 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

22.5.4 Cache Controller Status Register

Name: CMCC_SR

Address: 0x4007C00C

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - ¢ - ¢ - [- 1}
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

. - r - ¢ - - - rr - ¢ - [- /]
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - [csts |

» CSTS: Cache Controller Status
0: The cache controller is disabled.
1: The cache controller is enabled.

SAMA4S Series [DATASHEET 393
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

22.5.5 Cache Controller Maintenance Register 0

Name: CMCC_MAINTO

Address: 0x4007C020

Access: Write-only
31 30 29 28 27 26 25 24

I - I - | - - I - I - | - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - | - - I - I - | - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - [NVALL |

« INVALL: Cache Controller Invalidate All
0: No effect.
1: All cache entries are invalidated.

394 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

22.5.6 Cache Controller Maintenance Register 1

Name: CMCC_MAINT1

Address: 0x4007C024

Access: Write-only
31 30 29 28 27 26 25 24

I WAY I - I - I - I - - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - - - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - - INDEX |
7 6 5 4 3 2 1 0

INDEX

* INDEX: Invalidate Index
This field indicates the cache line that is being invalidated.

The size of the INDEX field depends on the cache size:

For example:
— for 2 Kbytes: 5 bits
— for 4 Kbytes: 6 bits
— for 8 Kbytes: 7 bits

» WAY: Invalidate Way

Value Name Description
0 WAYO Way 0 is selection for index invalidation
1 WAY1 Way 1 is selection for index invalidation
2 WAY?2 Way 2 is selection for index invalidation
3 WAY3 Way 3 is selection for index invalidation

Atmel

SAM4S Series [DATASHEET] 395

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

22.5.7 Cache Controller Monitor Configuration Register

Name: CMCC_MCFG

Address: 0x4007C028

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | MODE |

» MODE: Cache Controller Monitor Counter Mode

Value Name Description
0 CYCLE_COUNT Cycle counter
1 IHIT_COUNT Instruction hit counter
2 DHIT_COUNT Data hit counter

306 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

22.5.8 Cache Controller Monitor Enable Register

Name: CMCC_MEN

Address: 0x4007C02C

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | MENABLE |

« MENABLE: Cache Controller Monitor Enable
0: The monitor counter is disabled.
1: The monitor counter is enabled.

SAMA4S Series [DATASHEET 397
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

22.5.9 Cache Controller Monitor Control Register

Name: CMCC_MCTRL

Address: 0x4007C030

Access: Write-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - ¢ - ¢ - [- 1}
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

. - r - ¢ - - - rr - ¢ - [- /]
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - [SWRST |

« SWRST: Monitor
0: No effect.

1: Resets the event counter register.

3908 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

22.5.10 Cache Controller Monitor Status Register

Name: CMCC_MSR

Address: 0x4007C034

Access: Read-only
31 30 29 28 27 26 25 24

| EVENT_CNT |
23 22 21 20 19 18 17 16

| EVENT_CNT |
15 14 13 12 11 10 9 8

| EVENT_CNT |
7 6 5 4 3 2 1 0

| EVENT_CNT |

* EVENT_CNT: Monitor Event Counter

SAMA4S Series [DATASHEET 399
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23. Cyclic Redundancy Check Calculation Unit (CRCCU)

23.1 Description

The Cyclic Redundancy Check Calculation Unit (CRCCU) has its own DMA which functions as a Master with the
Bus Matrix. Three different polynomials are available: CCITT802.3, CASTAGNOLI and CCITT16.

The CRCCU is designed to perform data integrity checks of off-/on-chip memories as a background task without
CPU intervention.

23.2 Embedded Characteristics

Note:

Data Integrity Check of Off-/On-Chip Memories
Background Task Without CPU Intervention
Performs Cyclic Redundancy Check (CRC) Operation on Programmable Memory Area

Programmable Bus Burden

The CRCCU is designed to verify data integrity of off-/on-chip memories, thus the CRC must be generated and verified
by the CRCCU. The CRCCU performs the CRC from LSB to MSB. If the CRC has been performed with the same
polynomial by another device, a bit-reverse must be done on each byte before using the CRCCU.

400 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.3 CRCCU Block Diagram

Figure 23-1. Block Diagram

APB Bus Host
< Interface

Context FSM

Y

AHB Interface

HTRANS
T HSIZE
l AHB-Layer
< >
External
Bus Interface Flash AHB SRAM

SAMA4S Series [DATASHEET 401
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.4 Product Dependencies

23.4.1 Power Management

The CRCCU is clocked through the Power Management Controller (PMC), the programmer must first configure the
CRCCU in the PMC to enable the CRCCU clock.

23.4.2 Interrupt Source

The CRCCU has an interrupt line connected to the Interrupt Controller. Handling the CRCCU interrupt requires
programming the Interrupt Controller before configuring the CRCCU.

402 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.5 CRCCU Functional Description

23.5.1 CRC Calculation Unit

The CRCCU integrates a dedicated Cyclic Redundancy Check (CRC) engine. When configured and activated, this
CRC engine performs a checksum computation on a memory area. CRC computation is performed from the LSB
to MSB. Three different polynomials are available: CCITT802.3, CASTAGNOLI and CCITT16 (see field description
“PTYPE: Primitive Polynomial” in Section 23.7.10 “CRCCU Mode Register” for details).

23.5.2 CRC Calculation Unit Operation

The CRCCU has a DMA controller that supports programmable CRC memory checks. When enabled, the DMA
channel reads a programmable amount of data and computes CRC on the fly.

The CRCCU is controlled by two registers, TR_ADDR and TR_CTRL, which need to be mapped in the internal
SRAM. The addresses of these two registers are pointed to by the CRCCU_DSCR.
Table 23-1. CRCCU Descriptor Memory Mapping

SRAM Memory

CRCCU_DSCR+0x0 -—-> TR_ADDR
CRCCU_DSCR+0x4 > TR_CTRL
CRCCU_DSCR+0x8 -——> Reserved
CRCCU_DSCR+0xC - Reserved
CRCCU_DSCR+0x10 ——> TR_CRC

TR_ADDR defines the start address of memory area targeted for CRC calculation.

TR_CTRL defines the buffer transfer size, the transfer width (byte, halfword, word) and the transfer-completed
interrupt enable.

To start the CRCCU, set the CRC enable bit (ENABLE) and configure the mode of operation in the CRCCU Mode
Register (CRCCU_MR), then configure the Transfer Control Registers and finally, set the DMA enable bit
(DMAEN) in the CRCCU DMA Enable Register (CRCCU_DMA_EN).

When the CRCCU is enabled, the CRCCU reads the predefined amount of data (defined in TR_CTRL) located
from TR_ADDR start address and computes the checksum.

The CRCCU_SR contains the temporary CRC value.

The BTSIZE field located in the TR_CTRL register (located in memory), is automatically decremented if its value is
different from zero. Once the value of the BTSIZE field is equal to zero, the CRCCU is disabled by hardware. In
this case, the relevant CRCCU DMA Status Register bit DMASR is automatically cleared.

If the COMPARE field of the CRCCU_MR is set to true, the TR_CRC (Transfer Reference Register) is compared
with the last CRC computed. If a mismatch occurs, an error flag is set and an interrupt is raised (if unmasked).

The CRCCU accesses the memory by single access (TRWIDTH size) in order not to limit the bandwidth usage of
the system, but the DIVIDER field of the CRCCU Mode Register can be used to lower it by dividing the frequency
of the single accesses.

The CRCCU scrolls the defined memory area using ascending addresses.

In order to compute the CRC for a memory size larger than 256 Kbytes or for non-contiguous memory area, it is
possible to re-enable the CRCCU on the new memory area and the CRC will be updated accordingly. Use the
RESET field of the CRCCU_CR to reset the CRCCU Status Register to its default value (OXFFFFFFFF).

SAMA4S Series [DATASHEET 403
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.6 Transfer Control Registers Memory Mapping

Table 23-2. Transfer Control Register Memory Mapping

Offset Register Name Access Reset
CRCCU_DSCR + 0x0 CRCCU Transfer Address Register TR_ADDR | Read/Write | 0x00000000
CRCCU_DSCR + 0x4 CRCCU Transfer Control Register TR_CTRL | Read/Write | 0x00000000

CRCCU_DSCR + 0xC-0x10 | Reserved — - _
CRCCU_DSCR+0x10 CRCCU Transfer Reference Register TR_CRC Read/Write | 0x00000000

Note: These registers are memory mapped.

404 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.6.1 Transfer Address Register

Name: TR_ADDR

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR |

 ADDR: Transfer Address

SAMA4S Series [DATASHEET 405
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.6.2 Transfer Control Register

Name: TR_CTRL

Access: Read/Write
31 30 29 28 27 26 25 24

| - | — | - | - | IEN | — | TRWIDTH |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

| BTSIZE |
7 6 5 4 3 2 1 0

| BTSIZE |

» BTSIZE: Buffer Transfer Size

 TRWIDTH: Transfer Width Register

Value | Name Description

0 BYTE The data size is 8-bit
1 HALFWORD The data size is 16-bit
2 WORD The data size is 32-bit

* IEN: Context Done Interrupt Enable (Active Low)
0: Bit DMAISR of CRCCU_DMA_ISR is set at the end of the current descriptor transfer.
1: Bit DMAISR of CRCCU_DMA ISR remains cleared.

406 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.6.3 Transfer Reference Register

Name: TR_CRC

Access: Read/Write
31 30 29 28 27 26 25 24

| REFCRC |
23 22 21 20 19 18 17 16

| REFCRC |
15 14 13 12 11 10 9 8

| REFCRC |
7 6 5 4 3 2 1 0

| REFCRC |

+ REFCRC: Reference CRC
When Compare mode is enabled, the checksum is compared with this field.

SAMA4S Series [DATASHEET 407
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7 Cyclic Redundancy Check Calculation Unit (CRCCU) User Interface

Table 23-3. Register Mapping

Offset Register Name Access Reset
0x000 CRCCU Descriptor Base Register CRCCU_DSCR Read/Write | 0x00000000
0x004 Reserved - - -
0x008 CRCCU DMA Enable Register CRCCU_DMA_EN | Write-only |—
0x00C CRCCU DMA Disable Register CRCCU_DMA_DIS | Write-only |-
0x010 CRCCU DMA Status Register CRCCU_DMA_SR | Read-only | 0x00000000
0x014 CRCCU DMA Interrupt Enable Register CRCCU_DMA_IER | Write-only |—
0x018 CRCCU DMA Interrupt Disable Register CRCCU_DMA_IDR | Write-only |-
0x001C CRCCU DMA Interrupt Mask Register CRCCU_DMA_IMR | Read-only | 0x00000000
0x020 CRCCU DMA Interrupt Status Register CRCCU_DMA_ISR | Read-only | 0x00000000
0x024-0x030 | Reserved - - -
0x034 CRCCU Control Register CRCCU_CR Write-only | —
0x038 CRCCU Mode Register CRCCU_MR Read/Write | 0x00000000
0x03C CRCCU Status Register CRCCU_SR Read-only | OXFFFFFFFF
0x040 CRCCU Interrupt Enable Register CRCCU_IER Write-only | —
0x044 CRCCU Interrupt Disable Register CRCCU_IDR Write-only | —
0x048 CRCCU Interrupt Mask Register CRCCU_IMR Read-only | 0x00000000
0x004C CRCCU Interrupt Status Register CRCCU_ISR Read-only | 0x00000000

0x050-0x0FC | Reserved - — _

408 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.1 CRCCU Descriptor Base Address Register

Name: CRCCU_DSCR

Address: 0x40044000

Access: Read/Write
31 30 29 28 27 26 25 24

| DSCR |
23 22 21 20 19 18 17 16

| DSCR |
15 14 13 12 11 10 9 8

| DSCR | - |
7 6 5 4 3 2 1 0

» DSCR: Descriptor Base Address

DSCR needs to be aligned with 512-byte boundaries.

SAMA4S Series [DATASHEET 409
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.2 CRCCU DMA Enable Register

Name: CRCCU_DMA_EN

Address: 0x40044008

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | DMAEN |

« DMAEN: DMA Enable
0: No effect
1: Enable CRCCU DMA channel

410 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.3 CRCCU DMA Disable Register

Name: CRCCU_DMA DIS
Address: 0x4004400C
Access: Write-only
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
- 1 - 1T - 1T - T - T - T - T -]
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | DMADIS |

« DMADIS: DMA Disable
0: No effect
1: Disable CRCCU DMA channel

SAMA4S Series [DATASHEET 411
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.4 CRCCU DMA Status Register

Name: CRCCU_DMA SR

Address: 0x40044010

Access: Read-only
31 30 29 28 27 26 25 24

. - r - - - [- [- | - [-
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- | S
15 14 13 12 11 10 9 8

. - r - ¢ - - 1 - [- | N
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | DMASR |

« DMASR: DMA Status
0: DMA channel disabled
1: DMA channel enabled

412 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.5 CRCCU DMA Interrupt Enable Register

Name: CRCCU_DMA_IER

Address: 0x40044014

Access: Write-only
31 30 29 28 27 26 25 24

. - rr - - - r - r - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - r - r - ¢ - [- 1]
15 14 13 12 11 10 9 8

. - r - ¢ - - r -+ - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | OMAER |

 DMAIER: Interrupt Enable
0: No effect
1: Enable interrupt

SAMA4S Series [DATASHEET 413
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.6 CRCCU DMA Interrupt Disable Register

Name: CRCCU_DMA_IDR

Address: 0x40044018

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | DMADR |

« DMAIDR: Interrupt Disable
0: No effect
1: Disable interrupt

414 SAMA4S Series [DATASHEET] /ltmeL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.7 CRCCU DMA Interrupt Mask Register

Name: CRCCU_DMA_IMR

Address: 0x4004401C

Access: Read-only
31 30 29 28 27 26 25 24

. - rr - - - r - r - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - r - r - ¢ - [- 1]
15 14 13 12 11 10 9 8

. - r - ¢ - - r -+ - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | DMAMR |

 DMAIMR: Interrupt Mask
0: Buffer Transfer Completed interrupt disabled

1: Buffer Transfer Completed interrupt enabled

SAMA4S Series [DATASHEET 415
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.8 CRCCU DMA Interrupt Status Register

Name: CRCCU_DMA_ISR

Address: 0x40044020

Access: Read-only
31 30 29 28 27 26 25 24

. - rr - - - r - r - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - r - r - ¢ - [- 1]
15 14 13 12 11 10 9 8

. - r - ¢ - - r -+ - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | DMAISR |

¢ DMAISR: Interrupt Status
0: DMA buffer transfer has not yet started or transfer still in progress
1: DMA buffer transfer has terminated. This flag is reset after read.

416 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.9 CRCCU Control Register

Name: CRCCU_CR

Address: 0x40044034

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | RESET |

e« RESET: CRC Computation Reset
0: No effect

1: Sets the CRCCU_SR to OXFFFFFFFF

SAMA4S Series [DATASHEET 417
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.10 CRCCU Mode Register

Name: CRCCU_MR

Address: 0x40044038

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| DIVIDER | PTYPE | COMPARE | ENABLE |

« ENABLE: CRC Enable
Always write a 1 to this bit.

* COMPARE: CRC Compare

If set to one, this bit indicates that the CRCCU DMA will compare the CRC computed on the data stream with the value
stored in the TR_CRC reference register. If a mismatch occurs, the ERRISR bit in the CRCCU_ISR is set.

» PTYPE: Primitive Polynomial

Value | Name Description

0 CCITT8023 Polynom 0x04C11DB7
1 CASTAGNOLI Polynom 0x1IEDC6F41
2 CCITT16 Polynom 0x1021

» DIVIDER: Request Divider

CRCCU DMA performs successive transfers. It is possible to reduce the bandwidth drained by the CRCCU DMA by pro-
gramming the DIVIDER field. The transfer request frequency is divided by 2*(DIVIDER+1).

418 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.11 CRCCU Status Register

Name: CRCCU_SR

Address: 0x4004403C

Access: Read-only
31 30 29 28 27 26 25 24

| CRC |
23 22 21 20 19 18 17 16

| CRC |
15 14 13 12 11 10 9 8

| CRC |
7 6 5 4 3 2 1 0

| CRC |

e CRC: Cyclic Redundancy Check Value
This register can not be read if the COMPARE bit in the CRCCU_MR is set to true.

SAMA4S Series [DATASHEET 419
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.12 CRCCU Interrupt Enable Register

Name: CRCCU_IER

Address: 0x40044040

Access: Write-only
31 30 29 28 27 26 25 24

. - rr - - - r - r - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - r - r - ¢ - [- 1]
15 14 13 12 11 10 9 8

. - r - ¢ - - r -+ - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | ERRIER |

¢« ERRIER: CRC Error Interrupt Enable
0: No effect
1: Enable interrupt

420 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.13 CRCCU Interrupt Disable Register

Name: CRCCU_IDR

Address: 0x40044044

Access: Write-only
31 30 29 28 27 26 25 24

. - rr - - - r - r - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - r - r - ¢ - [- 1]
15 14 13 12 11 10 9 8

. - r - ¢ - - r -+ - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | ERRDR |

 ERRIDR: CRC Error Interrupt Disable
0: No effect
1: Disable interrupt

SAMA4S Series [DATASHEET 421
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.14 CRCCU Interrupt Mask Register

Name: CRCCU_IMR

Address: 0x40044048

Access: Read-only
31 30 29 28 27 26 25 24

. - rr - - - r - r - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - r - r - ¢ - [- 1]
15 14 13 12 11 10 9 8

. - r - ¢ - - r -+ - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | ERRIMR |

¢ ERRIMR: CRC Error Interrupt Mask
0: Interrupt disabled
1: Interrupt enabled

422 SAMA4S Series [DATASHEET] /ltmeL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.15 CRCCU Interrupt Status Register

Name: CRCCU_ISR

Address: 0x4004404C

Access: Read-only
31 30 29 28 27 26 25 24

. - rr - - - r - r - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - r - r - ¢ - [- 1]
15 14 13 12 11 10 9 8

. - r - ¢ - - r -+ - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | ERRISR |

 ERRISR: CRC Error Interrupt Status
0: Interrupt disabled
1: Interrupt enabled

SAMA4S Series [DATASHEET 423
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

24. Boot Program

24.1 Description

The SAM-BA Boot Program integrates an array of programs permitting download and/or upload into the different
memories of the product.

24.2 Hardware and Software Constraints

e SAM-BA Boot uses the first 2048 bytes of the SRAM for variables and stacks. The remaining available size
can be used for user's code.

e USB Requirements:
— External Crystal or External Clock™ with frequency of:
11.289 MHz
12.000 MHz
16.000 MHz

18.432 MHz
e UARTO requirements: None
Note: 1. Must be 2500 ppm and 1.2V Square Wave Signal.

Table 24-1. Pins Driven during Boot Program Execution

Peripheral Pin PIO Line
UARTO URXDO PA9
UARTO UTXDO PA10

24.3 Flow Diagram

The Boot Program implements the algorithm in Figure 24-1.

Figure 24-1. Boot Program Algorithm Flow Diagram

No

Device
Setup

Character # received
from UARTO?

USB Enumeration
Successful ?

Yes

Run SAM-BA Monitor |Run SAM-BA Monitorl

The SAM-BA Boot program seeks to detect a source clock either from the embedded main oscillator with external
crystal (main oscillator enabled) or from a supported frequency signal applied to the XIN pin (main oscillator in
Bypass mode).

If a clock is found from the two possible sources above, the boot program checks to verify that the frequency is one
of the supported external frequencies. If the frequency is one of the supported external frequencies, USB
activation is allowed, else (no clock or frequency other than one of the supported external frequencies), the internal
12 MHz RC oscillator is used as main clock and USB clock is not allowed due to frequency drift of the 12 MHz RC
oscillator.

424 SAMA4S Series [DATASHEET] /Itmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

24.4 Device Initialization

Initialization follows the steps described below:
1. Stack setup

2. Set up the Embedded Flash Controller

3. External Clock detection (crystal or external clock on XIN)

4. If external crystal or clock with supported frequency, allow USB activation
5. Else, does not allow USB activation and use internal 12 MHz RC oscillator
6. Main oscillator frequency detection if no external clock detected

7. Switch Master Clock on Main Oscillator

8. C variable initialization

9. PLLA setup: PLLA is initialized to generate a 48 MHz clock

10. Disable the Watchdog

11. Initialization of UARTO (115200 bauds, 8, N, 1)

12. Initialization of the USB Device Port (in case USB activation allowed)

13. Wait for one of the following events

1. Check if USB device enumeration has occurred
2. Check if characters have been received in UARTO
14. Jump to SAM-BA Monitor (see Section 24.5 "SAM-BA Monitor”)

SAMA4S Series [DATASHEET 425
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

245 SAM-BA Monitor

Once the communication interface is identified, to run in an infinite loop waiting for different commands as shown

in Table 24-2.
Table 24-2. Commands Available through the SAM-BA Boot
Command Action Argument(s) Example
N Set Normal Mode No argument N#
T Set Terminal Mode No argument T#
(@] Write a Byte Address, Value# 0200001,CA#
0 Read a Byte Address,# 0200001 .#
H Write a Half Word Address, Value# H200002,CAFE#
h Read a Half Word Address,# h200002,#
w Write a Word Address, Valuet W200000,CAFEDECA#
w Read a Word Address,# w200000,#
S Send a File Address,# S200000,#
R Receive a File Address, NbOfBytes# R200000,1234#
G Go Address# G200200#
\% Display Version No argument V#
e Mode commands:

— Normal mode configures SAM-BA Monitor to send/receive data in binary format,
— Terminal mode configures SAM-BA Monitor to send/receive data in ascii format.

e Write commands: Write a byte (O), a halfword (H) or a word (W) to the target.
— Address: Address in hexadecimal.
— Value: Byte, halfword or word to write in hexadecimal.
— Output: >’

e Read commands: Read a byte (0), a halfword (h) or a word (w) from the target.
— Address: Address in hexadecimal
— Output: The byte, halfword or word read in hexadecimal following by *>’

e Send afile (S): Send a file to a specified address
— Address: Address in hexadecimal
— Output: >’

Note:

execution.
e Receive afile (R): Receive data into a file from a specified address

— Address: Address in hexadecimal
— NbOfBytes: Number of bytes in hexadecimal to receive
— Output: >’
e Go (G): Jump to a specified address and execute the code
— Address: Address to jump in hexadecimal
— Output: >’
e Get Version (V): Return the SAM-BA boot version
— Output: >’

426 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

There is a time-out on this command which is reached when the prompt ‘>’ appears before the end of the command

Atmel

245.1 UARTO Serial Port
Communication is performed through the UARTO initialized to 115200 Baud, 8, n, 1.

The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal performing this
protocol can be used to send the application file to the target. The size of the binary file to send depends on the
SRAM size embedded in the product. In all cases, the size of the binary file must be lower than the SRAM size
because the Xmodem protocol requires some SRAM memory to work. See Section 24.2 "Hardware and Software
Constraints”.

2452 Xmodem Protocol
The Xmodem protocol supported is the 128-byte length block. This protocol uses a two-character CRC-16 to
guarantee detection of a maximum bit error.
Xmodem protocol with CRC is accurate provided both sender and receiver report successful transmission. Each
block of the transfer looks like:
<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:
— <SOH> =01 hex
— <blk #> = binary number, starts at 01, increments by 1, and wraps OFFH to O0H (not to 01)
— <255-blk #> = 1's complement of the blk#.
— <checksum> = 2 bytes CRC16

Figure 24-2 shows a transmission using this protocol.

Figure 24-2. Xmodem Transfer Example

Host Device

C

SOH 01 FE Data[128] CRC CRC

ACK

SOH 02 FD Data[128] CRC CRC

ACK

SOH 03 FC Data[100] CRC CRC

ACK

EOT

ACK

24.5.3 USB Device Port

The device uses the USB communication device class (CDC) drivers to take advantage of the installed PC RS-232
software to talk over the USB. The CDC class is implemented in all releases of Windows®, beginning with
Windows 98 SE. The CDC document, available at www.usb.org, describes a way to implement devices such as
ISDN modems and virtual COM ports.

The Vendor ID (VID) is Atmel's vendor ID 0XO3EB. The product ID (PID) is 0x6124. These references are used by
the host operating system to mount the correct driver. On Windows systems, the INF files contain the
correspondence between vendor ID and product ID.

SAMA4S Series [DATASHEET 427
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

For more details about VID/PID for End Product/Systems, please refer to the Vendor ID form available from the
USB Implementers Forum on www.usb.org.

Atmel provides an INF example to see the device as a new serial port and also provides another custom driver
used by the SAM-BA application: atm6124.sys. Refer to the application note “USB Basic Application”, Atmel
literature number 6123, for more details.

245.3.1 Enumeration Process

The USB protocol is a master/slave protocol. This is the host that starts the enumeration sending requests to the
device through the control endpoint. The device handles standard requests as defined in the USB Specification.

Table 24-3. Handled Standard Requests

Request Definition

GET_DESCRIPTOR Returns the current device configuration value.
SET_ADDRESS Sets the device address for all future device access.
SET_CONFIGURATION Sets the device configuration.
GET_CONFIGURATION Returns the current device configuration value.
GET_STATUS Returns status for the specified recipient.
SET_FEATURE Set or Enable a specific feature.

CLEAR_FEATURE Clear or Disable a specific feature.

The device also handles some class requests defined in the CDC class.

Table 24-4. Handled Class Requests

Request Definition

SET_LINE_CODING Configures DTE rate, stop bits, parity and number of character bits.
GET_LINE_CODING Requests current DTE rate, stop bits, parity and number of character bits.
SET _CONTROL_LINE_STATE RS-232 signal used to tell the DCE device the DTE device is now present.

Unhandled requests are STALLed.

24.5.3.2 Communication Endpoints

There are two communication endpoints and endpoint O is used for the enumeration process. Endpoint 1 is a 64-
byte Bulk OUT endpoint and endpoint 2 is a 64-byte Bulk IN endpoint. SAM-BA Boot commands are sent by the
host through endpoint 1. If required, the message is split by the host into several data payloads by the host driver.

If the command requires a response, the host can send IN transactions to pick up the response.

428 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

http://www.usb.org

24.5.4 In Application Programming (IAP) Feature
The IAP feature is a function located in ROM that can be called by any software application.

When called, this function sends the desired FLASH command to the EEFC and waits for the Flash to be ready
(looping while the FRDY bit is not set in the EEFC_FSR).

Since this function is executed from ROM, this allows Flash programming (such as sector write) to be done by
code running in Flash.

The IAP function entry point is retrieved by reading the NMI vector in ROM (0x00800008).

This function takes two arguments in parameter: the EFC number and the command to be sent to the EEFC.
This function returns the value of the EEFC_FSR.

IAP software code example:

(unsigned int) (*IAP_Function)(unsigned |ong);
void main (void){
unsi gned | ong Fl ashSect or Num = 200; //
unsi gned long flash_cnd = 0;
unsi gned | ong flash_status = O;
unsi gned |1 ong EFClndex = 0; // 0:EEFCO, 1: EEFCl

/* Initialize the function pointer (retrieve function address from NM vector)
*/

I AP_Function = ((unsigned long) (*)(unsigned |ong))
0x00800008;

/* Send your data to the sector here */
/* build the command to send to EEFC */

flash_cmd = (Ox5A << 24) | (FlashSectorNum << 8) |
AT91C MC FCND_EWP;

/* Call the I AP function with appropriate command */

flash_status = | AP_Function (EFCl ndex, flash_cnd);

SAMA4S Series [DATASHEET 429
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

25. Bus Matrix (MATRIX)

25.1 Description

The Bus Matrix implements a multi-layer AHB that enables parallel access paths between multiple AHB masters
and slaves in a system, thus increasing overall bandwidth. The Bus Matrix interconnects AHB masters to AHB
slaves. The normal latency to connect a master to a slave is one cycle. The exception is the default master of the
accessed slave which is connected directly (zero cycle latency).

The Bus Matrix user interface also provides a System 1/O Configuration user interface with registers that support
application-specific features.

25.2 Master/Slave Management

25.2.1 Matrix Masters

The Bus Matrix manages the masters listed in Table 25-1. Each master can perform an access to an available
slave concurrently with other masters.

Each master has its own specifically-defined decoder. To simplify addressing, all the masters have the same

decoding.

Table 25-1. List of Bus Matrix Masters
Master O Cortex-M4 Instruction/Data
Master 1 Cortex-M4 System
Master 2 Peripheral DMA Controller (PDC)
Master 3 CRC Calculation Unit

25.2.2 Matrix Slaves

The Bus Matrix manages the slaves listed in Table 25-2. Each slave has its own arbiter providing a different
arbitration per slave.

Table 25-2. List of Bus Matrix Slaves

Slave 0 Internal SRAM

Slave 1 Internal ROM

Slave 2 Internal Flash

Slave 3 External Bus Interface
Slave 4 Peripheral Bridge

430 SAM4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

25.2.3 Master to Slave Access

Table 25-3 gives valid paths for master to slave access on Matrix 0. The paths shown as “-” are forbidden or not
wired, e.g. access from the Cortex-M4 S Bus to the internal ROM.

Table 25-3. Master to Slave Access
Masters 0 1 2 3
Slaves Cortex-M4 1/D Bus Cortex-M4 S Bus PDC CRCCU

0 Internal SRAM - X X X
1 Internal ROM X - X
2 Internal Flash X - - X
3 External Bus Interface - X
4 Peripheral Bridge - X X -

25.3 Memory Mapping

The Bus Matrix provides one decoder for every AHB master interface. The decoder offers each AHB master
several memory mappings. In fact, depending on the product, each memory area may be assigned to several
slaves. Thus it is possible to boot at the same address while using different AHB slaves.

25.4 Special Bus Granting Techniques

The Bus Matrix provides some speculative bus granting techniques in order to anticipate access requests from
some masters. This technique reduces latency at the first access of a burst or single transfer. Bus granting sets a
default master for every slave.

At the end of the current access, if no other request is pending, the slave remains connected to its associated
default master. A slave can be associated with one of the three implementations of default masters:

e No default master

e Last access master

e Fixed default master

25.4.1 No Default Master

At the end of the current access, if no other request is pending, the slave is disconnected from all masters. No
default master suits low-power mode.

25.4.2 Last Access Master

At the end of the current access, if no other request is pending, the slave remains connected to the last master that
performed an access request.

25.4.3 Fixed Default Master

At the end of the current access, if no other request is pending, the slave connects to its fixed default master.
Unlike the last access master, the fixed master does not change unless the user modifies it by software (field
FIXED_DEFMSTR of the related MATRIX_SCFG).

To change from one kind of default master to another, the Bus Matrix user interface provides the Slave
Configuration registers (MATRIX_SCFGx), one for each slave, used to set a default master for each slave.
MATRIX_SCFGx contains the fields DEFMSTR_TYPE and FIXED_DEFMSTR. The 2-bit DEFMSTR_TYPE field
selects the default master type (no default, last access master, fixed default master) whereas the 4-bit
FIXED_DEFMSTR field selects a fixed default master, provided that DEFMSTR_TYPE is set to fixed default
master. Refer to Table 25-4, “Register Mapping”.

SAMA4S Series [DATASHEET 431
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

25.5 Arbitration

The Bus Matrix provides an arbitration technique that reduces latency when conflicting cases occur; for example,
when two or more masters try to access the same slave at the same time. One arbiter per AHB slave is provided to
arbitrate each slave differently.
The Bus Matrix provides the user with two arbitration types for each slave:

1. Round-robin arbitration (default)

2. Fixed priority arbitration

The field ARBT of MATRIX_SCFG is used to select the type of arbitration.
Each algorithm may be complemented by selecting a default master configuration for each slave.
In case of re-arbitration, specific conditions apply. See Section 25.5.1 “Arbitration Rules".

25.5.1 Arbitration Rules

Each arbiter has the ability to arbitrate between requests of two or more masters. To avoid burst breaking and to
provide the maximum throughput for slave interfaces, arbitration should take place during the following cycles:

1. Idle cycles: When a slave is not connected to any master or is connected to a master which is not currently
accessing it.

2. Single cycles: When a slave is performing a single access.

3. End of burst cycles: When the current cycle is the last cycle of a burst transfer. For a defined burst length,
predicted end of burst matches the size of the transfer but is managed differently for undefined burst length.
See Section 25.5.1.1 “Undefined Length Burst Arbitration” on page 432"

4. Slot cycle limit: When the slot cycle counter has reached the limit indicating that the current master access is
too long and must be broken. See Section 25.5.1.2 “Slot Cycle Limit Arbitration” on page 432.

255.1.1 Undefined Length Burst Arbitration

In order to prevent slave handling during undefined length bursts (INCR), the Bus Matrix provides specific logic to
re-arbitrate before the end of the INCR transfer.
A predicted end of burst is used for defined length burst transfer, which is selected between the following:
1. Infinite: No predicted end of burst is generated and therefore INCR burst transfer will never be broken.
2. Four-beat bursts: Predicted end of burst is generated at the end of each four beat boundary inside INCR
transfer.

3. Eight-beat bursts: Predicted end of burst is generated at the end of each eight beat boundary inside INCR
transfer.

4. Sixteen-beat bursts: Predicted end of burst is generated at the end of each sixteen beat boundary inside
INCR transfer.

This selection can be done through the field ULBT of the Master Configuration Registers (MATRIX_MCFG).

255.1.2 Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break accesses that are too long, such as very long bursts on a very slow
slave (e.g. an external low-speed memory). At the beginning of the burst access, a counter is loaded with the value
previously written in the SLOT_CYCLE field of the related MATRIX_SCFG and decreased at each clock cycle.
When the counter reaches zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half-word or
word transfer.

25.5.2 Round-Robin Arbitration

Bus Matrix arbiters use the round-robin algorithm to dispatch the requests from different masters to the same
slave. If two or more masters make a request at the same time, the master with the lowest number is serviced first.
The others are then serviced in a round-robin manner.

432 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Three round-robin algorithms are implemented:
e Round-Robin arbitration without default master
e Round-Robin arbitration with last access master
e Round-Robin arbitration with fixed default master

255.2.1 Round-Robin arbitration without default master

Round-robin arbitration without default master is the main algorithm used by Bus Matrix arbiters. It allows the Bus
Matrix to dispatch requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters. This configuration
incurs one latency cycle for the first access of a burst. Arbitration without default master can be used for masters
that perform significant bursts.

25.5.2.2 Round-Robin arbitration with last access master

Round-robin arbitration with last access master is a biased round-robin algorithm used by Bus Matrix arbiters. It
allows the Bus Matrix to remove the one latency cycle for the last master that accessed the slave. At the end of the
current transfer, if no other master request is pending, the slave remains connected to the last master that
performs the access. Other non-privileged masters incur one latency cycle if they want to access the same slave.
This technique can be used for masters that mainly perform single accesses.

25.5.2.3 Round-Robin arbitration with fixed default master

Round-robin arbitration with fixed default master is an algorithm used by the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave remains connected
to its fixed default master. Every request attempted by the fixed default master does not incur latency, whereas
other non-privileged masters still incur one latency cycle. This technique can be used for masters that mainly
perform single accesses.

25.5.3 Fixed Priority Arbitration

The fixed priority arbitration algorithm is used by the Bus Matrix arbiters to dispatch the requests from different
masters to the same slave by using the fixed priority defined by the user. If requests from two or more masters are
active at the same time, the master with the highest priority is serviced first. If requests from two or more masters
with the same priority are active at the same time, the master with the highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority registers for slaves
(MATRIX_PRAS and MATRIX_PRBS).

25.6 System I/O Configuration

The System I/O Configuration register (CCFG_SYSIO) configures I/O lines in system 1/O mode (such as JTAG,
ERASE, USB, etc.) or as general-purpose /O lines. Enabling or disabling the corresponding I/O lines in peripheral
mode or in PIO mode (PIO_PER or PIO_PDR registers) in the PIO controller has no effect. However, the direction
(input or output), pull-up, pull-down and other mode control is still managed by the PI1O controller.

SAMA4S Series [DATASHEET 433
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

25.7 Register Write Protection

To prevent any single software error from corrupting MATRIX behavior, certain registers in the address space can
be write-protected by setting the WPEN bit in the “Write Protection Mode Register” (MATRIX_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the “Write Protection Status Register”
(MATRIX_WPSR) is set and the field WPVSRC indicates the register in which the write access has been
attempted.

The WPVS bit is automatically cleared after reading MATRIX_WPSR.

The following registers can be write-protected:
e “Bus Matrix Master Configuration Registers”
e “Bus Matrix Slave Configuration Registers”
e “Bus Matrix Priority Registers For Slaves”
e “System I/O Configuration Register”

434 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

25.8 Bus Matrix (MATRIX) (MATRIX) User Interface

Table 25-4. Register Mapping

Offset Register Name Access Reset
0x0000 Master Configuration Register 0 MATRIX_MCFGO Read/Write 0x00000000
0x0004 Master Configuration Register 1 MATRIX_MCFG1 Read/Write 0x00000000
0x0008 Master Configuration Register 2 MATRIX_MCFG2 Read/Write 0x00000000
0x000C Master Configuration Register 3 MATRIX_MCFG3 Read/Write 0x00000000

0x0010 - 0x003C | Reserved - - -
0x0040 Slave Configuration Register 0 MATRIX_SCFGO Read/Write 0x00010010
0x0044 Slave Configuration Register 1 MATRIX_SCFG1 Read/Write 0x00050010
0x0048 Slave Configuration Register 2 MATRIX_SCFG2 Read/Write 0x00000010
0x004C Slave Configuration Register 3 MATRIX_SCFG3 Read/Write 0x00000010
0x0050 Slave Configuration Register 4 MATRIX_SCFG4 Read/Write 0x00000010

0x0054 - 0x007C | Reserved - - -
0x0080 Priority Register A for Slave 0 MATRIX_PRASO Read/Write 0x00000000
0x0084 Reserved - - -
0x0088 Priority Register A for Slave 1 MATRIX_PRAS1 Read/Write 0x00000000
0x008C Reserved - - -
0x0090 Priority Register A for Slave 2 MATRIX_PRAS?2 Read/Write 0x00000000
0x0094 Reserved - - -
0x0098 Priority Register A for Slave 3 MATRIX_PRAS3 Read/Write 0x00000000
0x009C Reserved - - -
0x00A0 Priority Register A for Slave 4 MATRIX_PRAS4 Read/Write 0x00000000

0x00A4 - 0x0110 | Reserved - - -
0x0114 System 1/O Configuration register CCFG_SYSIO Read/Write 0x00000000
0x0118 Reserved - - -
0x011C SMC Chip Select NAND Flash Assignment CCFG_SMCNFCS Read/Write 0x00000000

Register

0x0120 - 0x010C | Reserved - - -
Ox1E4 Write Protection Mode Register MATRIX_WPMR Read/Write 0x0
Ox1E8 Write Protection Status Register MATRIX_WPSR Read-only 0x0

0x0110 - Ox01FC

Reserved

Atmel

SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

435

25.8.1 Bus Matrix Master Configuration Registers

Name: MATRIX_MCFGO0..MATRIX_MCFG3

Address: 0x400E0200

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I ULBT |

e ULBT: Undefined Length Burst Type

Value Name Description
No predicted end of burst is generated and therefore INCR bursts coming from
0 INFINITE .
this master cannot be broken.
1 SINGLE The undefined length burst is treated as a succession of single access allowing
rearbitration at each beat of the INCR burst.
2 FOUR BEAT The undefined length burst is split into a 4-beat bursts allowing rearbitration at
- each 4-beat burst end.
3 EIGHT BEAT The undefined length burst is split into 8-beat bursts allowing rearbitration at each
8-beat burst end.
4 SIXTEEN BEAT The undefined length burst is split into 16-beat bursts allowing rearbitration at
- each 16-beat burst end.
436 SAMA4S Series [DATASHEET
[] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

25.8.2 Bus Matrix Slave Configuration Registers

Name: MATRIX_SCFGO0..MATRIX_SCFG4

Address: 0x400E0240

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - - - I ARBT |
23 22 21 20 19 18 17 16

| — | - | - | FIXED_DEFMSTR | DEFMSTR_TYPE |
15 14 13 12 11 10 9 8

- T - T - T - - SR S
7 6 5 4 3 2 1 0

| SLOT_CYCLE |

e SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst
When the SLOT_CYCLE limit is reach for a burst, it may be broken by another master trying to access this slave.
This limit has been placed to avoid locking very slow slaves when very long bursts are used.

This limit should not be very small. An unreasonably small value will break every burst and the Bus Matrix will spend its
time to arbitrate without performing any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

« DEFMSTR_TYPE: Default Master Type

Value Name Description

At the end of current slave access, if no other master request is pending, the slave is
disconnected from all masters.

0 NO_DEFAULT .] .)
This results in having a one cycle latency for the first access of a burst transfer or for a
single access.
At the end of current slave access, if no other master request is pending, the slave
stays connected to the last master having accessed it.

1 LAST

This results in not having the one cycle latency when the last master tries to access the
slave again.

At the end of the current slave access, if no other master request is pending, the slave
connects to the fixed master the number that has been written in the
2 EIXED FIXED_DEFMSTR field.

This results in not having the one cycle latency when the fixed master tries to access
the slave again.

» FIXED_DEFMSTR: Fixed Default Master

This is the number of the default master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a mas-
ter which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

* ARBT: Arbitration Type

Value Name Description
0 ROUND_ROBIN Round-robin arbitration
1 FIXED_PRIORITY Fixed priority arbitration

SAMA4S Series [DATASHEET 437
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

25.8.3 Bus Matrix Priority Registers For Slaves

Name: MATRIX_PRASO0..MATRIX_PRAS4

Address: 0x400E0280 [0], 0x400E0288 [1], 0x400E0290 [2], 0x400E0298 [3], 0x400E02A0 [4]

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I M4PR |
15 14 13 12 1 10 9 8

| - | - | M3PR | - | - | M2PR |
7 6 5 4 3 2 1 0

| - | - | M1PR | - | - | MOPR |

« MxPR: Master x Priority
Fixed priority of master x for accessing the selected slave. The higher the number, the higher the priority.

438 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

25.8.4 System I/O Configuration Register
Name: CCFG_SYSIO

Address: 0x400E0314

Access Read/Write

Reset: 0x0000_0000

31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | SYSIO12 | SYSIO11 | SYSIO10 | — | - |
7 6 5 4 3 2 1 0

| SYSIO7 | SYSIO6 | SYSIO5 | SYSIO4 | - | - | - | - |

* SYSIO4: PB4 or TDI Assignment
0: TDI function selected.
1: PB4 function selected.

* SYSIO5: PB5 or TDO/TRACESWO Assignment
0: TDO/TRACESWO function selected.
1: PB5 function selected.

* SYSIO6: PB6 or TMS/SWDIO Assignment
0: TMS/SWDIO function selected.
1: PB6 function selected.

* SYSIO7: PB7 or TCK/SWCLK Assighment
0: TCK/SWCLK function selected.
1: PB7 function selected.

* SYSIO10: PB10 or DDM Assignment
0: DDM function selected.
1: PB10 function selected.

e SYSIO11: PB11 or DDP Assighment
0: DDP function selected.
1: PB11 function selected.

» SYSIO12: PB12 or ERASE Assignment
0: ERASE function selected.
1: PB12 function selected.

SAMA4S Series [DATASHEET 439
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

25.8.,5 SMC NAND Flash Chip Select Configuration Register
Name: CCFG_SMCNFCS

Address: 0x400E031C

Type: Read/Write

Reset: 0x0000_0000

31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
I - - - - I - - | - I - |
7 6 5 4 3 2 1 0

| _ [— | — [- | SMC_NFCS3 | SMC_NFCS2 | SMC_NFCS1 | SMC_NFCSO |

* SMC_NFCS0: SMC NAND Flash Chip Select 0 Assignment
0: NCSO0 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS0)
1: NCSO is assigned to a NAND Flash (NANDOE and NANWE used for NCSO0)

* SMC_NFCS1: SMC NAND Flash Chip Select 1 Assignment
0: NCSL1 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS1)
1: NCS1 is assigned to a NAND Flash (NANDOE and NANWE used for NCS1)

* SMC_NFCS2: SMC NAND Flash Chip Select 2 Assignment
0: NCS2 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS2)
1: NCS2 is assigned to a NAND Flash (NANDOE and NANWE used for NCS2)

* SMC_NFCS3: SMC NAND Flash Chip Select 3 Assignment
0: NCS3 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS3)
1: NCS3 is assigned to a NAND Flash (NANDOE and NANWE used for NCS3)

440 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

25.8.6 Write Protection Mode Register

Name: MATRIX_WPMR

Address: Ox400EO03E4

Access: Read/Write

Reset: See Table 25-4
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - WPEN |

* WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).

See Section 25.7 “Register Write Protection” for the list of registers that can be write-protected.

» WPKEY: Write Protect Key

Value Name Description

Writing any other value in this field aborts the write operation of the WPEN bit. Always reads

0x4D4154 PASSWD
as 0.

SAMA4S Series [DATASHEET 441
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

25.8.7 Write Protection Status Register

Name: MATRIX_WPSR

Address: 0x400E03ES8

Access: Read-only

Reset: See Table 25-4
31 30 29 28 27 26 25 24

I N : : - : — 1
23 22 21 20 19 18 17 16

| WPVSRC |
15 14 13 12 1 10 9 8

| WPVSRC |
7 6 5 4 3 2 1 0

| - - | - - - WPVS |

* WPVS: Write Protection Violation Status
0: No write protection violation has occurred since the last read of the MATRIX_WPSR.

1: A write protection violation has occurred since the last read of the MATRIX_WPSR. If this violation is an unauthorized

attempt to write a protected register, the associated violation is reported into field WPVSRC.

« WPVSRC: Write Protection Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

442

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

26. Static Memory Controller (SMC)

26.1 Description

The External Bus Interface (EBI) is designed to ensure the successful data transfer between several external
devices and the ARM-based microcontroller. The Static Memory Controller (SMC) is part of the EBI.

This SMC can handle several types of external memory and peripheral devices, such as SRAM, PSRAM, PROM,
EPROM, EEPROM, LCD Module, NOR Flash and NAND Flash.

The SMC generates the signals that control the access to the external memory devices or peripheral devices. It
has 4 Chip Selects, a 24-bit address bus, and an 8-bit data bus. Separate read and write control signals allow for
direct memory and peripheral interfacing. Read and write signal waveforms are fully adjustable.

The SMC can manage wait requests from external devices to extend the current access. The SMC is provided with
an automatic Slow clock mode. In Slow clock mode, it switches from user-programmed waveforms to slow-rate
specific waveforms on read and write signals. The SMC supports asynchronous burst read in Page mode access
for page sizes up to 32 bytes.

The External Data Bus can be scrambled/unscrambled by means of user keys.

26.2 Embedded Characteristics
e Four Chip Selects Available
16-Mbyte Address Space per Chip Select
8-bit Data Bus
Zero Wait State Scrambling/Unscrambling Function with User Key
Word, Halfword, Byte Transfers
Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select
Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select
Programmable Data Float Time per Chip Select
External Wait Request
Automatic Switch to Slow Clock Mode
Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes
Register Write Protection

SAMA4S Series [DATASHEET 443
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.3 1/0 Lines Description

Table 26-1. I/O Line Description

Name Description Type Active Level
NCS[3:0] Static Memory Controller Chip Select Lines Output Low
NRD Read Signal Output Low
NWE Write Enable Signal Output Low
A[23:0] Address Bus Output -
D[7:0] Data Bus I/O -
NWAIT External Wait Signal Input Low
NANDCS NAND Flash Chip Select Line Output Low
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
NANDALE NAND Flash Address Latch Enable Output -
NANDCLE NAND Flash Command Latch Enable Output -

26.4 Product Dependencies

26.4.1 1/O Lines

The pins used for interfacing the SMC are multiplexed with the PIO lines. The programmer must first program the
P10 controller to assign the SMC pins to their peripheral function. If /0O Lines of the SMC are not used by the
application, they can be used for other purposes by the PIO Controller.

Table 26-2. I/0 Lines

Instance Signal I/O Line Peripheral
SMC A0 PC18 A
SMC Al PC19 A
SMC A2 PC20 A
SMC A3 PC21 A
SMC A4 PC22 A
SMC A5 PC23 A
SMC A6 PC24 A
SMC A7 PC25 A
SMC A8 PC26 A
SMC A9 PC27 A
SMC Al0 PC28 A
SMC All PC29 A
SMC Al12 PC30 A
SMC Al13 PC31 A
SMC Al4d PA18 C
SMC Al5 PA19 C

444 SAMA4S Series [DATASHEET] /ItmeL

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 26-2. I/O Lines

SMC Al16 PA20 C
SMC Al7 PAO C
SMC A18 PA1 C
SMC A19 PA23 C
SMC A20 PA24 C
SMC A21/NANDALE PC16 A
SMC A22/NANDCLE PC17 A
SMC A23 PA25 C
SMC DO PCO A
SMC D1 PC1 A
SMC D2 PC2 A
SMC D3 PC3 A
SMC D4 PC4 A
SMC D5 PC5 A
SMC D6 PC6 A
SMC D7 PC7 A
SMC NANDOE PC9 A
SMC NANDWE PC10 A
SMC NCSO0 PC14 A
SMC NCS1 PC15 A
SMC NCS2 PA22 C
SMC NCS3 PC12 A
SMC NRD PC11 A
SMC NWAIT PC13 A
SMC NWE PC8 A

26.4.2 Power Management

The SMC is clocked through the Power Management Controller (PMC), thus the programmer must first configure
the PMC to enable the SMC clock.

26.5 Multiplexed Signals

Table 26-3. Static Memory Controller (SMC) Multiplexed Signals

Multiplexed Signals Related Function
A22 NANDCLE NAND Flash Command Latch Enable
A21 NANDALE NAND Flash Address Latch Enable

SAMA4S Series [DATASHEET 445
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.6 External Memory Mapping

The SMC provides up to 24 address lines, A[23:0]. This allows each chip select line to address up to 16 Mbytes of

memory.

If the physical memory device connected on one chip select is smaller than 16 Mbytes, it wraps around and
appears to be repeated within this space. The SMC correctly handles any valid access to the memory device

within the page (see Figure 26-1).

Figure 26-1. Memory Connections for Four External Devices

NCS[0] - NCS[3]
NRD
SMC NWE
A[23:0]
D[7:0

L0l NCS3 I Memory Enable

NCS2 I Memory Enable
NCS1 I Memory Enable
NCSO0

24

26.7 Connection to External Devices

26.7.1 Data Bus Width
The data bus width is 8 bits.

Memory Enable
Output Enable

Write Enable

A[23:0] |

D[7:0] |

Figure 26-2 shows how to connect a 512-Kbyte x 8-bit memory on NCS2.

Figure 26-2. Memory Connection for an 8-bit Data Bus

D[7:0]

D[7:0]

Al18:2]
A1

Al18:2]
A1

A0

SMC A0

NWE
NRD

Write Enable
Output Enable

NCS[2]

Memory Enable

446 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

26.7.2 NAND Flash Support
The SMC integrates circuitry that interfaces to NAND Flash devices.

The NAND Flash logic is driven by the SMC. It depends on the programming of the SMC_NFCSx field in the
CCFG_SMCNFCS register on the Bus Matrix User Interface. For details on this register, refer to the section “Bus
Matrix (MATRIX)” of this datasheet. Access to an external NAND Flash device via the address space reserved to
the chip select programmed.

The user can connect up to four NAND Flash devices with separate chip selects.

The NAND Flash logic drives the read and write command signals of the SMC on the NANDOE and NANDWE
signals when the NCSx programmed is active. NANDOE and NANDWE are disabled as soon as the transfer
address fails to lie in the NCSx programmed address space.

Figure 26-3. NAND Flash Signal Multiplexing on SMC Pins

SMC

NAND Flash Logic

NCSx (activated if SMC_NFCSx=1)}* > (l N NANDOE | NANDOE
NRD >]/
J‘_ﬂ NANDWE NANDWE
NWE > y A i

* in CCFG_SMCNFCS Matrix register

Note: When the NAND Flash logic is activated, (SMC_NFCSx=1), the NWE pin cannot be used in PIO mode but only in
Peripheral mode (NWE function). If the NWE function is not used for other external memories (SRAM, LCD), it must
be configured in one of the following modes:

— PIO Input with pull-up enabled (default state after reset)
— PIO Output set at level 1

The address latch enable and command latch enable signals on the NAND Flash device are driven by address bits

A22 and A21of the address bus. Any bit of the address bus can also be used for this purpose. The command,

address or data words on the data bus of the NAND Flash device use their own addresses within the NCSx

address space (configured by the register CCFG_SMCNFCS on the Bus Matrix User Interface). The chip enable

(CE) signal of the device and the ready/busy (R/B) signals are connected to PIO lines. The CE signal then remains

asserted even when NCS3 is not selected, preventing the device from returning to Standby mode. The NANDCS

output signal should be used in accordance with the external NAND Flash device type.

Two types of CE behavior exist depending on the NAND Flash device:

e Standard NAND Flash devices require that the CE pin remains asserted Low continuously during the read
busy period to prevent the device from returning to Standby mode. Since the SMC asserts the NCSx signal
High, it is necessary to connect the CE pin of the NAND Flash device to a GPIO line, in order to hold it low
during the busy period preceding data read out.

e This restriction has been removed for “CE don’t care” NAND Flash devices. The NCSx signal can be directly
connected to the CE pin of the NAND Flash device.

Figure 26-4 illustrates both topologies: Standard and “CE don’t care” NAND Flash.

SAMA4S Series [DATASHEET 447
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 26-4. Standard and “CE don’t care” NAND Flash Application Examples

D[7:0] D[7:0
» AD[7:0] — »| AD[7:0]
A[22:21] »| ALc A[22:21] >l ae
|—> CLE I_> CLE
NESX Not Connected NCSx CE
SMC sMeC
NAND Flash “CE don't care”
NAND Flash
NANDOE ol NoE NANDOE
g > NOE
NANDWE o NWE NANDWE e
PIO > CE
PIO [« R/B PIO e RIB

26.8 Application Example

26.8.1 Implementation Examples

Hardware configurations are given for illustration only. The user should refer to the manufacturer web site to check
for memory device availability.

For hardware implementation examples, refer to the evaluation kit schematics for this microcontroller, which show
examples of a connection to an LCD module and NAND Flash.

448 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.8.1.1 8-bit NAND Flash

Hardware Configuration

D[0..7]

Ut K9F2G08UOM
CLE 18 ce oo |F22—p9
ALE ALE 1101 5
NANDOE 81 RE 1102 F——
NANDWE 18 { wg 1103 FR2——=
9 | =g 41 D4
(ANY PIO CE 1104 D
o 1105 [H42—%
(ANY PI0)< RIB 1106 57
IBJ_WM ol 07 |F44
3v3o WP

R2 10K

z E z
0000OMODO0OOO

ﬁ@ffffliﬁffffff

zzzz}zzzzZzZ

3V3

vcC

vce c2

vss 100NF

Vvss

L

7]
100NF

2Gb
TSOP48 PACKAGE

Software Configuration
Perform the following configuration:

1. Assign the SMC_NFCSx (for example SMC_NFCS3) field in the CCFG_SMCNFCS register on the Bus
Matrix User Interface.

2. Reserve A21/ A22 for ALE / CLE functions. Address and Command Latches are controlled by setting the
address bits A21 and A22, respectively, during accesses.

3. NANDOE and NANDWE signals are multiplexed with PIO lines. Thus, the dedicated PIOs must be
programmed in Peripheral mode in the PIO controller.

4. Configure a PIO line as an input to manage the Ready/Busy signal.

5. Configure SMC CS3 Setup, Pulse, Cycle and Mode according to NAND Flash timings, the data bus width
and the system bus frequency.

In this example, the NAND Flash is not addressed as a “CE don't care”. To address it as a “CE don't care”, connect
NCS3 (if SMC_NFCS3 is set) to the NAND Flash CE.

SAMA4S Series [DATASHEET 449
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.8.1.2 NOR Flash

Hardware Configuration

D[0..7]
AJ0..21]

veea
NRST > RESET
NWE S WE

WP vce C2
_ 3vio———] vpp T0ONF

NCS0 CE
NRD [OF vss

VsS ¢

100NF

Software Configuration
Configure the SMC CSO0 Setup, Pulse, Cycle and Mode depending on Flash timings and system bus frequency.

26.9 Standard Read and Write Protocols

In the following sections, NCS represents one of the NCS[0..3] chip select lines.

26.9.1 Read Waveforms
The read cycle is shown on Figure 26-5.
The read cycle starts with the address setting on the memory address bus.

450 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 26-5. Standard Read Cycle

MCK L | | | |
! : | | | | |
| | | | | | |
| | | | | | |
| T T T T t t

A[23:0] | |

S S S X

NRD : : N\ ! v/ | |
l | l | | ! !
| | | | | | |

! 1 | 1

NCS | 1\ | : | : /
: : . ;
| | | |

b0l | | |)
X ./
|
NRDiSETUP NRD_PULSE NRD!HOLD

NCS_RD_PULSE NCS_RD!HOLD

|
|
|
Il
|
|
|
T
|
|
|
|
|
NRD_CYCLE !

|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
| |
|
|
|

26.9.1.1 NRD Waveform

The NRD signal is characterized by a setup timing, a pulse width and a hold timing.
e NRD_SETUP—the NRD setup time is defined as the setup of address before the NRD falling edge;
e NRD_PULSE—the NRD pulse length is the time between NRD falling edge and NRD rising edge;
e NRD_HOLD—the NRD hold time is defined as the hold time of address after the NRD rising edge.

26.9.1.2 NCS Waveform
The NCS signal can be divided into a setup time, pulse length and hold time:
e NCS_RD_SETUP—the NCS setup time is defined as the setup time of address before the NCS falling edge.
e NCS_RD_PULSE— the NCS pulse length is the time between NCS falling edge and NCS rising edge;
e NCS_RD_HOLD—the NCS hold time is defined as the hold time of address after the NCS rising edge.
26.9.1.3 Read Cycle

The NRD_CYCLE time is defined as the total duration of the read cycle, i.e., from the time where address is set on
the address bus to the point where address may change. The total read cycle time is equal to:

NRD_CYCLE = NRD_SETUP + NRD_PULSE + NRD_HOLD = NCS_RD_SETUP + NCS_RD_PULSE + NCS_RD_HOLD

Al NRD and NCS timings are defined separately for each chip select as an integer number of Master Clock cycles.
To ensure that the NRD and NCS timings are consistent, user must define the total read cycle instead of the hold
timing. NRD_CYCLE implicitly defines the NRD hold time and NCS hold time as:

NRD_HOLD = NRD_CYCLE - NRD SETUP - NRD PULSE
NCS_RD_HOLD = NRD_CYCLE - NCS_RD_SETUP - NCS_RD_PULSE

26.9.1.4 Null Delay Setup and Hold

If null setup and hold parameters are programmed for NRD and/or NCS, NRD and NCS remain active continuously
in case of consecutive read cycles in the same memory (see Figure 26-6).

SAMA4S Series [DATASHEET 451
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 26-6. No Setup, No Hold on NRD and NCS Read Signals

vk [I S I B

A[23:0]

NRD

~
N
i

R

NRD_PULSE

4

NRD_PULSE

D[7:0]

NRD_PULSE

NCS_RD_PULSE NCS_RD_PULSE NCS_RD_PULSE

NRD_CYCLE NRD_CYCLE

|
|
|
I
I
|
|
|
|
I
|
| NRD_CYCLE
|
|
I
|
|
|
|
|
I
|
|

26.9.1.5 Null Pulse

Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to unpredictable
behavior.

26.9.2 Read Mode

As NCS and NRD waveforms are defined independently of one other, the SMC needs to know when the read data
is available on the data bus. The SMC does not compare NCS and NRD timings to know which signal rises first.
The READ_MODE parameter in the SMC_MODE register of the corresponding chip select indicates which signal
of NRD and NCS controls the read operation.

26.9.2.1 Read is Controlled by NRD (READ_MODE = 1):

Figure 26-7 shows the waveforms of a read operation of a typical asynchronous RAM. The read data is available
tpacc after the falling edge of NRD, and turns to ‘Z’ after the rising edge of NRD. In this case, the READ_MODE
must be set to 1 (read is controlled by NRD), to indicate that data is available with the rising edge of NRD. The
SMC samples the read data internally on the rising edge of Master Clock that generates the rising edge of NRD,
whatever the programmed waveform of NCS may be.

452 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

[@)]

— |V <

a

/\ _\/_ £

. o]

I I . G < 8 ___

o]

&

— [a)
\ Q
(@]
S— <
g

453

SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

I T e

1: Data is sampled by SMC before the rising edge of NRD

X = a 0 5
3) & x 8] 2
<

READ_MODE

Figure 26-7.

Atmel

26.9.2.2 Read is Controlled by NCS (READ_MODE = 0)

Figure 26-8 shows the typical read cycle of an LCD module. The read data is valid tp5¢ after the falling edge of the
NCS signal and remains valid until the rising edge of NCS. Data must be sampled when NCS is raised. In that
case, the READ_MODE must be set to 0 (read is controlled by NCS): the SMC internally samples the data on the
rising edge of Master Clock that generates the rising edge of NCS, whatever the programmed waveform of NRD
may be.

Figure 26-8. READ_MODE = 0: Data is sampled by SMC before the rising edge of NCS

vew ||

NCS

tracc

If

A
T\
_/

Data Sampling
|

|
I
|
|
|
I
I
D[7:0] :
|
|
|
I
|
|
| |

454 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.9.3 Write Waveforms

The write protocol is similar to the read protocol. It is depicted in Figure 26-9. The write cycle starts with the
address setting on the memory address bus.

26.9.3.1 NWE Waveforms

The NWE signal is characterized by a setup timing, a pulse width and a hold timing.
e NWE_SETUP—the NWE setup time is defined as the setup of address and data before the NWE falling
edge;
e NWE_PULSE—the NWE pulse length is the time between NWE falling edge and NWE rising edge;
e NWE_HOLD—the NWE hold time is defined as the hold time of address and data after the NWE rising edge.

26.9.3.2 NCS Waveforms
The NCS signal waveforms in write operation are not the same that those applied in read operations, but are
separately defined:
e NCS_WR_SETUP—the NCS setup time is defined as the setup time of address before the NCS falling
edge.
e NCS_WR_PULSE—the NCS pulse length is the time between NCS falling edge and NCS rising edge;
e NCS_WR_HOLD—the NCS hold time is defined as the hold time of address after the NCS rising edge.

Figure 26-9. Write Cycle

MCK ! |
I
I
|

A[23:0]

T

NWE_PULSE NWE_IHOLD

|
NCS, WR_SETUP NCS_WR_PULSE NCS_WR_HOLD

NWE_CYCLE

/

26.9.3.3 Write Cycle

The write_cycle time is defined as the total duration of the write cycle, that is, from the time where address is set
on the address bus to the point where address may change. The total write cycle time is equal to:

NWE_CYCLE=NWE_SETUP + NWE_PULSE + NWE_HOLD=NCS_WR_SETUP + NCS_WR_PULSE + NCS_WR_HOLD

All NWE and NCS (write) timings are defined separately for each chip select as an integer number of Master Clock
cycles. To ensure that the NWE and NCS timings are consistent, the user must define the total write cycle instead
of the hold timing. This implicitly defines the NWE hold time and NCS (write) hold times as:

SAMA4S Series [DATASHEET 455
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

NWE_HOLD = NWE_CYCLE - NWE_SETUP - NWE_PULSE
NCS_WR_HOLD = NWE_CYCLE - NCS_WR_SETUP - NCS_WR_PULSE

26.9.34 Null Delay Setup and Hold

If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active continuously in
case of consecutive write cycles in the same memory (see Figure 26-10). However, for devices that perform write
operations on the rising edge of NWE or NCS, such as SRAM, either a setup or a hold must be programmed.

Figure 26-10. Null Setup and Hold Values of NCS and NWE in Write Cycle

wew | L L L L |

A[23:0] D(

YA

X

NWE_PULSE

X

NWE_PULSE

T

NWE_PULSE

NCS_WR_PULSE NCS WR_PULSE | NCS_WR_PULSE

NWE_CYCLE NWE_CYCLE NWE_CYCLE

26.9.3.5 Null Pulse

Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to unpredictable
behavior.

26.9.4 Write Mode

The bit WRITE_MODE in the SMC_MODE register of the corresponding chip select indicates which signal controls
the write operation.

26.9.4.1 Write is Controlled by NWE (WRITE_MODE = 1):

Figure 26-11 shows the waveforms of a write operation with WRITE_MODE set . The data is put on the bus during
the pulse and hold steps of the NWE signal. The internal data buffers are switched to Output mode after the
NWE_SETUP time, and until the end of the write cycle, regardless of the programmed waveform on NCS.

456 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 26-11. WRITE_MODE = 1. The write operation is controlled by NWE

MCK |

NWE

|
|
:
A[23:0] |
]
|
|
|
|
I
|
|
|
|

4
\

N\

26.9.4.2 Write is Controlled by NCS (WRITE_MODE = 0)

Figure 26-12 shows the waveforms of a write operation with WRITE_MODE cleared. The data is put on the bus
during the pulse and hold steps of the NCS signal. The internal data buffers are switched to Output mode after the
NCS_WR_SETUP time, and until the end of the write cycle, regardless of the programmed waveform on NWE.

Figure 26-12. WRITE_MODE = 0. The write operation is controlled by NCS

MCK | |

J-
! | l | | | |
! | | | | l |
| | | | | | |
A[23:0]] T T T t t
N— : | | ! X
! | l | | | |
| | | | | | |
NWE ! ! ! | | : '
:—:\ | | | '/:7
| | t t t 4 |
| | | | | | |
! | | | | l |
: . 4 | | L L
NCS : : : N\ / i i
: I I | . .
. | | | / T + +
D[7:0] ; : — | >_
| | |
| | |

26.9.5 Register Write Protection

To prevent any single software error that may corrupt SMC behavior, the registers listed below can be write-
protected by setting the WPEN bit in the SMC Write Protection Mode register (SMC_WPMR).

If a write access in a write-protected register is detected, the WPVS flag in the SMC Write Protection Status
register (SMC_WPSR) is set and the field WPVSRC indicates in which register the write access has been
attempted.

The WPVS flag is automatically cleared after reading the SSMC_WPSR.
The following registers can be write-protected:

e “SMC Setup Register”

e “SMC Pulse Register”

SAMA4S Series [DATASHEET 457
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

e “SMC Cycle Register”
“SMC MODE Register”

26.9.6 Coding Timing Parameters

All timing parameters are defined for one chip select and are grouped together in one SMC_REGISTER according
to their type.

The SMC_SETUP register groups the definition of all setup parameters:

e NRD_SETUP, NCS_RD_SETUP, NWE_SETUP, NCS_WR_SETUP

The SMC_PULSE register groups the definition of all pulse parameters:

e NRD_PULSE, NCS_RD_PULSE, NWE_PULSE, NCS_WR_PULSE

The SMC_CYCLE register groups the definition of all cycle parameters:

e NRD_CYCLE, NWE_CYCLE

Table 26-4 shows how the timing parameters are coded and their permitted range.

Table 26-4. Coding and Range of Timing Parameters
Permitted Range
Coded Value Number of Bits Effective Value Coded Value Effective Value
setup [5:0] 6 128 x setup[5] + setup[4:0] 0<<31 0<<128+31
pulse [6:0] 7 256 x pulse[6] + pulse[5:0] 0<<63 0 << 256+63
0 <<256+127
cycle [8:0] 9 256 x cycle[8:7] + cycle[6:0] 0<<127 0<<512+127
0<<768+127

26.9.7 Reset Values of Timing Parameters

Table 26-5 gives the default value of timing parameters at reset.

Table 26-5. Reset Values of Timing Parameters
Register Reset Value Definition
SMC_SETUP 0x01010101 All setup timings are set to 1.
SMC_PULSE 0x01010101 All pulse timings are set to 1.
WRITE_MODE 1 Write is controlled with NWE.
READ_MODE 1 Read is controlled with NRD.

26.9.8 Usage Restriction

The SMC does not check the validity of the user-programmed parameters. If the sum of SETUP and PULSE
parameters is larger than the corresponding CYCLE parameter, this leads to unpredictable behavior of the SMC.

For read operations:

Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the memory interface
because of the propagation delay of theses signals through external logic and pads. If positive setup and hold
values must be verified, then it is strictly recommended to program non-null values so as to cover possible skews
between address, NCS and NRD signals.

458 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

For write operations:

If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address and NCS signal
after the rising edge of NWE. This is true for WRITE_MODE = 1 only. See Section 26.11.2 "Early Read Wait
State”.

For read and write operations: a null value for pulse parameters is forbidden and may lead to unpredictable
behavior.

In read and write cycles, the setup and hold time parameters are defined in reference to the address bus. For
external devices that require setup and hold time between NCS and NRD signals (read), or between NCS and
NWE signals (write), these setup and hold times must be converted into setup and hold times in reference to the
address bus.

26.10 Scrambling/Unscrambling Function

The external data bus can be scrambled in order to prevent intellectual property data located in off-chip memories
from being easily recovered by analyzing data at the package pin level of either microcontroller or memory device.

The scrambling and unscrambling are performed on-the-fly without additional wait states.

The scrambling/unscrambling function can be enabled or disabled by configuring the CSXSE bits in the SMC
OCMS Mode Register (SMC_OCMS).

When multiple chip selects are handled, it is possible to configure the scrambling function per chip select using the
CSXSE bits in the SMC_OCMS register.

The scrambling method depends on two user-configurable key registers, SMC_KEY1 and SMC_KEY2. These key
registers are only accessible in Write mode.

The scrambling user key or the seed for key generation must be securely stored in a reliable non-volatile memory
in order to recover data from the off-chip memory. Any data scrambled with a given key cannot be recovered if the
key is lost.

26.11 Automatic Wait States

Under certain circumstances, the SMC automatically inserts idle cycles between accesses to avoid bus contention
or operation conflict.

26.11.1 Chip Select Wait States

The SMC always inserts an idle cycle between two transfers on separate chip selects. This idle cycle ensures that
there is no bus contention between the de-activation of one device and the activation of the next one.

During chip select wait state, all control lines are turned inactive: NWR, NCSJ[0..3], NRD lines are all setto 1.
Figure 26-13 illustrates a chip select wait state between access on Chip Select 0 and Chip Select 2.

SAMA4S Series [DATASHEET 459
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 26-13. Chip Select Wait State between a Read Access on NCSO and a Write Access on NCS2

MCK |

A[23:0]

NRD _m
|

NWE

X

NCS0 _,_w
|

NCS2

| | |

| I e e !
| | | |

' | Read to Write; Chip Select | |

| Wait State | Wait State |
| | |

26.11.2 Early Read Wait State

In some cases, the SMC inserts a wait state cycle between a write access and a read access to allow time for the
write cycle to end before the subsequent read cycle begins. This wait state is not generated in addition to a chip
select wait state. The early read cycle thus only occurs between a write and read access to the same memory
device (same chip select).

An early read wait state is automatically inserted if at least one of the following conditions is valid:

e if the write controlling signal has no hold time and the read controlling signal has no setup time (Figure 26-
14).

e in NCS Write controlled mode (WRITE_MODE = 0), if there is no hold timing on the NCS signal and the
NCS_RD_SETUP parameter is set to 0, regardless of the Read mode (Figure 26-15). The write operation
must end with a NCS rising edge. Without an Early Read Wait State, the write operation could not complete
properly.

e in NWE controlled mode (WRITE_MODE = 1) and if there is no hold timing (NWE_HOLD = 0), the feedback
of the write control signal is used to control address, data, and chip select lines. If the external write control
signal is not inactivated as expected due to load capacitances, an Early Read Wait State is inserted and
address, data and control signals are maintained one more cycle. See Figure 26-16.

460 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 26-14. Early Read Wait State: Write with No Hold Followed by Read with No Setup

1

1 | 1 1 | 1

1 | 1 1 | 1

1 | 1 1 | 1

. I I 1

s W XK ! >

] I I I 1

1 : 1 1 | 1

1 | 1 1 | 1

NWE 1 1 ! J

1 | 1 | 1

1 | | I 1

1 | 1 1 | 1

NRD —1 L : ' | ,
I

1 : [1 I* N\ \/ 1

1 | | I 1

' | nohold | \ | X

1 | ! ! no setup ! !

1 | 1 i 1

. | 1

D[7:0] —I——l—<I : >—l—<| >—I

1 1 1 1

1 1 1 1

1 1 1 1

| e) e ,!

™ gl Dl T gl |

1 write cycle IEarly Read! read cycle 1

: | Wait state : :

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Figure 26-15. Early Read Wait State: NCS Controlled Write with No Hold Followed by a Read with No NCS Setup

MCK

|

I

A[23:0] :
l |
| 1
NCS . |
1 | | 1
1 | | 1
1 | I | 1
NRD 1 ! 1 | 1
| | | | | v
! | no hold | . no setup | |

1
D[7:0] —|—' : < : >_._<I | > X
: I 1 ! I :
1 1 ! 1
1 1 ! 1
e >le e >
1 1 i 1
1 write cycle 1 Early Reac!I read cycle 1
: (WRITE_MODE = 0) : wait state , (READ_MODE = 0 or READ_MODE = 1):
1
: | - :
1 1 ! 1
. ' 1 1
SAMA4S Series [DATASHEET 461
Atmel ;]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 26-16. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read with one Set-up Cycle

MCK

">_<T"_

|
1
:
Al25:2] :>{
1
1
1
1

internal write controlling signal
__T__—__—\\7cii;7/
. . . 1
external write controlling signal ‘ 1

AN N U P S

E

|
|
- ' 1
(NWE) I | | |
1
| | | | !
! 1 o hold ! , read setupl= 1 |
1 1 |
NRD !] : < i :
1
!] | :w
1 | |
D[7:0] :

_.}{_________-

>
L

>
!

write cycle :Early Read, read cycle
(WRITE_MODE = 1) | wait state 1 (READ_MODE = 0 or READ_MODE = 1)
1 1
1
1 1

e

26.11.3 Reload User Configuration Wait State
The user may change any of the configuration parameters by writing the SMC user interface.

When detecting that a new user configuration has been written in the user interface, the SMC inserts a wait state
before starting the next access. This “Reload User Configuration Wait State” is used by the SMC to load the new
set of parameters to apply to next accesses.

The Reload Configuration Wait State is not applied in addition to the Chip Select Wait State. If accesses before
and after re-programming the user interface are made to different devices (Chip Selects), then one single Chip
Select Wait State is applied.

On the other hand, if accesses before and after writing the user interface are made to the same device, a Reload
Configuration Wait State is inserted, even if the change does not concern the current Chip Select.

26.11.3.1 User Procedure

To insert a Reload Configuration Wait State, the SMC detects a write access to any SMC_MODE register of the
user interface. If the user only modifies timing registers (SMC_SETUP, SMC_PULSE, SMC_CYCLE registers) in
the user interface, he must validate the modification by writing the SMC_MODE, even if no change was made on
the mode parameters.

The user must not change the configuration parameters of an SMC Chip Select (Setup, Pulse, Cycle, Mode) if
accesses are performed on this CS during the modification. Any change of the Chip Select parameters, while
fetching the code from a memory connected on this CS, may lead to unpredictable behavior. The instructions used
to modify the parameters of an SMC Chip Select can be executed from the internal RAM or from a memory
connected to another CS.

462 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.11.3.2 Slow Clock Mode Transition
A Reload Configuration Wait State is also inserted when the Slow Clock mode is entered or exited, after the end of
the current transfer (see Section 26.14 "Slow Clock Mode”).

26.11.4 Read to Write Wait State
Due to an internal mechanism, a wait cycle is always inserted between consecutive read and write SMC accesses.
This wait cycle is referred to as a read to write wait state in this document.

This wait cycle is applied in addition to chip select and reload user configuration wait states when they are to be
inserted. See Figure 26-13 on page 460.

SAMA4S Series [DATASHEET)] 463
A t m eL Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.12 Data Float Wait States
Some memory devices are slow to release the external bus. For such devices, it is necessary to add wait states
(data float wait states) after a read access:
e before starting a read access to a different external memory
e before starting a write access to the same device or to a different external one.
The Data Float Output Time (tpg) for each external memory device is programmed in the TDF_CYCLES field of the
SMC_MODE register for the corresponding chip select. The value of TDF_CYCLES indicates the number of data

float wait cycles (between O and 15) before the external device releases the bus, and represents the time allowed
for the data output to go to high impedance after the memory is disabled.

Data float wait states do not delay internal memory accesses. Hence, a single access to an external memory with
long tye will not slow down the execution of a program from internal memory.

The data float wait states management depends on the READ_MODE and the TDF_MODE fields of the
SMC_MODE register for the corresponding chip select.

26.12.1 READ_MODE

Setting the READ_MODE to 1 indicates to the SMC that the NRD signal is responsible for turning off the tri-state
buffers of the external memory device. The Data Float Period then begins after the rising edge of the NRD signal
and lasts TDF_CYCLES MCK cycles.

When the read operation is controlled by the NCS signal (READ_MODE = 0), the TDF field gives the number of
MCK cycles during which the data bus remains busy after the rising edge of NCS.

Figure 26-17 illustrates the Data Float Period in NRD-controlled mode (READ_MODE =1), assuming a data float
period of 2 cycles (TDF_CYCLES = 2). Figure 26-18 shows the read operation when controlled by NCS
(READ_MODE = 0) and the TDF_CYCLES parameter equals 3.

Figure 26-17. TDF Period in NRD Controlled Read Access (TDF = 2)

R I N s s Y O O
|
|

tpacc

|
TDF = 2 clock cycles !
—————

R P

I
NRD controlled read operation
| |

464 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 26-18. TDF Period in NCS Controlled Read Operation (TDF = 3)

MCK |

| TDF

|

™ 1

NCS con:trolled read Ibperation :
I

26.12.2 TDF Optimization Enabled (TDF_MODE = 1)

When the TDF_MODE of the SMC_MODE register is set to 1 (TDF optimization is enabled), the SMC takes
advantage of the setup period of the next access to optimize the number of wait states cycle to insert.

Figure 26-19 shows a read access controlled by NRD, followed by a write access controlled by NWE, on Chip
Select 0. Chip Select 0 has been programmed with:

NRD_HOLD = 4; READ_MODE = 1 (NRD controlled)
NWE_SETUP = 3; WRITE_MODE = 1 (NWE controlled)
TDF_CYCLES = 6; TDF_MODE = 1 (optimization enabled).

SAMA4S Series [DATASHEET 465
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 26-19. TDF Optimization: No TDF wait states are inserted if the TDF period is over when the next access begins

=S [I I A Iy
1 | .

S

P

| | | | | 1
| | | | | 1
NRD X
| | | | | 1
| | | | | 1
| | | | | | I
| | | | | | I
| | | | | | |
NWE 1]] | | |
I I I _:_:/_:_
| | | | 1
| | | | |
| | | | |
[[S [
| NWE_SETYP= 3 :
NCS0 | i :
|
I
|
|
|
|
|

DIHDIDERR I

| | | | | Wait State | | | | | 1
' : . | | 1 | | | | | | 1
1 | ' | | | | 1
. ! ! ! ! !

D[7:0] _',_._L< { —
1 ! ! t \
| I I | 1 I
| | | | | | 1 1 |
D T J | T T > < T T T T > |
I l | | : (- ! | 1
: :read access onNCS0 (I:\IRD coﬁtrolled) | Rdad to M|te ,write agcess on,NCS0 (|\IWE cohtrolled)I
1
1

26.12.3 TDF Optimization Disabled (TDF_MODE = 0)

When optimization is disabled, tdf wait states are inserted at the end of the read transfer, so that the data float
period is ended when the second access begins. If the hold period of the read1 controlling signal overlaps the data
float period, no additional tdf wait states will be inserted.
Figure 26-20, Figure 26-21 and Figure 26-22 illustrate the cases:

e read access followed by a read access on another chip select,

e read access followed by a write access on another chip select,

e read access followed by a write access on the same chip select,

with no TDF optimization.

466 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 26-20. TDF Optimization Disabled (TDF Mode = 0): TDF wait states between 2 read accesses on different chip selects

oo [L LT LT LML L rert
1 | | 1 I | | | | 1 |
1 | | 1 I | | | | 1 |
=N G G G | X
A
read1 controlling signal ! ! | : : I I : I I :
(NRD) E : \ :/ eadl hO|Ci =1 : i i i i E read?2 s%tup =1
! @l Y
read2 controlling signal : ! : : i : : : : : :
(NRD) E | 3 ! | TDF_CYCLES=6 | : | E N\
o | R— | : : : . . |
Pl — . IIINIININIINNIINININDY, | <
1 1
|
E i E : 5 TDF WAIT STATES E i
e + o le >l +
X read1 cycle ! : | read 2cycle
! TDF CYCLES =6 ;—H 1 TDF_MODE =0
1 - :Chip Select: !(optimizatioh disabled)

: Wait State,

Figure 26-21. TDF Mode = 0: TDF wait states between aread and a write access on different chip selects

vk || | | L[] | | | | | L
: | | 1 | 1 | 1 | | 1
1 | | 1 | 1 I 1 | | 1
1 | 1 1 | 1 | 1 1 1 1
| ; ' . ! + ' ' ' 4
o, (T X X
1 | | 1 : 1 | 1 | | 1
| 1 I 1 | | 1
I A T N D A T R
read1 controlling signal ! ! | : . : , : , , :
(NRD) wm hold =1 i : : :writeZ setupI =1 : :
1 | | | 1 | 1 | | 1
1 | I 1 ! 1 | [E— | 1
write2 controlling signal ! ! ! 1 ! ! ! ! ! ! !
T 1 T T T T T T | 1
(NWE) . | | TDR_CYCLES =14 i | ! | \ | 1/
1 — i =
A
1 | 1
1] ’ ! 1 1 | | 1
D[7:0 1] 1 \ 1 i/] 1
P I I h—
1 | 1
| A .
1 | 1 ! 1 1 | 1
e p ! L Bt o
|
: read1 cycle ! | | 2 TDF WAIT STATES, write2 cycle |
- “—pe—
! TDF_CYCLES =4 . . : ' TDF_MODE =0 '
|Read‘to Write: Chip Select 1 (optimization disabled)
: Wait State | Wait State :
SAMA4S Series [DATASHEET 467
Atmel ;)

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 26-22. TDF Mode = 0: TDF wait states between read and write accesses on the same chip select

L | N I O O O A O L

MCK

XX

A[23:0]

o

read1 controlling signal

NRD
(NRD) M1 hold =11

N e e Y

| s —t
1
write2 controlling signal : : + : 4:
(NWE) X ’ ! TOF_CYCLES =5 R ! ,;
\ < 1 T gl 1 | 1
| | 1 | |
: : : ! | | | 1 | |
D[7:0 ! ' ! ' | | — '
M0)))IPIIIINIIIININD) , | |
1 | | I 1 | |
: : : | | I 1 | |
1 1 | | I 1 | |
e u ' | 4 TDF WAIT STATES | X | |
! read1 cycle ! o ! | | 0l | |
! TDF_CYCLES =5 L | ! ! ! write2 cycle '
! IReaq to WnteI . TDF_MODE =0
. , Wait State 1

(optimization disabled)

26.13 External Wait

Any access can be extended by an external device using the NWAIT input signal of the SMC. The EXNW_MODE
field of the SMC_MODE register on the corresponding chip select must be set either to “10” (Frozen mode) or “11”
(Ready mode). When the EXNW_MODE is set to “00” (disabled), the NWAIT signal is simply ignored on the
corresponding chip select. The NWAIT signal delays the read or write operation in regards to the read or write
controlling signal, depending on the Read and Write modes of the corresponding chip select.

26.13.1 Restriction

When one of the EXNW_MODE is enabled, it is mandatory to program at least one hold cycle for the
read/write controlling signal. For that reason, the NWAIT signal cannot be used in Page mode (Section
26.15 "Asynchronous Page Mode”), or in Slow clock mode (Section 26.14 " Slow Clock Mode™).

The NWAIT signal is assumed to be a response of the external device to the read/write request of the SMC. Then
NWAIT is examined by the SMC only in the pulse state of the read or write controlling signal. The assertion of the
NWAIT signal outside the expected period has no impact on SMC behavior.

468 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.13.2 Frozen Mode

When the external device asserts the NWAIT signal (active low), and after internal synchronization of this signal,
the SMC state is frozen, i.e., SMC internal counters are frozen, and all control signals remain unchanged. When
the resynchronized NWAIT signal is deasserted, the SMC completes the access, resuming the access from the
point where it was stopped. See Figure 26-23. This mode must be selected when the external device uses the
NWAIT signal to delay the access and to freeze the SMC.

The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure 26-24.

Figure 26-23. Write Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)

o | | | | L L L | | |
: ! I I | | | ! : ! | |
| ! I I | | | ! | ! | |
| | | I | | | : | ! | |
Az K i : ! | | : ' | ! : >
I T T I I 1 1 T I
! ! ! ! ! ! |FROZEN STATE : | ! !
1 | | | 1 < I : =: : 1 1
! A A 2 S R A R TS B TS B AL ! ! !
NWE 1 ! | | | | | ! | | | |
|
JNE | S N N
| I I | | | | | | |
| 6 | 5 | 4 | 3 | 2 | 2 | 2 | 2 | 1 | 0 | 1
|
YOS N S T S S I ML
C | o o | o |
: : | | | | | ! : : | |
D[7:0 | | | [l [l [l ' [l |
SN s S Y S Y I M)
:	I			:	:			
I I					I			
						!	.	
war L 0 N L S0								
:	I			: : : :				
N : AV o	T							
internally synchronized 1 I I .		! I I						
NWATT signal					:	/o		
o	T]	T						
!	! ! !	Write cycle	!	! !				
< I I 1 ; ! I »								
: : !	'							
! EXNW_MODE = 10 (Frozen) !								
: WRITE_MODE = 1 (NWE_controlled) :								
' NWE_PULSE = 5
NCS_WR_PULSE =7
SAMA4S Series [DATASHEET 469
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

=10)

W_MODE

Figure 26-24. Read Access with NWAIT Assertion in Frozen Mode (EXN

Read cycle

=10 (Frozen)

READ_MODE

EXNW_MODE

0 (NCS_controlled)

Assertion is ignored

=6
5, NCS_RD_HOLD

2,NRD_HOLD

NCS_RD_PULSE

NRD_PULSE

internally synchronized

NWAIT signal

=3

Atmel

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

470

26.13.3 Ready Mode

In Ready mode (EXNW_MODE = 11), the SMC behaves differently. Normally, the SMC begins the access by
down counting the setup and pulse counters of the read/write controlling signal. In the last cycle of the pulse
phase, the resynchronized NWAIT signal is examined.

If asserted, the SMC suspends the access as shown in Figure 26-25 and Figure 26-26. After deassertion, the
access is completed: the hold step of the access is performed.

This mode must be selected when the external device uses deassertion of the NWAIT signal to indicate its ability
to complete the read or write operation.

If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the pulse of the
controlling read/write signal, it has no impact on the access length as shown in Figure 26-26.

Figure 26-25. NWAIT Assertion in Write Access: Ready Mode (EXNW_MODE = 11)

s O O O B O B
|
|
|

t I . :	
" " T
A[23:.0] :< ! : : ! ! I | ! I>

| ! I I | | : : | ;
| ! I I | | | | | |
| : I I | | ! d | | |
| o4, 3 2,1 | o/ ! I !
el N L L
| ! | | | | | | | : | |
! 6 ! 5 ' 4 1 3 o2 1! N S - -
nes TN | | | | | ! | /o |
! I I				: :			
! I I							
! I I			!				
I : | | | | | ! | | | I

om0 : : : : , : | : -
							: :	
! I I			!					
! I I			!					
- | : | | | : L T + t
NWAIT | ! NS ! ! | : | | : :
| ! | | | | | ! | : | |
| ! | | | | | ! | | | |
)) | ! I I | | | ! | | | |
internally synchronized 1 : I I I I I : | | ! |
NWAIT signal | ! | | | \ : \ ! / i : ! ;

L) |
: ! : : : | | | : : | :
I ! I I I (. I ! | | I I
| | | | | I Write cycle! ! [| : !
| ! | | | | | : | | ! N
N : : . ; ' : "
: EXNW_MODE = 11 (Ready mode) !
| WRITE_MODE = 1 (NWE_controlled) |
| |
! NWE_PULSE =5 '
NCS_WR_PULSE =7
SAMA4S Series [DATASHEET 471
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

11)

W_MODE

Figure 26-26. NWAIT Assertion in Read Access: Ready Mode (EXN

Wait STATE

NWAIT

Assertion is ignored

)

NCS_controlled

11(Ready mode)

oy

READ MODE

EXNW_MODE

Assertion is ignored

internally synchronized

NWAIT signal

7

NCS_RD_PULSE

NRD_PULSE

=7

Atmel

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

472

26.13.4 NWAIT Latency and Read/Write Timings

There may be a latency between the assertion of the read/write controlling signal and the assertion of the NWAIT
signal by the device. The programmed pulse length of the read/write controlling signal must be at least equal to
this latency plus the 2 cycles of resynchronization + one cycle. Otherwise, the SMC may enter the hold state of the
access without detecting the NWAIT signal assertion. This is true in Frozen mode as well as in Ready mode. This
is illustrated on Figure 26-27.

When EXNW_MODE is enabled (ready or frozen), the user must program a pulse length of the read and write
controlling signal of at least:

minimal pulse length = NWAIT latency + 2 resynchronization cycles + one cycle

Figure 26-27. NWAIT Latency

MCK | | | | | | | |
| ! | | | | | | | |
| T T T T T T |

AL23:0] .< ! I I . I ' : I D
T 1 T 1 T
| ! I I | | | : : :
! ! ! ! ! ! ! WAIT STATE ! I
| ! I I I | [| N |
I ! I I | I I~ | T |
| 4 I 3 I 2 | 1 | 0 | 0) T
| ! I I | I | | /1 |

NRD ! I f f t t T | |
l< 1 1		>		
: I I minimal pulse length	I			
I I				
! I		I	:	:
f T T		T	T	

NWAIT ! ! ! ! N L/ ! . ! |
I I I			
I I I	I		I
e t > t >			

intenally synchronized ! : NWAIT latency ! 2 cycle res:ynchronizatibn ! | ! |
NWAIT signal | i : : , : | ! : ;
| I | I | |\ I I/ | :
I ! | | I I I | I |
| I I I | I | | I |
I ! I I I Read cycle ! I | I I
[P | 1 1 | | | ; ' r

| ! | | | | | |
| | | | EXNW_MODE=100r 11 | | | :
! | ! : READ_MODE = 1(NRD_controfled) | | |
| |

!	I						
'		NRD_PULSE=5	i				
!							
! I		I					
: I I	I		I				

| | | | | |
I ! | | | : : : I
SAMA4S Series [DATASHEET] 473
Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.14 Slow Clock Mode

The SMC is able to automatically apply a set of “Slow clock mode” read/write waveforms when an internal signal
driven by the Power Management Controller is asserted because MCK has been turned to a very slow clock rate
(typically 32kHz clock rate). In this mode, the user-programmed waveforms are ignored and the Slow clock mode
waveforms are applied. This mode is provided so as to avoid reprogramming the User Interface with appropriate
waveforms at very slow clock rate. When activated, the Slow mode is active on all chip selects.

26.14.1 Slow Clock Mode Waveforms

Figure 26-28 illustrates the read and write operations in Slow clock mode. They are valid on all chip selects. Table
26-6 indicates the value of read and write parameters in Slow clock mode.

Figure 26-28. Read/Write Cycles in Slow Clock Mode

MCK | |

|
|
AR3:0] ' X

MCK ! |
I
I

A[23:0] X
|
I

I
NWE_CYCLE ='3

‘ [

\4

I
SLOW'CLOCK MODE WRITE

Table 26-6. Read and Write Timing Parameters in Slow Clock Mode

Read Parameters

Duration (cycles)

Write Parameters

Duration (cycles)

NRD_SETUP 1 NWE_SETUP 1
NRD_PULSE 1 NWE_PULSE 1
NCS_RD_SETUP 0 NCS_WR_SETUP 0
NCS_RD_PULSE 2 NCS_WR_PULSE 3
NRD_CYCLE 2 NWE_CYCLE 3

SAM4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

26.14.2 Switching from (to) Slow Clock Mode to (from) Normal Mode

When switching from Slow clock mode to Normal mode, the current Slow clock mode transfer is completed at high
clock rate, with the set of Slow clock mode parameters.See Figure 26-29. The external device may not be fast
enough to support such timings.

Figure 26-30 illustrates the recommended procedure to properly switch from one mode to the other.

Figure 26-29. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

Slow Clock Mode |
internal signal from PMC

MCK | | |

A[23:0] }(i
|
|

NWE —'——'_l/

C

I
I
| |
I
1 1, 1 1 1.1 3 2
| | I
| 1 !
1 | | | 1 | | 1
! ! oo ! I [
NCS ! | ! I R R . | Lo
I
N : T N
1 1 {
1 : : ! !
1
X NWE_CYCLE = 3 I Lo NWE_CYCLE = 7 i
- 1 » < >
< VI‘ g} : < L
SLOW CLOCK MODE WRITE SI_OW CLOCK MODE WF%ITE 1 NORMAL MODE WRITE
1 1 :
1
1
1
This write cycle finishes with the slow clock mode set Slow clock mode
of parameters after the clock rate transition transition is detected:

Reload Configuration Wait State

Figure 26-30. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow Clock
Mode

Slow Clock Mode
internal signal from PMC |

MCK

t--s--

II3I | Eli

|

NCS i\ | |
1 |

!]

|

SLOW CI.OCK MODE \INRITE IDLE STATE

-

NQIRMAI}L M(I?DE \):VRITE%

- - —

Reload Iﬁonﬂguration
Wait Sjate

SAMA4S Series [DATASHEET 475
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.15 Asynchronous Page Mode

The SMC supports asynchronous burst reads in Page mode, providing that the Page mode is enabled in the
SMC_MODE register (PMEN field). The page size must be configured in the SMC_MODE register (PS field) to 4,
8, 16 or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte page) is always
aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The MSB of data address defines the
address of the page in memory, the LSB of address define the address of the data in the page as detailed in Table
26-7.

With Page mode memory devices, the first access to one page (t,,) takes longer than the subsequent accesses to
the page (t;,) as shown in Figure 26-31. When in Page mode, the SMC enables the user to define different read
timings for the first access within one page, and next accesses within the page.

Table 26-7. Page Address and Data Address within a Page

Page Size Page Address® Data Address in the Page
4 bytes A[23:2] A[1:0]
8 bytes A[23:3] A[2:0]
16 bytes A[23:4] A[3:0]
32 bytes A[23:5] A[4:0]

Note: 1. “A” denotes the address bus of the memory device.

26.15.1 Protocol and Timings in Page Mode
Figure 26-31 shows the NRD and NCS timings in Page mode access.

Figure 26-31. Page Mode Read Protocol (Address MSB and LSB are defined in Table 26-7)

wek | L L1 L] | L | | L | |
! ! I I

AIMSB] X i ' '
! | |

! | |

tsa tsa

|
NCS — tpa _

PNV R R

2XX 22 XX

LI J— CLLLLLKKKL

NCS_RD_PULSE NRD_PULSE NRD_PULSE

[»olq— > < »

The NRD and NCS signals are held low during all read transfers, whatever the programmed values of the setup
and hold timings in the User Interface may be. Moreover, the NRD and NCS timings are identical. The pulse length
of the first access to the page is defined with the NCS_RD_PULSE field of the SMC_PULSE register. The pulse
length of subsequent accesses within the page are defined using the NRD_PULSE parameter.

476 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

In Page mode, the programming of the read timings is described in Table 26-8:

Table 26-8. Programming of Read Timings in Page Mode

Parameter Value Definition

READ_MODE Y No impact

NCS_RD_SETUP X' No impact

NCS_RD_PULSE toa Access time of first access to the page
NRD_SETUP X’ No impact

NRD_PULSE tsa Access time of subsequent accesses in the page
NRD_CYCLE X' No impact

The SMC does not check the coherency of timings. It will always apply the NCS_RD_PULSE timings as page
access timing (t,,) and the NRD_PULSE for accesses to the page (ts,), even if the programmed value for t,, is
shorter than the programmed value for t,.

26.15.2 Page Mode Restriction

The Page mode is not compatible with the use of the NWAIT signal. Using the Page mode and the NWAIT signal
may lead to unpredictable behavior.

26.15.3 Sequential and Non-sequential Accesses

If the chip select and the MSB of addresses as defined in Table 26-7 are identical, then the current access lies in
the same page as the previous one, and no page break occurs.

Using this information, all data within the same page, sequential or not sequential, are accessed with a minimum
access time (t,). Figure 26-32 illustrates access to an 8-bit memory device in Page mode, with 8-byte pages.
Access to D1 causes a page access with a long access time (t,,). Accesses to D3 and D7, though they are not
sequential accesses, only require a short access time (tg,).

If the MSB of addresses are different, the SMC performs the access of a new page. In the same way, if the chip
select is different from the previous access, a page break occurs. If two sequential accesses are made to the Page
mode memory, but separated by an other internal or external peripheral access, a page break occurs on the
second access because the chip select of the device was deasserted between both accesses.

SAMA4S Series [DATASHEET 477
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 26-32. Access to Non-Sequential Data within the Same Page

MCK [N S B S B O
|
|
|
|
|

A[23:3] X Page address

|

|

|

|

|

A2, AL A0 K A1 e A3 X A7
| | X
! |
| |
I
NRD TN\ |
|

|

|

1

|

|

|

|

|

|

DI7:0] : (L] D1 | Y XX dl3 >) XX

T T

I I
NCS_RD_PULSE NRD_PULSE | NRD_PULSE |
| »le ol I
X T I

- »

478 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.16 Static Memory Controller (SMC) User Interface

The SMC is programmed using the registers listed in Table 26-9. For each chip select, a set of four registers is used to pro-
gram the parameters of the external device connected on it. In Table 26-9, “CS_number” denotes the chip select number.

16 bytes (0x10) are required per chip select.

The user must complete writing the configuration by writing any one of the SMC_MODE registers.

Table 26-9. Register Mapping
Offset Register Name Access Reset

0x10 x CS_number + 0x00 | SMC Setup Register SMC_SETUP Read/Write 0x01010101
0x10 x CS_number + 0x04 | SMC Pulse Register SMC_PULSE Read/write 0x01010101
0x10 x CS_number + 0x08 | SMC Cycle Register SMC_CYCLE Read/Write 0x00030003
0x10 x CS_number + 0x0OC | SMC MODE Register SMC_MODE Read/Write 0x10000003
0x80 SMC OCMS MODE Register SMC_OCMS Read/Write 0x00000000
0x84 SMC OCMS KEY1 Register SMC_KEY1 Write Once 0x00000000
0x88 SMC OCMS KEY2 Register SMC_KEY2 Write Once 0x00000000
OxE4 SMC Write Protection Mode Register SMC_WPMR Read/Write 0x00000000
OXE8 SMC Write Protection Status Register SMC_WPSR Read-only 0x00000000
OXEC-OxFC Reserved - - -

Notes: 1. All unlisted offset values are considered as ‘reserved’.

Atmel

SAM4S Series [DATASHEET] 479

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.16.1 SMC Setup Register

Name: SMC_SETUP[0..3]

Address: 0x400E0000 [0], 0x400E0010 [1], 0x400E0020 [2], 0x400E0030 [3]

Access: Read/Write
31 30 29 28 27 26 25 24

| - [- [NCS_RD_SETUP |
23 22 21 20 19 18 17 16

| - | - | NRD_SETUP |
15 14 13 12 11 10 9 8

| - [- [NCS_WR_SETUP |
7 6 5 4 3 2 1 0

| - | - | NWE_SETUP |

This register can only be written if the WPEN bit is cleared in the “SMC Write Protection Mode Register” .

* NWE_SETUP: NWE Setup Length
The NWE signal setup length is defined as:
NWE setup length = (128* NWE_SETUP[5] + NWE_SETUPJ[4:0]) clock cycles

* NCS_WR_SETUP: NCS Setup Length in WRITE Access
In write access, the NCS signal setup length is defined as:
NCS setup length = (128* NCS_WR_SETUP[5] + NCS_WR_SETUP[4:0]) clock cycles

e NRD_SETUP: NRD Setup Length
The NRD signal setup length is defined in clock cycles as:
NRD setup length = (128* NRD_SETUP[5] + NRD_SETUP[4:0]) clock cycles

* NCS_RD_SETUP: NCS Setup Length in READ Access
In read access, the NCS signal setup length is defined as:
NCS setup length = (128* NCS_RD_SETUP[5] + NCS_RD_SETUP[4:0]) clock cycles

480 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.16.2 SMC Pulse Register

Name: SMC_PULSE[0..3]

Address: 0x400E0004 [0], 0x400E0014 [1], 0x400E0024 [2], 0x400E0034 [3]

Access: Read/Write
31 30 29 28 27 26 25 24

| — | NCS_RD_PULSE |
23 22 21 20 19 18 17 16

| - | NRD_PULSE |
15 14 13 12 11 10 9 8

| — | NCS_WR_PULSE |
7 6 5 4 3 2 1 0

| - | NWE_PULSE |

This register can only be written if the WPEN bit is cleared in the “SMC Write Protection Mode Register” .

 NWE_PULSE: NWE Pulse Length

The NWE signal pulse length is defined as:

NWE pulse length = (256* NWE_PULSE[6] + NWE_PULSE[5:0]) clock cycles
The NWE pulse length must be at least 1 clock cycle.

« NCS_WR_PULSE: NCS Pulse Length in WRITE Access

In write access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_WR_PULSE[6] + NCS_WR_PULSE[5:0]) clock cycles
The NCS pulse length must be at least 1 clock cycle.

» NRD_PULSE: NRD Pulse Length

In standard read access, the NRD signal pulse length is defined in clock cycles as:

NRD pulse length = (256* NRD_PULSE[6] + NRD_PULSE]5:0]) clock cycles

The NRD pulse length must be at least 1 clock cycle.

In Page mode read access, the NRD_PULSE parameter defines the duration of the subsequent accesses in the page.

« NCS_RD_PULSE: NCS Pulse Length in READ Access

In standard read access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_RD_PULSE[6] + NCS_RD_PULSE[5:0]) clock cycles

The NCS pulse length must be at least 1 clock cycle.

In Page mode read access, the NCS_RD_PULSE parameter defines the duration of the first access to one page.

SAMA4S Series [DATASHEET 481
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.16.3 SMC Cycle Register

Name: SMC_CYCLE[0..3]

Address: 0x400E0008 [0], 0x400E0018 [1], 0x400E0028 [2], 0x400E0038 [3]

Access: Read/Write
31 30 29 28 27 26 25 24

| - | - | - - - — - NRD_CYCLE |
23 22 21 20 19 18 17 16

| NRD_CYCLE |
15 14 13 12 11 10 9 8

| - - - - - - - NWE_CYCLE |
7 6 5 4 3 2 1 0

| NWE_CYCLE |

This register can only be written if the WPEN bit is cleared in the “SMC Write Protection Mode Register” .

* NWE_CYCLE: Total Write Cycle Length

The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of the setup, pulse
and hold steps of the NWE and NCS signals. It is defined as:

Write cycle length = (NWE_CYCLE[8:7]*256 + NWE_CYCLE][6:0]) clock cycles

* NRD_CYCLE: Total Read Cycle Length

The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse
and hold steps of the NRD and NCS signals. It is defined as:

Read cycle length = (NRD_CYCLE[8:7]*256 + NRD_CYCLE[6:0]) clock cycles

482 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.16.4 SMC MODE Register

Name: SMC_MODE]J0..3]

Address: 0x400E000C [0], 0x400E001C [1], 0x400E002C [2], 0x400E003C [3]

Access: Read/Write
31 30 29 28 27 26 25 24

| - | - | PS | - - - PMEN |
23 22 21 20 19 18 17 16

| - [- [- [TDF_MODE | TDF_CYCLES |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | EXNW_MODE | - | - | WRITE_MODE | READ_MODE |

This register can only be written if the WPEN bit is cleared in the “SMC Write Protection Mode Register” .

READ_MODE: Read Mode

0: The read operation is controlled by the NCS signal.

— If TDF cycles are programmed, the external bus is marked busy after the rising edge of NCS.
— If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NCS.

=

: The read operation is controlled by the NRD signal.

— If TDF cycles are programmed, the external bus is marked busy after the rising edge of NRD.
— If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NRD.

WRITE_MODE: Write Mode

0: The write operation is controlled by the NCS signal.
— If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NCS.

1: The write operation is controlled by the NWE signal.

— If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NWE.

EXNW_MODE: NWAIT Mode

The NWAIT signal is used to extend the current read or write signal. It is only taken into account during the pulse phase of
the read and write controlling signal. When the use of NWAIT is enabled, at least one cycle hold duration must be pro-
grammed for the read and write controlling signal.

Value Name Description
0 DISABLED Disabled
1 — Reserved
2 FROZEN Frozen Mode
3 READY Ready Mode

« Disabled Mode: The NWAIT input signal is ignored on the corresponding Chip Select.

* Frozen Mode: If asserted, the NWAIT signal freezes the current read or write cycle. After deassertion, the read/write

cycle is resumed from the point where it was stopped.

Atmel

SAM4S Series [DATASHEET] 483

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

» Ready Mode: The NWAIT signal indicates the availability of the external device at the end of the pulse of the controlling
read or write signal, to complete the access. If high, the access normally completes. If low, the access is extended until
NWAIT returns high.

« TDF_CYCLES: Data Float Time

This field gives the integer number of clock cycles required by the external device to release the data after the rising edge
of the read controlling signal. The SMC always provide one full cycle of bus turnaround after the TDF_CYCLES period. The
external bus cannot be used by another chip select during TDF_CYCLES + 1 cycles. From 0 up to 15 TDF_CYCLES can
be set.

« TDF_MODE: TDF Optimization
0: TDF optimization is disabled.
— The number of TDF wait states is inserted before the next access begins.
1: TDF optimization is enabled.
— The number of TDF wait states is optimized using the setup period of the next read/write access.

¢ PMEN: Page Mode Enabled
0: Standard read is applied.
1: Asynchronous burst read in Page mode is applied on the corresponding chip select.

* PS: Page Size
If Page mode is enabled, this field indicates the size of the page in bytes.

Value Name Description
0 4 BYTE 4-byte page
1 8 BYTE 8-byte page
2 16_BYTE 16-byte page
3 32_BYTE 32-byte page

484 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.16.5 SMC OCMS Mode Register

Name: SMC_OCMS

Address: 0x400E0080

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| — | — | - | - | CS3SE | CS2SE | CSI1SE | CSOSE |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | SMSE |

CSxSE: Chip Select (x =0 to 3) Scrambling Enable
0: Disable scrambling for CSx.
1: Enable scrambling for CSx.

SMSE: Static Memory Controller Scrambling Enable
0: Disable scrambling for SMC access.
1: Enable scrambling for SMC access.

SAMA4S Series [DATASHEET 485
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.16.6 SMC OCMS Keyl Register

Name: SMC_KEY1

Address: 0x400E0084

Access: Write Once
31 30 29 28 27 26 25 24

| KEY1 |
23 22 21 20 19 18 17 16

| KEY1 |
15 14 13 12 11 10 9 8

| KEY1 |
7 6 5 4 3 2 1 0

| KEY1 |

« KEYL1: Off Chip Memory Scrambling (OCMS) Key Part 1

When off-chip memory scrambling is enabled, setting the SMC_OCMS and SMC_TIMINGS registers in accordance, the
data scrambling depends on KEY1 and KEY?2 values.

486 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.16.7 SMC OCMS Key?2 Register

Name: SMC_KEY2

Address: 0x400E0088

Access: Write Once
31 30 29 28 27 26 25 24

| KEY2 |
23 22 21 20 19 18 17 16

| KEY2 |
15 14 13 12 11 10 9 8

| KEY2 |
7 6 5 4 3 2 1 0

| KEY2 |

» KEY2: Off Chip Memory Scrambling (OCMS) Key Part 2

When off-chip memory scrambling is enabled, setting the SMC_OCMS and SMC_TIMINGS registers in accordance, the
data scrambling depends on KEY2 and KEY1 values.

SAMA4S Series [DATASHEET 487
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.16.8 SMC Write Protection Mode Register

Name: SMC_WPMR

Address: 0x400EO00E4

Access: Read/Write
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

r - ! - - = 17 = 1T = [= WPEN |

» WPEN: Write Protect Enable

0: Disables the write protection if WPKEY corresponds to 0x534D43 (“SMC” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x534D43 (“SMC” in ASCII).

See Section 26.9.5 "Register Write Protection” for the list of registers that can be write-protected.

« WPKEY: Write Protection Key

Value Name Description

Writing any other value in this field aborts the write operation of the WPEN bit. Always reads

0x534D43 PASSWD
as 0.

488 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

26.16.9 SMC Write Protection Status Register

Name: SMC_WPSR

Address: 0x400EOO0E8

Type: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| WPVSRC |
15 14 13 12 11 10 9 8

| WPVSRC |
7 6 5 4 3 2 1 0

r - r - 1r - ! = 1 = 1T = 1 = WPVS |

* WPVS: Write Protection Violation Status
0: No write protection violation has occurred since the last read of the SMC_WPSR register.

1: A write protection violation has occurred since the last read of the SMC_WPSR register. If this violation is an unauthor-
ized attempt to write a protected register, the associated violation is reported into field WPVSRC.

 WPVSRC: Write Protection Violation Source
When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

SAMA4S Series [DATASHEET 489
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

27. Peripheral DMA Controller (PDC)

27.1 Description

The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals and the target memories.
The link between the PDC and a serial peripheral is operated by the AHB to APB bridge.

The user interface of each PDC channel is integrated into the user interface of the peripheral it serves. The user
interface of mono-directional channels (receive-only or transmit-only) contains two 32-bit memory pointers and two
16-bit counters, one set (pointer, counter) for the current transfer and one set (pointer, counter) for the next
transfer. The bidirectional channel user interface contains four 32-bit memory pointers and four 16-bit counters.
Each set (pointer, counter) is used by the current transmit, next transmit, current receive and next receive.

Using the PDC decreases processor overhead by reducing its intervention during the transfer. This lowers
significantly the number of clock cycles required for a data transfer, improving microcontroller performance.

To launch a transfer, the peripheral triggers its associated PDC channels by using transmit and receive signals.
When the programmed data is transferred, an end of transfer interrupt is generated by the peripheral itself.

27.2 Embedded Characteristics
e Performs Transfers to/from APB Communication Serial Peripherals
e Supports Half-duplex and Full-duplex Peripherals

490 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

27.3 Peripheral DMA Controller Connections

The Peripheral DMA Controller handles the data transfer between peripherals and memory and receives triggers
from the peripherals listed in the following table.

The Peripheral DMA Controller handles transfer requests from the channel according to the following priorities
(Channel 0 is high priority):

Table 27-1. Peripheral DMA Controller

Instance Name Channel T/R Channel Number
PWM Transmit 21
TWIL1 Transmit 20
TWIO Transmit 19

UART1 Transmit 18
UARTO Transmit 17
USART1 Transmit 16
USARTO Transmit 15
DACC Transmit 14
SPI Transmit 13
SSC Transmit 12
HSMCI Transmit 11
PIOA Receive 10
TWI1 Receive 9
TWIO Receive 8
UART1 Receive 7
UARTO Receive 6
USART1 Receive 5
USARTO Receive 4
ADC Receive 3
SPI Receive 2
SSC Receive 1
HSMCI Receive 0

SAMA4S Series [DATASHEET 491
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

27.4 Block Diagram

Figure 27-1. Block Diagram

FULL DUPLEX PDC
PERIPHERAL
THR PDC Channel A
RHR PDC Channel B

Status & Control
Control < >

HALF DUPLEX

PERIPHERAL Control
THR
PDC Channel C
RHR
Status & Control
Control < >

RECEIVE or TRANSMIT

PERIPHERAL
RHR or THR PDC Channel D >
Status & Control
Control < > |

492 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

27.5 Functional Description

27.5.1 Configuration

The PDC channel user interface enables the user to configure and control data transfers for each channel. The
user interface of each PDC channel is integrated into the associated peripheral user interface.

The user interface of a serial peripheral, whether it is full- or half-duplex, contains four 32-bit pointers (RPR,
RNPR, TPR, TNPR) and four 16-bit counter registers (RCR, RNCR, TCR, TNCR). However, the transmit and
receive parts of each type are programmed differently: the transmit and receive parts of a full-duplex peripheral
can be programmed at the same time, whereas only one part (transmit or receive) of a half-duplex peripheral can
be programmed at a time.

32-bit pointers define the access location in memory for the current and next transfer, whether it is for read
(transmit) or write (receive). 16-bit counters define the size of the current and next transfers. It is possible, at any
moment, to read the number of transfers remaining for each channel.

The PDC has dedicated status registers which indicate if the transfer is enabled or disabled for each channel. The
status for each channel is located in the associated peripheral status register. Transfers can be enabled and/or
disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in the peripheral’s Transfer Control register.

At the end of a transfer, the PDC channel sends status flags to its associated peripheral. These flags are visible in
the peripheral Status register (ENDRX, ENDTX, RXBUFF, and TXBUFE). Refer to Section 27.5.3 and to the
associated peripheral user interface.

The peripheral where a PDC transfer is configured must have its peripheral clock enabled. The peripheral clock
must be also enabled to access the PDC register set associated to this peripheral.

27.5.2 Memory Pointers

Each full-duplex peripheral is connected to the PDC by a receive channel and a transmit channel. Both channels
have 32-bit memory pointers that point to a receive area and to a transmit area, respectively, in the target memory.

Each half-duplex peripheral is connected to the PDC by a bidirectional channel. This channel has two 32-bit
memory pointers, one for current transfer and the other for next transfer. These pointers point to transmit or
receive data depending on the operating mode of the peripheral.

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented respectively by 1,
2 or 4 bytes.

If a memory pointer address changes in the middle of a transfer, the PDC channel continues operating using the
new address.

27.5.3 Transfer Counters

Each channel has two 16-bit counters, one for the current transfer and the one for the next transfer. These
counters define the size of data to be transferred by the channel. The current transfer counter is decremented first
as the data addressed by the current memory pointer starts to be transferred. When the current transfer counter
reaches zero, the channel checks its next transfer counter. If the value of the next counter is zero, the channel
stops transferring data and sets the appropriate flag. If the next counter value is greater than zero, the values of
the next pointer/next counter are copied into the current pointer/current counter and the channel resumes the
transfer, whereas next pointer/next counter get zero/zero as values.At the end of this transfer, the PDC channel
sets the appropriate flags in the Peripheral Status register.

The following list gives an overview of how status register flags behave depending on the counters’ values:
e ENDRX flag is set when the PDC Receive Counter Register (PERIPH_RCR) reaches zero.

e RXBUFF flag is set when both PERIPH_RCR and the PDC Receive Next Counter Register
(PERIPH_RNCR) reach zero.

SAMA4S Series [DATASHEET 493
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

e ENDTX flag is set when the PDC Transmit Counter Register (PERIPH_TCR) reaches zero.

e TXBUFE flag is set when both PERIPH_TCR and the PDC Transmit Next Counter Register
(PERIPH_TNCR) reach zero.

These status flags are described in the Transfer Status Register (PERIPH_PTSR).

27.5.4 Data Transfers

The serial peripheral triggers its associated PDC channels’ transfers using transmit enable (TXEN) and receive
enable (RXEN) flags in the transfer control register integrated in the peripheral’s user interface.

When the peripheral receives external data, it sends a Receive Ready signal to its PDC receive channel which
then requests access to the Matrix. When access is granted, the PDC receive channel starts reading the
peripheral Receive Holding register (RHR). The read data are stored in an internal buffer and then written to
memory.

When the peripheral is about to send data, it sends a Transmit Ready to its PDC transmit channel which then
requests access to the Matrix. When access is granted, the PDC transmit channel reads data from memory and
transfers the data to the Transmit Holding register (THR) of its associated peripheral. The same peripheral sends
data depending on its mechanism.

27.5.5 PDC Flags and Peripheral Status Register

Each peripheral connected to the PDC sends out receive ready and transmit ready flags and the PDC returns flags
to the peripheral. All these flags are only visible in the peripheral’s Status register.

Depending on whether the peripheral is half- or full-duplex, the flags belong to either one single channel or two
different channels.

275.5.1 Receive Transfer End

The receive transfer end flag is set when PERIPH_RCR reaches zero and the last data has been transferred to
memory.

This flag is reset by writing a non-zero value to PERIPH_RCR or PERIPH_RNCR.

27.5.5.2 Transmit Transfer End

The transmit transfer end flag is set when PERIPH_TCR reaches zero and the last data has been written to the
peripheral THR.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

27.5.5.3 Receive Buffer Full

The receive buffer full flag is set when PERIPH_RCR reaches zero, with PERIPH_RNCR also set to zero and the
last data transferred to memory.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

27554 Transmit Buffer Empty

The transmit buffer empty flag is set when PERIPH_TCR reaches zero, with PERIPH_TNCR also set to zero and
the last data written to peripheral THR.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

494 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

27.6 Peripheral DMA Controller (PDC) User Interface

Table 27-2. Register Mapping
Offset Register Name Access Reset
0x00 Receive Pointer Register PERIPH®_RPR Read/Write 0
0x04 Receive Counter Register PERIPH_RCR Read/Write 0
0x08 Transmit Pointer Register PERIPH_TPR Read/Write 0
0x0C Transmit Counter Register PERIPH_TCR Read/Write 0
0x10 Receive Next Pointer Register PERIPH_RNPR Read/Write 0
0x14 Receive Next Counter Register PERIPH_RNCR Read/Write 0
0x18 Transmit Next Pointer Register PERIPH_TNPR Read/Write 0
0x1C Transmit Next Counter Register PERIPH_TNCR Read/Write 0
0x20 Transfer Control Register PERIPH_PTCR Write-only -
0x24 Transfer Status Register PERIPH_PTSR Read-only 0

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user

depending on the function and the desired peripheral.

Atmel

SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

495

27.6.1 Receive Pointer Register

Name: PERIPH_RPR

Access: Read/Write
31 30 29 28 27 26 25 24

| RXPTR |
23 22 21 20 19 18 17 16

| RXPTR |
15 14 13 12 11 10 9 8

| RXPTR |
7 6 5 4 3 2 1 0

| RXPTR |

¢ RXPTR: Receive Pointer Register
RXPTR must be set to receive buffer address.
When a half-duplex peripheral is connected to the PDC, RXPTR = TXPTR.

496 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

27.6.2 Receive Counter Register

Name: PERIPH_RCR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| RXCTR |
7 6 5 4 3 2 1 0

| RXCTR |

 RXCTR: Receive Counter Register

RXCTR must be set to receive buffer size.

When a half-duplex peripheral is connected to the PDC, RXCTR = TXCTR.

0: Stops peripheral data transfer to the receiver.

1-65535: Starts peripheral data transfer if the corresponding channel is active.

SAMA4S Series [DATASHEET 497
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

27.6.3 Transmit Pointer Register

Name: PERIPH_TPR

Access: Read/Write
31 30 29 28 27 26 25 24

| TXPTR |
23 22 21 20 19 18 17 16

| TXPTR |
15 14 13 12 11 10 9 8

| TXPTR |
7 6 5 4 3 2 1 0

| TXPTR |

¢ TXPTR: Transmit Counter Register
TXPTR must be set to transmit buffer address.
When a half-duplex peripheral is connected to the PDC, RXPTR = TXPTR.

498 SAMAS Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

27.6.4 Transmit Counter Register

Name: PERIPH_TCR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| TXCTR |
7 6 5 4 3 2 1 0

| TXCTR |

e TXCTR: Transmit Counter Register

TXCTR must be set to transmit buffer size.

When a half-duplex peripheral is connected to the PDC, RXCTR = TXCTR.

0: Stops peripheral data transfer to the transmitter.

1-65535: Starts peripheral data transfer if the corresponding channel is active.

SAMA4S Series [DATASHEET 499
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

27.6.5 Receive Next Pointer Register

Name: PERIPH_RNPR

Access: Read/Write
31 30 29 28 27 26 25 24

| RXNPTR |
23 22 21 20 19 18 17 16

| RXNPTR |
15 14 13 12 11 10 9 8

| RXNPTR |
7 6 5 4 3 2 1 0

| RXNPTR |

« RXNPTR: Receive Next Pointer
RXNPTR contains the next receive buffer address.
When a half-duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

500 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

27.6.6 Receive Next Counter Register

Name: PERIPH_RNCR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| RXNCTR |
7 6 5 4 3 2 1 0

| RXNCTR |

» RXNCTR: Receive Next Counter
RXNCTR contains the next receive buffer size.

When a half-duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

SAMA4S Series [DATASHEET 501
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

27.6.7 Transmit Next Pointer Register

Name: PERIPH_TNPR

Access: Read/Write
31 30 29 28 27 26 25 24

| TXNPTR |
23 22 21 20 19 18 17 16

| TXNPTR |
15 14 13 12 11 10 9 8

| TXNPTR |
7 6 5 4 3 2 1 0

| TXNPTR |

¢ TXNPTR: Transmit Next Pointer
TXNPTR contains the next transmit buffer address.
When a half-duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

502 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

27.6.8 Transmit Next Counter Register

Name: PERIPH_TNCR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| TXNCTR |
7 6 5 4 3 2 1 0

| TXNCTR |

« TXNCTR: Transmit Counter Next
TXNCTR contains the next transmit buffer size.

When a half-duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

SAMA4S Series [DATASHEET 503
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

27.6.9 Transfer Control Register

Name: PERIPH_PTCR

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | TXTDIS [TXTEN |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | RXTDIS [RXTEN |

» RXTEN: Receiver Transfer Enable
0: No effect.

1: Enables PDC receiver channel requests if RXTDIS is not set.

When a half-duplex peripheral is connected to the PDC, enabling the receiver channel requests automatically disables the
transmitter channel requests. It is forbidden to set both TXTEN and RXTEN for a half-duplex peripheral.

* RXTDIS: Receiver Transfer Disable
0: No effect.
1: Disables the PDC receiver channel requests.

When a half-duplex peripheral is connected to the PDC, disabling the receiver channel requests also disables the transmit-
ter channel requests.

 TXTEN: Transmitter Transfer Enable
0: No effect.

1: Enables the PDC transmitter channel requests.

When a half-duplex peripheral is connected to the PDC, it enables the transmitter channel requests only if RXTEN is not
set. It is forbidden to set both TXTEN and RXTEN for a half-duplex peripheral.

e TXTDIS: Transmitter Transfer Disable
0: No effect.

1: Disables the PDC transmitter channel requests.

When a half-duplex peripheral is connected to the PDC, disabling the transmitter channel requests disables the receiver
channel requests.

504 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

27.6.10 Transfer Status Register

Name: PERIPH_PTSR

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

I - I - I - - I - I - I - I - |
15 14 13 12 11 10 9 8

. - r - ¢ - - 1 - [- [- [TXEN]
7 6 5 4 3 2 1 0

. - r - ¢ - - 1 - [- [- [RXEN |

RXTEN: Receiver Transfer Enable
: PDC receiver channel requests are disabled.

o

1: PDC receiver channel requests are enabled.

TXTEN: Transmitter Transfer Enable
: PDC transmitter channel requests are disabled.

o

1: PDC transmitter channel requests are enabled.

SAMA4S Series [DATASHEET 505
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

28. Clock Generator

28.1 Description

The Clock Generator user interface is embedded within the Power Management Controller and is described in
Section 29.17 "Power Management Controller (PMC) User Interface”. However, the Clock Generator registers are
named CKGR_.

28.2 Embedded Characteristics

The Clock Generator is made up of:
e Alow-power 32768 Hz slow clock oscillator with Bypass mode
e A low-power RC oscillator
e A 3to 20 MHz crystal or ceramic resonator-based oscillator, which can be bypassed.
[]

A factory-programmed fast RC oscillator. Three output frequencies can be selected: 4/8/12 MHz. By default
4 MHz is selected.

e Two 80 to 240 MHz programmable PLL (input from 3 to 32 MHZz), capable of providing the clock MCK to the
processor and to the peripherals.
It provides the following clocks:
e SLCK, the slow clock, which is the only permanent clock within the system.

e MAINCK is the output of the main clock oscillator selection: either the crystal or ceramic resonator-based
oscillator or 4/8/12 MHz fast RC oscillator.

e PLLACK is the output of the divider and 80 to 240 MHz programmable PLL (PLLA).
PLLBCK is the output of the divider and 80 to 240 MHz programmable PLL (PLLB).

506 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

28.3 Block Diagram

Figure 28-1. Clock Generator Block Diagram

XTALSEL

Clock Generator

(Supply Controller)

XIN32

XOUT32 | I

XIN

XOouT

1L

Embedded
32 kHz 0
RC Oscillator
Slow Clock
SLCK
32768 Hz
Crystal 1
Oscillator
CKGR_MOR
MOSCSEL|
Embedded
4/8/12 MHz
Fast 0
RC Oscillator
Main Clock
3-20 MHz MAINCK
Crystal
or 1
Ceramic
Resonator
Oscillator
PLLA and PLLA Clock
Divider /2 PLLACK
PLLADIV2
PMC_MCKR
PLLB and PLLB Clock
Divider /2 PLLBCK
PLLBDIV2
PMC_MCKR

Atmel

l Status T Control

Power
Management
Controller

SAM4S Series [DATASHEET] 507

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

28.4 Slow Clock

The Supply Controller embeds a slow clock generator that is supplied with the VDDIO power supply. As soon as
VDDIO is supplied, both the crystal oscillator and the embedded RC oscillator are powered up, but only the
embedded RC oscillator is enabled. This allows the slow clock to be valid in a short time (about 100 ps).

The slow clock is generated either by the slow clock crystal oscillator or by the slow clock RC oscillator.

The selection between the RC or the crystal oscillator is made by writing the XTALSEL bit in the Supply Controller
Control Register (SUPC_CR).

28.4.1 Slow Clock RC Oscillator

By default, the slow clock RC oscillator is enabled and selected. The user has to take into account the possible
drifts of the RC oscillator. More details are given in the section “DC Characteristics” of the product datasheet.

It can be disabled via the XTALSEL bit in SUPC_CR.

28.4.2 Slow Clock Crystal Oscillator

The Clock Generator integrates a 32768 Hz low-power oscillator. To use this oscillator, the XIN32 and XOUT32
pins must be connected to a 32768 Hz crystal. Two external capacitors must be wired as shown in Figure 28-2.
More details are given in the section “DC Characteristics” of the product datasheet.

Note that the user is not obliged to use the slow clock crystal and can use the RC oscillator instead.

Figure 28-2. Typical Slow Clock Crystal Oscillator Connection
XIN32 XOuT32 GND

il
L L
T 1

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more accurate
frequency. The command is made by writing a 1 to the SUPC_CR.XTALSEL bit. This results in a sequence which
first configures the PIO lines multiplexed with XIN32 and XOUT32 to be driven by the oscillator, then enables the
crystal oscillator and then disables the RC oscillator to save power. The switch of the slow clock source is glitch
free. The OSCSEL bit of the Supply Controller Status Register (SUPC_SR) or the OSCSEL bit of the PMC Status
Register (PMC_SR) tracks the oscillator frequency downstream. It must be read in order to be informed when the
switch sequence, initiated when a new value is written in the SUPC_CR.XTALSEL bit, is done.

Coming back on the RC oscillator is only possible by shutting down the VDDIO power supply. If the user does not
need the crystal oscillator, the XIN32 and XOUT32 pins can be left unconnected since by default the XIN32 and
XOUT32 system /O pins are in P1O input mode with pull-up after reset.

The user can also set the crystal oscillator in Bypass mode instead of connecting a crystal. In this case, the user
has to provide the external clock signal on XIN32. The input characteristics of the XIN32 pin are given in the
product electrical characteristics section. In order to set the Bypass mode, the OSCBYPASS bit of the Supply
Controller Mode Register (SUPC_MR) needs to be set at 1 prior to writing a 1 in bit XTALSEL.

508 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

28.5 Main Clock

Figure 28-3 shows the main clock block diagram.

Figure 28-3. Main Clock Block Diagram

CKGR_MOR CKGR_MOR
MOSCRCEN| [MoscRek |
I I

PMC_SR
L »| MOscRrcs

Fast RC CKGR_MOR PMC_SR

Oscillator MOSCSEL MOSCSELS

CKGR_MOR
MAINCK
M XTEN .
Main Clock

3-20 MHz 1
Crystal

L] =
g —

XIN

Ceramic Resonator

XouT Oscillator

CKGR_MOR

MOSCXTST
PMC_SR

3-20 MHz
| moscxTs

Counter

CKGR_MOR
| MOSCRCEN I

CKGR_MOR CKGR_MCFR
[moscxTen | [romEAs

CKGR_MOR

CKGR_MCFR

MAINCK Ref, Main Clock

Main Clock Frequency CKGR_MCFR
—_——]

Counter MAINFRDY

The main clock has two sources:
e 4/8/12 MHz fast RC oscillator which starts very quickly and is used at startup.

e 3to 20 MHz crystal or ceramic resonator-based oscillator which can be bypassed (Refer to Section 28.5.5
"Bypassing the Main Crystal Oscillator”).

28.5.1 Fast RC Oscillator

After reset, the 4/8/12 MHz fast RC oscillator is enabled with the 4 MHz frequency selected and it is selected as
the source of MAINCK. MAINCK is the default clock selected to start the system.

The fast RC oscillator frequencies are calibrated in production except the lowest frequency which is not calibrated.

Refer to the “DC Characteristics” section of the product datasheet.

SAMA4S Series [DATASHEET 509
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

The software can disable or enable the 4/8/12 MHz fast RC oscillator with the MOSCRCEN bit in the Clock
Generator Main Oscillator Register (CKGR_MOR).

The user can also select the output frequency of the fast RC oscillator, either 4/8/12 MHz are available. It can be
done through MOSCRCF bits in CKGR_MOR. When changing this frequency selection, the MOSCRCS bit in the
Power Management Controller Status Register (PMC_SR) is automatically cleared and MAINCK is stopped until
the oscillator is stabilized. Once the oscillator is stabilized, MAINCK restarts and MOSCRCS is set.

When disabling the main clock by clearing the MOSCRCEN bit in CKGR_MOR, the MOSCRCS bitin PMC_SR is
automatically cleared, indicating the main clock is off.

Setting the MOSCRCS bit in the Power Management Controller Interrupt Enable Register (PMC_IER) can trigger
an interrupt to the processor.

When main clock (MAINCK) is not used to drive the processor and frequency monitor (SLCKis used instead), it is
recommended to disable the main oscillators.

The CAL4, CAL8 and CAL12 values in the PMC Oscillator Calibration Register (PMC_OCR) are the default values
set by Atmel during production. These values are stored in a specific Flash memory area different from the main
memory plane. These values cannot be modified by the user and cannot be erased by a Flash erase command or
by the ERASE pin. Values written by the user's application in PMC_OCR are reset after each power up or
peripheral reset.

28.5.2 Fast RC Oscillator Clock Frequency Adjustment

It is possible for the user to adjust the main RC oscillator frequency through PMC_OCR. By default, SEL4/8/12 are
low, so the RC oscillator will be driven with Flash calibration bits which are programmed during chip production.

The user can adjust the trimming of the 4/8/12 MHz fast RC oscillator through this register in order to obtain more
accurate frequency (to compensate derating factors such as temperature and voltage).

In order to calibrate the oscillator lower frequency, SEL4 must be set to 1 and a good frequency value must be
configured in CAL4. Likewise, SEL8/12 must be set to 1 and a trim value must be configured in CAL8/12 in order
to adjust the other frequencies of the oscillator.

It is possible to adjust the oscillator frequency while operating from this clock. For example, when running on
lowest frequency it is possible to change the CAL4 value if SEL4 is set in PMC_OCR.

It is possible to restart, at anytime, a measurement of the main frequency by means of the RCMEAS bit in Main
Clock Frequency Register (CKGR_MCFR). Thus, when MAINFRDY flag reads 1, another read access on
CKGR_MCEFR provides an image of the frequency of the main clock on MAINF field. The software can calculate
the error with an expected frequency and correct the CAL4 (or CAL8/CAL12) field accordingly. This may be used
to compensate frequency drift due to derating factors such as temperature and/or voltage.

28.5.3 3to 20 MHz Crystal or Ceramic Resonator-based Oscillator

After reset, the 3 to 20 MHz crystal or ceramic resonator-based oscillator is disabled and it is not selected as the
source of MAINCK.

The user can select the 3 to 20 MHz crystal or ceramic resonator-based oscillator to be the source of MAINCK, as
it provides a more accurate frequency. The software enables or disables the main oscillator in order to reduce
power consumption by clearing the MOSCXTEN bit in CKGR_MOR.

When disabling the main oscillator by clearing the MOSCXTEN bit in CKGR_MOR, the MOSCXTS bit in PMC_SR
is automatically cleared, indicating the main clock is off.

When enabling the main oscillator, the user must initiate the main oscillator counter with a value corresponding to
the start-up time of the oscillator. This start-up time depends on the crystal frequency connected to the oscillator.

When the MOSCXTEN bit and the MOSCXTST are written in CKGR_MOR to enable the main oscillator, the XIN
and XOUT pins are automatically switched into Oscillator mode and MOSCXTS bit in PMC_SR is cleared and the

510 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

counter starts counting down on the slow clock divided by 8 from the MOSCXTST value. Since the MOSCXTST
value is coded with 8 bits, the maximum start-up time is about 62 ms.

When the counter reaches 0, the MOSCXTS bit is set, indicating that the main clock is valid. Setting the
MOSCXTS bit in the Interrupt Mask Register (PMC_IMR) can trigger an interrupt to the processor.

28.5.4 Main Clock Oscillator Selection
The user can select the source of the main clock from either the 4/8/12 MHz fast RC oscillator, the 3 to 20 MHz
crystal oscillator or the ceramic resonator-based oscillator.

The advantage of the 4/8/12 MHz fast RC oscillator is its fast start-up time. By default, this oscillator is selected to
start the system and when entering Wait mode.

The advantage of the 3 to 20 MHz crystal oscillator or ceramic resonator-based oscillator is the high level of
accuracy provided.

The selection of the oscillator is made by writing the MOSCSEL bit in CKGR_MOR. The switch of the main clock
source is glitch-free, so there is no need to run out of SLCK, PLLACK in order to change the selection. The
MOSCSELS bit of PMC_SR indicates when the switch sequence is done.

Setting the MOSCSELS bit in PMC_IMR can trigger an interrupt to the processor.

Enabling the fast RC oscillator (MOSCRCEN = 1) and changing the fast RC frequency (MOSCCRF) at the same
time is not allowed.

The fast RC must be enabled first and its frequency changed in a second step.

28.5.5 Bypassing the Main Crystal Oscillator

Prior to bypassing the 3 to 20 MHz crystal oscillator, the external clock frequency provided on the XIN pin must be
stable and within the values specified in the XIN Clock characteristics in the section “Electrical Characteristics”.
The sequence is as follows:

1. Make sure an external clock is connected on XIN.

2. Enable the bypass by writing a 1 to CKGR_MOR.MOSCXTBY.

3. Disable the 3 to 20 MHz oscillator by writing a 0 to bit CKGR_MOR.MOSCXTEN.

28.5.6 Switching Main Clock between the Main RC Oscillator and Fast Crystal Oscillator

Both sources must be enabled during the switchover operation. Only after completion can the unused oscillator be
disabled. If switching to fast crystal oscillator, the clock presence must first be checked according to what is
described in Section 28.5.7 "Software Sequence to Detect the Presence of Fast Crystal” because the source may
not be reliable (crystal failure or bypass on a non-existent clock).

28.5.7 Software Sequence to Detect the Presence of Fast Crystal

The frequency meter carried on CKGR_MCFR is operating on the selected main clock and not on the fast crystal
clock nor on the fast RC oscillator clock.

Therefore, to check for the presence of the fast crystal clock, it is necessary to have the main clock (MAINCK)
driven by the fast crystal clock (MOSCSEL = 1).
The following software sequence order must be followed:

1. MCK must select the slow clock (CSS = 0 in the Master Clock Register (PMC_MCKR)).

2. Wait for the MCKRDY flag in PMC_SR to be 1.

3. The fast crystal must be enabled by programming 1 in the MOSCXTEN field in the CKGR_MOR with the
MOSCXTST field being programmed to the appropriate value (see the “Electrical Characteristics” section).

SAMA4S Series [DATASHEET 511
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

4. Wait for the MOSCXTS flag to be 1 in PMC_SR to get the end of a start-up period of the fast crystal
oscillator.

5. Then, MOSCSEL must be programmed to 1 in CKGR_MOR to select fast main crystal oscillator for the main
clock.

6. MOSCSEL must be read until its value equals 1.
7. Then the MOSCSELS status flag must be checked in PMC_SR.

At this point, two cases may occur (either MOSCSELS = 0 or MOSCSELS = 1).
e IfMOSCSELS = 1: There is a valid crystal connected and its frequency can be determined by initiating a
frequency measure by programming RCMEAS in CKGR_MCFR.
e IfMOSCSELS =0:
— There is no fast crystal clock (either no crystal connected or a crystal clock out of specification). A

frequency measure can reinforce this status by initiating a frequency measure by programming
RCMEAS in CKGR_MCFR.

— IFMOSCSELS = 0, the selection of the main clock must be programmed back to the main RC oscillator
by writing MOSCSEL to 0 prior to disabling the fast crystal oscillator.

— If MOSCSELS = 0, the crystal oscillator can be disabled (MOSCXTEN = 0 in CKGR_MOR).

28.5.8 Main Clock Frequency Counter
The device features a main clock frequency counter that provides the frequency of the main clock.
The main clock frequency counter is reset and starts incrementing at the main clock speed after the next rising
edge of the slow clock in the following cases:

e When the 4/8/12 MHz fast RC oscillator clock is selected as the source of main clock and when this
oscillator becomes stable (i.e., when the MOSCRCS bit is set)

e When the 3 to 20 MHz crystal or ceramic resonator-based oscillator is selected as the source of main clock
and when this oscillator becomes stable (i.e., when the MOSCXTS bhit is set)

e When the main clock oscillator selection is modified

e When the RCMEAS bit of CKGR_MFCR is written to 1.

Then, at the 16th falling edge of slow clock, the MAINFRDY bit in CKGR_MCFR) is set and the counter stops
counting. Its value can be read in the MAINF field of CKGR_MCFR and gives the number of main clock cycles
during 16 periods of slow clock, so that the frequency of the 4/8/12 MHz fast RC oscillator or 3 to 20 MHz crystal or
ceramic resonator-based oscillator can be determined.

512 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

28.6 Divider and PLL Block

The device features two divider blocks and two PLL blocks that permit a wide range of frequencies to be selected
on either the master clock, the processor clock or the programmable clock outputs. A 48 MHz clock signal is
provided to the embedded USB device port regardless of the frequency of the main clock.

Figure 28-4 shows the block diagram of the divider and PLL blocks.

Figure 28-4. Dividers and PLL Block Diagram

CKGR_PLLBR CKGR_PLLBR
DIVB MULB
MAINCK P Divider B PLL B > PLLBCK
PLLBDIV2
PMC_MCKR
CKGR_PLLAR CKGR_PLLAR
DIVA MULA
Divider A PLLA ———— PLLACK
PLLADIV2
PMC_MCKR
CKGR_PLLBR

PLLBCOUNT
PMC_SR

PLLB
Counter LOCKB

CKGR_PLLAR
PLLACOUNT
PMC_SR
SLCK o CP(')-J-nfe . ——[_Ltocka

28.6.1 Divider and Phase Lock Loop Programming

The divider can be set between 1 and 255 in steps of 1. When a divider field (DIV) is cleared, the output of the
corresponding divider and the PLL output is a continuous signal at level 0. On reset, each DIV field is cleared, thus
the corresponding PLL input clock is stuck at 0.

The PLLs (PLLA, PLLB) allow multiplication of the divider's outputs. The PLL clock signal has a frequency that
depends on the respective source signal frequency and on the parameters DIV (DIVA, DIVB) and MUL (MULA,
MULB) . The factor applied to the source signal frequency is (MUL + 1)/DIV. When MUL is written to 0 or DIV =0,
the PLL is disabled and its power consumption is saved. Note that there is a delay of two SLCK clock cycles
between the disable command and the real disable of the PLL. Re-enabling the PLL can be performed by writing a
value higher than 0 in the MUL field and DIV higher than O.

Whenever the PLL is re-enabled or one of its parameters is changed, the LOCK (LOCKA, LOCKB) bit in PMC_SR
is automatically cleared. The values written in the PLLCOUNT field (PLLACOUNT, PLLBCOUNT) in CKGR_PLLR
(CKGR_PLLAR, CKGR_PLLBR) are loaded in the PLL counter. The PLL counter then decrements at the speed of

SAMA4S Series [DATASHEET 513
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

the slow clock until it reaches 0. At this time, the LOCK bit is set in PMC_SR and can trigger an interrupt to the
processor. The user has to load the number of slow clock cycles required to cover the PLL transient time into the
PLLCOUNT field.

The PLL clock can be divided by 2 by writing the PLLDIV2 (PLLADIV2, PLLBDIV2) bit in PMC_MCKR.

It is prohibited to change the 4/8/12 MHz fast RC oscillator or the main oscillator selection in CKGR_MOR while
the master clock source is the PLL and the PLL reference clock is the fast RC oscillator.
The user must:

1. Switch on the main RC oscillator by writing a 1 to the CSS field of PMC_MCKR.

Change the frequency (MOSCRCF) or oscillator selection (MOSCSEL) in CKGR_MOR.

Wait for MOSCRCS (if frequency changes) or MOSCSELS (if oscillator selection changes) in PMC_SR.
Disable and then enable the PLL.

Wait for the LOCK flag in PMC_SR.

Switch back to the PLL by writing the appropriate value to the CSS field of PMC_MCKR.

L

514 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.

20.1

29.2

Power Management Controller (PMC)

Description

The Power Management Controller (PMC) optimizes power consumption by controlling all system and user
peripheral clocks. The PMC enables/disables the clock inputs to many of the peripherals and the Cortex-M4
processor.

The Supply Controller selects between the 32 kHz RC oscillator or the slow crystal oscillator. The unused oscillator
is disabled automatically so that power consumption is optimized.

By default, at startup, the chip runs out of the master clock using the fast RC oscillator running at 4 MHz.

The user can trim the 8 and 12 MHz RC oscillator frequencies by software.

Embedded Characteristics

The PMC provides the following clocks:
e MCK, the Master Clock, programmable from a few hundred Hz to the maximum operating frequency of the
device. It is available to the modules running permanently, such as the Enhanced Embedded Flash
Controller.

e Processor Clock (HCLK) , automatically switched off when entering the processor in Sleep Mode

e Free-running processor Clock (FCLK)

e The Cortex-M4 SysTick external clock

e UDP Clock (UDPCK), required by USB Device Port operations

e Peripheral Clocks, provided to the embedded peripherals (USART, SPI, TWI, TC, etc.) and independently
controllable.

e Programmable Clock Outputs (PCKXx), selected from the clock generator outputs to drive the device PCK
pins

The PMC also provides the following operations on clocks:
e A main crystal oscillator clock failure detector
e A frequency counter on main clock and an on-the-fly adjustable main RC oscillator frequency

SAMA4S Series [DATASHEET 515
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.3 Block Diagram

Figure 29-1. General Clock Block Diagram

Clock Generator

XTALSEL Processor Processor clock
Clock — > HCLK
(Supply Controller) Controller
Sleep Mode [int
Embedded
32kHzRC |—> O
Oscillator
Divider
Slow Clock | 8 SysTick
SLCK
Master Clock Controller
XIN32 | I 3?:7§§tgz 1 SLCK (PMC_MCKR) Free Running Clock
i - FCLK
XOUT32 | I Oscillator MAINCK
CKGR_MOR Prescaler
PLLBCK 11,12,13, 14, 18, Mai;ecf KC'OCk
Embedded PLLACK /16, /32, 164 _
4/8/12 MHz Peripherals
Fast [— 0 Clock Controller
RC Oscillator] PRES (PMC_PCERX)
Main Clock ON/OFF ‘
3-20 MHz MAINCK periph_clk[..]
XIN D Cr):tal
Ceramic [—{ 1
Resonator
xout | I Oscillator Programmable Clock Controller

~ SLCK (PMC_PCKX)
MAINCK] 5 I
rescaler ON/OFF
PLLA and PLLBCK] /1,12, 14,18, pek..]
Divider /2 PLLA Clock PLLACK| /16, 132, 164
PLLACK MCK

USB Clock Controller (PMC_USB)

PLLB and PLLB Clock

Divider /2 [| PLLBCK PLLACK — wore| Uss clock
Divider UDPCK
PLLBCK 1,12,13,...116

PMC_MCKR I

)
=<
(e}
=<
(e}
=
b
o (PMC_SCER/SCDR)

1status T Control

Power
Management
Controller

29.4 Master Clock Controller

The Master Clock Controller provides selection and division of the master clock (MCK). MCK is the source clockof
the peripheral clocks. The master clock is selected from one of the clocks provided by the Clock Generator.

Selecting the slow clock provides a slow clock signal to the whole device. Selecting the main clock saves power
consumption of the PLLs. The Master Clock Controller is made up of a clock selector and a prescaler.

The master clock selection is made by writing the CSS field (Clock Source Selection) in PMC_MCKR.
The prescaler supports the division by a power of 2 of the selected clock between 1 and 64, and the division by 3.
The PRES field in PMC_MCKR programs the prescaler.

Each time PMC_MCKR is written to define a new master clock, the MCKRDY bit is cleared in PMC_SR. It reads 0
until the master clock is established. Then, the MCKRDY bit is set and can trigger an interrupt to the processor.
This feature is useful when switching from a high-speed clock to a lower one to inform the software when the
change is actually done.

516 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 29-2. Master Clock Controller

PMC_MCKR PMC_MCKR
PRES

SLCK

MAINCK
Master Clock To the MCK Divider
PLLACK Prescaler
PLLBCK
To the Processor

Clock Controller (PCK)

29.5 Processor Clock Controller

The PMC features a Processor Clock Controller (HCLK) that implements the processor Sleep mode. These
processor clock can be disabled by executing the WFI (WaitForinterrupt) or the WFE (WaitForEvent) processor
instruction while the LPM bit is at 0 in the PMC Fast Startup Mode Register (PMC_FSMR).

The Processor Clock Controller HCLK is enabled after a reset and is automatically re-enabled by any enabled
interrupt. The processor Sleep mode is entered by disabling the processor clock, which is automatically re-enabled
by any enabled fast or normal interrupt, or by the reset of the product.

When processor Sleep mode is entered, the current instruction is finished before the clock is stopped, but this
does not prevent data transfers from other masters of the system bus.

29.6 SysTick Clock

The SysTick calibration value is fixed to 12500 which allows the generation of a time base of 1 ms with SysTick
clock to the maximum frequency on MCK divided by 8.

29.7 USB Clock Controller

The user can select the PLLA or the PLLB output as the USB source clock by writing the USBS bit in PMC_USB.
If using the USB, the user must program the PLL to generate an appropriate frequency depending on the USBDIV
bit in the USB Clock Register (PMC_USB).

When the PLL output is stable, i.e., the LOCK bit is set, the USB device FS clock can be enabled by setting the
UDP bit in the System Clock Enable Register (PMC_SCER). To save power on this peripheral when it is not used,
the user can set the UDP bit in the System Clock Disable Register (PMC_SCDR). The UDP bit in the System
Clock Status Register (PMC_SCSR) gives the activity of this clock. The USB device port requires both the 48 MHz
signal and the peripheral clock. The USB peripheral clock may be controlled by means of the Master Clock
Controller.

Figure 29-3. USB Clock Controller

PMC_USB PMC_SCER,
PMC_SDER
B
USB Divider lock
UDP Clock (UDPCK
Source ——>| /1,/2,/3,...116 ’/ ()
Clock
UDP

SAMA4S Series [DATASHEET 517
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.8 Peripheral Clock Controller

The PMC controls the clocks of each embedded peripheral by means of the Peripheral Clock Controller. The user
can individually enable and disable the clock on the peripherals.

The user can also enable and disable these clocks by writing Peripheral Clock Enable 0 (PMC_PCERDO0),
Peripheral Clock Disable 0 (PMC_PCDRO0), Peripheral Clock Enable 1 (PMC_PCER1) and Peripheral Clock
Disable 1 (PMC_PCDR1) registers. The status of the peripheral clock activity can be read in the Peripheral Clock
Status Register (PMC_PCSRO0) and Peripheral Clock Status Register (PMC_PCSR1).

When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are automatically
disabled after a reset.

To stop a peripheral, it is recommended that the system software wait until the peripheral has executed its last
programmed operation before disabling the clock. This is to avoid data corruption or erroneous behavior of the
system.

The bit number within the Peripheral Clock Control registers (PMC_PCERO-1, PMC_PCDRO0-1, and

PMC_PCSRO0-1) is the Peripheral Identifier defined at the product level. The bit number corresponds to the
interrupt source number assigned to the peripheral.

29.9 Free-Running Processor Clock

The free-running processor clock (FCLK)used for sampling interrupts and clocking debug blocks ensures that
interrupts can be sampled, and sleep events can be traced, while the processor is sleeping. It is connected to
master clock (MCK).

29.10 Programmable Clock Output Controller

The PMC controls three signals to be output on external pins, PCKx. Each signal can be independently
programmed via the Programmable Clock Registers (PMC_PCKX).

PCKXx can be independently selected between the slow clock (SLCK), the main clock (MAINCK), the PLLA clock
(PLLACK), the PLLB clock (PLLBCK),and the master clock (MCK) by writing the CSS field in PMC_PCKXx. Each
output signal can also be divided by a power of 2 between 1 and 64 by writing the PRES (Prescaler) field in
PMC_PCKXx.

Each output signal can be enabled and disabled by writing a 1 to the corresponding PCKx bit of PMC_SCER and
PMC_SCDR, respectively. Status of the active programmable output clocks are given in the PCKx bits of
PMC_SCSR.

The PCKRDYx status flag in PMC_SR indicates that the programmable clock is actually what has been
programmed in the programmable clock registers.

As the Programmable Clock Controller does not manage with glitch prevention when switching clocks, it is strongly
recommended to disable the programmable clock before any configuration change and to re-enable it after the
change is actually performed.

29.11 Fast Startup

At exit from Wait mode, the device allows the processor to restart in less than 10 microseconds only if the C-code
function that manages the Wait mode entry and exit is linked to and executed from on-chip SRAM.

The fast startup time cannot be achieved if the first instruction after an exit is located in the embedded Flash.

If fast startup is not required, or if the first instruction after a Wait mode exit is located in embedded Flash, see
Section 29.12 "Startup from Embedded Flash”.

518 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Prior to instructing the device to enter Wait mode:

1. Select the fast RC oscillator as the master clock source (the CSS field in PMC_MCKR must be written to
1).

2. Disable the PLL if enabled.

3. Clear the internal wake-up sources.

The system enters Wait mode either by setting the WAITMODE bit in CKGR_MOR, or by executing the
WaitForEvent (WFE) instruction of the processor while the LPM bit is at 1 in PMC_FSMR. Immediately after setting
the WAITMODE bit or using the WFE instruction, wait for the MCKRDY bit to be set in PMC_SR.

A fast startup is enabled upon the detection of a programmed level on one of the 16 wake-up inputs (WKUP) or
upon an active alarm from the RTC, RTT and USB Controller. The polarity of the 16 wake-up inputs is
programmable by writing the PMC Fast Startup Polarity Register (PMC_FSPR).

The fast startup circuitry, as shown in Figure 29-4, is fully asynchronous and provides a fast startup signal to the
PMC. As soon as the fast startup signal is asserted, the embedded 4/8/12 MHz fast RC oscillator restarts
automatically.

When entering Wait mode, the embedded Flash can be placed in one of the Low-power modes (Deep-power-
down or Standby modes) depending on the configuration of the FLPM field in the PMC_FSMR. The FLPM field
can be programmed at anytime and its value will be applied to the next Wait mode period.

The power consumption reduction is optimal when configuring 1 (Deep-power-down mode) in field FLPM. If O is
programmed (Standby mode), the power consumption is slightly higher than in Deep-power-down mode.

When programming 2 in field FLPM, the Wait mode Flash power consumption is equivalent to that of the Active
mode when there is no read access on the Flash.

Figure 29-4. Fast Startup Circuitry
FSTTO

WKUPO P
FSTPO FSTT1

WKUP1 P

I Z
I

| FSTP1

|

I

|

I

WKUP15 P

FSTP15 RTTAL

N

FSTT15

fast_restart

il Y
f]ﬂﬁj] Tj ﬁjj ﬁj

RTT Alarm

RTCAL
RTC Alarm

USBAL
USB Alarm

SAMA4S Series [DATASHEET 519
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Each wake-up input pin and alarm can be enabled to generate a fast startup event by setting the corresponding bit
in PMC_FSMR.

The user interface does not provide any status for fast startup, but the user can easily recover this information by
reading the P1O Controller and the status registers of the RTC, RTT and USB Controller.

29.12 Startup from Embedded Flash
The inherent start-up time of the embedded Flash cannot provide a fast startup of the system.

If system fast start-up time is not required, the first instruction after a Wait mode exit can be located in the
embedded Flash. Under these conditions, prior to entering Wait mode, the Flash controller must be programmed
to perform access in 0 wait-state (see Flash controller section).

The procedure and conditions to enter Wait mode and the circuitry to exit Wait mode are strictly the same as fast
startup (see Section 29.11 "Fast Startup”).

29.13 Main Clock Failure Detector

The clock failure detector monitors the main crystal oscillator or ceramic resonator-based oscillator to identify an
eventual failure of this oscillator.

The clock failure detector can be enabled or disabled by bit CFDEN in CKGR_MOR. After a VDDCORE reset, the
detector is disabled. However, if the oscillator is disabled (MOSCXTEN = 0), the detector is disabled too.

The clock failure detection must be enabled only when system clock MCK selects the fast RC oscillator. PMC_SR
must be read two slow clock cycles after enabling the clock failure detector. Then, MCK can select another clock
source by programming the CSS field in PMC_MCKR.

A failure is detected by means of a counter incrementing on the main oscillator clock edge and detection logic is
triggered by the slow RC Oscillator clock. The slow RC is automatically enabled when CFDEN=1.

The counter is cleared when the slow RC oscillator clock signal is low and enabled when the signal is high. Thus,
the failure detection time is one slow RC oscillator period. If, during the high level period of the slow RC oscillator
clock signal, less than eight fast crystal oscillator clock periods have been counted, then a failure is reported.

If a failure of the main oscillator is detected, bit CFDEV in PMC_SR indicates a failure event and generates an
interrupt if the corresponding interrupt source is enabled. The interrupt remains active until a read occurs in
PMC_SR. The user can know the status of the clock failure detection at any time by reading the CFDS bit in
PMC_SR.

Figure 29-5. Clock Failure Detection (Example)
Main Crytal Clock

| | |

|] Read PMC_SR

! | (b/ |_
! | | | !
I i_
|

CDFEV

CDFS

Note: ratio of clock periods is for illustration purposes only

If the main oscillator is selected as the source clock of MAINCK (MOSCSEL in CKGR_MOR = 1), and if the master
clock source is PLLACK or PLLBCK (CSS = 2 or 3), a clock failure detection automatically forces MAINCK to be
the source clock for the master clock (MCK). Then, regardless of the PMC configuration, a clock failure detection

520 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

automatically forces the fast RC oscillator to be the source clock for MAINCK. If the fast RC oscillator is disabled
when a clock failure detection occurs, it is automatically re-enabled by the clock failure detection mechanism.

It takes two slow RC oscillator clock cycles to detect and switch from the main oscillator, to the fast RC oscillator if
the source master clock (MCK) is main clock (MAINCK), or three slow clock RC oscillator cycles if the source of
MCK is PLLACKor PLLBCK.

A clock failure detection activates a fault output that is connected to the Pulse Width Modulator (PWM) Controller.
With this connection, the PWM controller is able to force its outputs and to protect the driven device, if a clock
failure is detected.

The user can know the status of the clock failure detector at any time by reading the FOS bit in PMC_SR.

This fault output remains active until the defect is detected and until it is cleared by the bit FOCLR in the PMC Fault
Output Clear Register (PMC_FOCR).

SAMA4S Series [DATASHEET 521
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.14 Programming Sequence

1. If the fast crystal oscillator is not required, the PLL and divider can be directly configured (Step 6.) else
the fast crystal oscillator must be started (Step 2.).

2. Enable the fast crystal oscillator:
The fast crystal oscillator is enabled by setting the MOSCXTEN field in CKGR_MOR. The user can define a
start-up time. This can be achieved by writing a value in the MOSCXTST field in CKGR_MOR. Once this
register has been correctly configured, the user must wait for MOSCXTS field in PMC_SR to be set. This
can be done either by polling MOSCXTS in PMC_SR, or by waiting for the interrupt line to be raised if the
associated interrupt source (MOSCXTS) has been enabled in PMC_IER.

3. Switch the MAINCK to the main crystal oscillator by setting MOSCSEL in CKGR_MOR.

4. Wait for the MOSCSELS to be set in PMC_SR to ensure the switchover is complete.

5. Check the main clock frequency:

This main clock frequency can be measured via CKGR_MCFR.

Read CKGR_MCFR until the MAINFRDY field is set, after which the user can read the MAINF field in
CKGR_MCFR by performing an additional read. This provides the number of main clock cycles that have
been counted during a period of 16 slow clock cycles.

If MAINF = 0, switch the MAINCK to the Fast RC Oscillator by clearing MOSCSEL in CKGR_MOR. If MAINF
0, proceed to Step 6.

6. Set PLLx and Divider (if not required, proceed to Step 7.):
In the names PLLX, DIVx, MULX, LOCKx, PLLXCOUNT, and CKGR_PLLXR, ‘X’ represents A or B.
All parameters needed to configure PLLx and the divider are located in CKGR_PLLxR.

The DIVx field is used to control the divider itself. This parameter can be programmed between 0 and 127.
Divider output is divider input divided by DIVx parameter. By default, DIVx field is cleared which means that
the divider and PLLx are turned off.

The MULX field is the PLLx multiplier factor. This parameter can be programmed between 0 and 62. If MULx
is cleared, PLLx will be turned off, otherwise the PLLx output frequency is PLLX input frequency multiplied by
(MULx + 1).

The PLLXCOUNT field specifies the number of slow clock cycles before the LOCKX bit is set in the PMC_SR
after CKGR_PLLXR has been written.

Once CKGR_PLLXR has been written, the user must wait for the LOCKX bit to be set in the PMC_SR. This
can be done either by polling LOCKx in PMC_SR or by waiting for the interrupt line to be raised if the
associated interrupt source (LOCKXx) has been enabled in PMC_IER. All fields in CKGR_PLLxR can be
programmed in a single write operation. If at some stage one of the following parameters, MULX or DIVX is
modified, the LOCKX bit goes low to indicate that PLLx is not yet ready. When PLLx is locked, LOCKX is set
again. The user must wait for the LOCKX bit to be set before using the PLLx output clock.

7. Select the master clock and processor clock
The master clock and the processor clock are configurable via PMC_MCKR.

The CSS field is used to select the clock source of the master clock and processor clock dividers. By default,
the selected clock source is the main clock.

The PRES field is used to define the processor clock and master clock prescaler. The user can choose
between different values (1, 2, 3, 4, 8, 16, 32, 64). Prescaler output is the selected clock source frequency
divided by the PRES value.

Once the PMC_MCKR has been written, the user must wait for the MCKRDY bit to be set in the PMC_SR.
This can be done either by polling MCKRDY in PMC_SR or by waiting for the interrupt line to be raised if the

522 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Note:

Atmel

associated interrupt source (MCKRDY) has been enabled in PMC_IER. PMC_MCKR must not be
programmed in a single write operation. The programming sequence for PMC_MCKR is as follows:
If a new value for CSS field corresponds to PLL clock,

— Program the PRES field in PMC_MCKR.

— Wait for the MCKRDY bit to be set in PMC_SR.

— Program the CSS field in PMC_MCKR.

— Wait for the MCKRDY bit to be set in PMC_SR.
If a new value for CSS field corresponds to main clock or slow clock,

— Program the CSS field in PMC_MCKR.

— Wait for the MCKRDY bit to be set in the PMC_SR.

— Program the PRES field in PMC_MCKR.

— Wait for the MCKRDY bit to be set in PMC_SR.
If at some stage, parameters CSS or PRES are modified, the MCKRDY bit goes low to indicate that the

master clock and the processor clock are not yet ready. The user must wait for MCKRDY bit to be set again
before using the master and processor clocks.
IF PLLx clock was selected as the master clock and the user decides to modify it by writing in CKGR_PLLXR, the
MCKRDY flag will go low while PLLx is unlocked. Once PLLx is locked again, LOCKx goes high and MCKRDY is set.

While PLLx is unlocked, the master clock selection is automatically changed to slow clock for PLLA and main clock for
PLLB. For further information, see Section 29.15.2 "Clock Switching Waveforms”.

Code Example:
write_register(PMC_MCKR, 0x00000001)
wai t (MCKRDY=1)
write_register(PMC_MCKR, 0x00000011)
wai t (MCKRDY=1)
The master clock is main clock divided by 2.
Select the programmable clocks
Programmable clocks are controlled via registers, PMC_SCER, PMC_SCDR and PMC_SCSR.

Programmable clocks can be enabled and/or disabled via PMC_SCER and PMC_SCDR. Three
programmable clocks can be used. PMC_SCSR indicates which programmable clock is enabled. By default
all programmable clocks are disabled.

PMC_PCKXx registers are used to configure programmable clocks.

The CSS field is used to select the programmable clock divider source. Several clock options are available:
main clock, slow clock, master clock, PLLACK, PLLBCK. The slow clock is the default clock source.

The PRES field is used to control the programmable clock prescaler. It is possible to choose between
different values (1, 2, 4, 8, 16, 32, 64). Programmable clock output is prescaler input divided by PRES
parameter. By default, the PRES value is cleared which means that PCKx is equal to slow clock.

Once PMC_PCKXx register has been configured, the corresponding programmable clock must be enabled
and the user is constrained to wait for the PCKRDYX bit to be set in the PMC_SR. This can be done either by
polling PCKRDYx in PMC_SR or by waiting for the interrupt line to be raised if the associated interrupt
source (PCKRDYX) has been enabled in PMC_IER. All parameters in PMC_PCKXx can be programmed in a
single write operation.

If the CSS and PRES parameters are to be modified, the corresponding programmable clock must be
disabled first. The parameters can then be modified. Once this has been done, the user must re-enable the
programmable clock and wait for the PCKRDYX bit to be set.

Enable the peripheral clocks

SAM4S Series [DATASHEET] 523

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Once all of the previous steps have been completed, the peripheral clocks can be enabled and/or disabled
via registers PMC_PCERO, PMC_PCER, PMC_PCDRO0 and PMC_PCDR.

524 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.15 Clock Switching Details

29.15.1 Master Clock Switching Timings

Table 29-1 and Table 29-2 give the worst case timings required for the master clock to switch from one selected
clock to another one. This is in the event that the prescaler is de-activated. When the prescaler is activated, an
additional time of 64 clock cycles of the newly selected clock has to be added.

Table 29-1. Clock Switching Timings (Worst Case)

From Main Clock SLCK PLL Clock
To
3 x PLL Clock +
Main Clock - 4 X SLCK +
2.5 x Main Clock 4 X SLCK +
1 x Main Clock
0.5 x Main Clock + 3 x PLL Clock +
SLCK 4.5 x SLCK B 5 x SLCK
0'52)'Y'g'[‘cflofk * 2.5 x PLL Clock + 2.5 x PLL Clock +
PLL Clock PLLCOUNT x SLCK + 5x SLCK + 4 x SLCK +
PLLCOUNT x SLCK PLLCOUNT x SLCK
2.5 x PLLx Clock

Notes: 1. PLL designates either the PLLA or the PLLB Clock.
2. PLLCOUNT designates either PLLACOUNT or PLLBCOUNT.

Table 29-2. Clock Switching Timings between Two PLLs (Worst Case)

From PLLA Clock PLLB Clock
To

2.5 x PLLA Clock + 3 x PLLA Clock +
PLLA Clock 4 x SLCK + 4 x SLCK +

PLLACOUNT x SLCK 1.5 x PLLA Clock

3 x PLLB Clock + 2.5 x PLLB Clock +
PLLB Clock 4 x SLCK + 4 x SLCK +
1.5 x PLLB Clock PLLBCOUNT x SLCK
SAMA4S Series [DATASHEET 525
Atmel ;)

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.15.2 Clock Switching Waveforms

Figure 29-6. Switch Master Clock from Slow Clock to PLLx Clock

SIowCIock||||||||||||||||||||||||||||||||||
PLLxCIock|||

LOCK |

MCKRDY

MasterCIock|||||||||||||||||||||||||||| |||||

WmePMC_MCKR_J

Figure 29-7. Switch Master Clock from Main Clock to Slow Clock

Slow Clock | | | | | | | | | | |_

MCKRDY] |

\NmePMC_MCKRl

526 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 29-8. Change PLLx Programming

SIowCIock||
PLLx Clock ||| |||||||||||||||||| | | | | | | | | | | | | | | | I ||

LOCKXx

MCKRDY

MasterCIock|||||||||||||||| |||||||||||||| || ||

Slow Clock
Write CKGR_PLLxR | |

Figure 29-9. Programmable Clock Output Programming

PCKRDY

PCKx Output ||||||||||||||||||||||||

Write PMC_PCKXx |_| PLL Clock is selected

Write PMC_SCER |_| PCKx is enabled

Write PMC_SCDR PCKX is disabled |_|

SAMA4S Series [DATASHEET 527
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.16 Register Write Protection

To prevent any single software error from corrupting PMC behavior, certain registers in the address space can be
write-protected by setting the WPEN bit in the PMC Write Protection Mode Register (PMC_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the PMC Write Protection Status
Register (PMC_WPSR) is set and the field WPVSRC indicates the register in which the write access has been
attempted.

The WPVS bit is automatically cleared after reading the PMC_WPSR.

The following registers can be write-protected:
e PMC System Clock Enable Register

PMC System Clock Disable Register

PMC Peripheral Clock Enable Register 0

PMC Peripheral Clock Disable Register 0

PMC Clock Generator Main Oscillator Register

PMC Clock Generator PLLA Register

PMC Clock Generator PLLB Register

PMC Master Clock Register

PMC USB Clock Register

PMC Programmable Clock Register

PMC Fast Startup Mode Register

PMC Fast Startup Polarity Register

PMC Peripheral Clock Enable Register 1

PMC Peripheral Clock Disable Register 1

PMC Oscillator Calibration Register

528 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17 Power Management Controller (PMC) User Interface

Table 29-3. Register Mapping

Offset Register Name Access Reset
0x0000 System Clock Enable Register PMC_SCER Write-only -
0x0004 System Clock Disable Register PMC_SCDR Write-only -
0x0008 System Clock Status Register PMC_SCSR Read-only 0x0000_0001
0x000C Reserved - - -
0x0010 Peripheral Clock Enable Register 0 PMC_PCERO Write-only -
0x0014 Peripheral Clock Disable Register 0 PMC_PCDRO Write-only -
0x0018 Peripheral Clock Status Register 0 PMC_PCSRO Read-only 0x0000_0000
0x001C Reserved - - -
0x0020 Main Oscillator Register CKGR_MOR Read/Write 0x0000_0008
0x0024 Main Clock Frequency Register CKGR_MCFR Read/Write 0x0000_0000
0x0028 PLLA Register CKGR_PLLAR Read/Write 0x0000_3F00
0x002C PLLB Register CKGR_PLLBR Read/Write 0x0000_3F00
0x0030 Master Clock Register PMC_MCKR Read/Write 0x0000_0001
0x0034 Reserved - - -
0x0038 USB Clock Register PMC_USB Read/Write 0x0000_0000
0x003C Reserved - - -
0x0040 Programmable Clock 0 Register PMC_PCKO Read/Write 0x0000_0000
0x0044 Programmable Clock 1 Register PMC_PCK1 Read/Write 0x0000_0000
0x0048 Programmable Clock 2 Register PMC_PCK2 Read/Write 0x0000_0000
0x004C- 0x005C | Reserved - - -
0x0060 Interrupt Enable Register PMC_IER Write-only -
0x0064 Interrupt Disable Register PMC_IDR Write-only -
0x0068 Status Register PMC_SR Read-only 0x0003_0008
0x006C Interrupt Mask Register PMC_IMR Read-only 0x0000_0000
0x0070 Fast Startup Mode Register PMC_FSMR Read/Write 0x0000_0000
0x0074 Fast Startup Polarity Register PMC_FSPR Read/Write 0x0000_0000
0x0078 Fault Output Clear Register PMC_FOCR Write-only -
0x007C—-0x00EOQ | Reserved - - -
0x00E4 Write Protection Mode Register PMC_WPMR Read/Write 0x0000_0000
O0x00E8 Write Protection Status Register PMC_WPSR Read-only 0x0000_0000
0XOOEC-0x00FC | Reserved - - -
0x0100 Peripheral Clock Enable Register 1 PMC_PCER1 Write-only -
0x0104 Peripheral Clock Disable Register 1 PMC_PCDR1 Write-only -
0x0108 Peripheral Clock Status Register 1 PMC_PCSR1 Read-only 0x0000_0000
0x010C Reserved - - -

Atmel

SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

529

Table 29-3. Register Mapping (Continued)

Offset Register Name Access Reset

0x0110 Oscillator Calibration Register PMC_OCR Read/Write 0x0040_4040
0x114-0x120 Reserved - - -
0134-0x144 Reserved - - -

Note: If an offset is not listed in the table it must be considered as “reserved”.

530 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

29.17.1 PMC System Clock Enable Register

Name: PMC_SCER

Address: 0x400E0400

Access: Write-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - ¢ - ¢ - [- 1}
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | PCK2 | PCK1 | PCKO |
7 6 5 4 3 2 1 0

r we [- [- - - ! - { - [- 1]

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

UDP: USB Device Port Clock Enable
: No effect.

: Enables the 48 MHz clock (UDPCK) of the USB Device Port.

= O

PCKx: Programmable Clock x Output Enable

o

: No effect.

=

: Enables the corresponding Programmable Clock output.

SAMA4S Series [DATASHEET 531
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.2 PMC System Clock Disable Register

Name: PMC_SCDR

Address: 0x400E0404

Access: Write-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - ¢ - ¢ - [- 1}
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | PCK2 | PCK1 | PCKO |
7 6 5 4 3 2 1 0

r we [- [- - - ! - { - [- 1]

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

UDP: USB Device Port Clock Disable
: No effect.

: Disables the 48 MHz clock (UDPCK) of the USB Device Port.

= O

PCKx: Programmable Clock x Output Disable

o

: No effect.

=

: Disables the corresponding Programmable Clock output.

532 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.3 PMC System Clock Status Register

Name: PMC_SCSR

Address: 0x400E0408

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - [- [- /| - -]
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | PCK2 | PCK1 | PCKO |
7 6 5 4 3 2 1 0

[UDP | - - - °r - | - - [-]

UDP: USB Device Port Clock Status
0: The 48 MHz clock (UDPCK) of the USB Device Port is disabled.
1: The 48 MHz clock (UDPCK) of the USB Device Port is enabled.

PCKXx: Programmable Clock x Output Status
0: The corresponding Programmable Clock output is disabled.
1: The corresponding Programmable Clock output is enabled.

SAMA4S Series [DATASHEET 533
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.4 PMC Peripheral Clock Enable Register 0

Name: PMC_PCERO

Address: 0x400E0410

Access: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | P1D22 | PID21 | P1D20 | PID19 | PID18 | PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 | PID8 |
7 6 5 4 3 2 1 0

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

* PIDx: Peripheral Clock x Enable
0: No effect.

1: Enables the corresponding peripheral clock.

Note: PIDx refers to identifiers defined in the section “Peripheral Identifiers”. Other peripherals can be enabled in PMC_PCER1 (Section
29.17.23 "PMC Peripheral Clock Enable Register 1”).

Note: Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.

534 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.5 PMC Peripheral Clock Disable Register O

Name: PMC_PCDRO

Address: 0x400E0414

Access: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 | PID24 |
23 22 21 20 19 18 17 16

| P1D23 | PID22 | PID21 | P1D20 | PID19 | PID18 | PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 | PID8 |
7 6 5 4 3 2 1 0

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

» PIDx: Peripheral Clock x Disable
0: No effect.

1: Disables the corresponding peripheral clock.

Note: PIDx refers to identifiers defined in the section “Peripheral Identifiers”. Other peripherals can be disabled in PMC_PCDR1
(Section 29.17.24 "PMC Peripheral Clock Disable Register 1”).

SAMA4S Series [DATASHEET 535
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.6 PMC Peripheral Clock Status Register 0

Name: PMC_PCSRO

Address: 0x400E0418

Access: Read-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | P1D22 | PID21 | P1D20 | PID19 | PID18 | PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 | PID8 |
7 6 5 4 3 2 1 0

» PIDx: Peripheral Clock x Status

0: The corresponding peripheral clock is disabled.

1: The corresponding peripheral clock is enabled.

Note: PIDx refers to identifiers defined in the section “Peripheral Identifiers”. Other peripherals status can be read in PMC_PCSR1
(Section 29.17.25 "PMC Peripheral Clock Status Register 1").

536 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.7 PMC Clock Generator Main Oscillator Register

Name: CKGR_MOR

Address: 0x400E0420

Access: Read/Write
31 30 29 28 27 26 25 24

| — | - | - - - - CFDEN MOSCSEL |
23 22 21 20 19 18 17 16

| KEY |
15 14 13 12 11 10 9 8

| MOSCXTST |
7 6 5 4 3 2 1 0

| - | MOSCRCF | MOSCRCEN | WAITMODE | MOSCXTBY MOSCXTEN |

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

* MOSCXTEN: Main Crystal Oscillator Enable

A crystal must be connected between XIN and XOUT.

0: The main crystal oscillator is disabled.

1: The main crystal oscillator is enabled. MOSCXTBY must be cleared.

When MOSCXTEN is set, the MOSCXTS flag is set once the main crystal oscillator start-up time is achieved.

¢ MOSCXTBY: Main Crystal Oscillator Bypass

0: No effect.

1: The main crystal oscillator is bypassed. MOSCXTEN must be cleared. An external clock must be connected on XIN.

When MOSCXTBY is set, the MOSCXTS flag in PMC_SR is automatically set.

Clearing MOSCXTEN and MOSCXTBY bits resets the MOSCXTS flag.

Note: When the main crystal oscillator bypass is disabled (MOSCXTBY = 0), the MOSCXTS flag must be read at 0 in PMC_SR before
enabling the main crystal oscillator (MOSCXTEN = 1).

* WAITMODE: Wait Mode Command (Write-only)

: No effect.

= O

: Puts the device in Wait mode.

MOSCRCEN: Main On-Chip RC Oscillator Enable

0: The main on-chip RC oscillator is disabled.

1: The main on-chip RC oscillator is enabled.

When MOSCRCEN is set, the MOSCRCS flag is set once the main on-chip RC oscillator start-up time is achieved.

SAMA4S Series [DATASHEET 537
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

* MOSCRCF: Main On-Chip RC Oscillator Frequency Selection
At startup, the main on-chip RC oscillator frequency is 4 MHz.

Value Name Description
0x0 4 _MHz The fast RC oscillator frequency is at 4 MHz (default)
0x1 8_MHz The fast RC oscillator frequency is at 8 MHz
0x2 12_MHz The fast RC oscillator frequency is at 12 MHz

Note: MOSCRCF must be changed only if MOSCRCS is set in the PMC_SR. Therefore MOSCRCF and MOSCRCEN cannot be
changed at the same time.

« MOSCXTST: Main Crystal Oscillator Start-up Time
Specifies the number of slow clock cycles multiplied by 8 for the main crystal oscillator start-up time.

« KEY: Write Access Password

Value Name Description

Writing any other value in this field aborts the write operation.
0x37 PASSWD

Always reads as 0.

MOSCSEL: Main Oscillator Selection
: The main on-chip RC oscillator is selected.

o

1: The main crystal oscillator is selected.

CFDEN: Clock Failure Detector Enable

0: The clock failure detector is disabled.

1: The clock failure detector is enabled.

Note: 1. The slow RC oscillator must be enabled when the CFDEN is enabled.

2. The clock failure detection must be enabled only when system clock MCK selects the fast RC oscillator.
3. Then the status register must be read 2 slow clock cycles after enabling.

538 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.8 PMC Clock Generator Main Clock Frequency Register

Name: CKGR_MCFR

Address: 0x400E0424

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | - | - | RCMEAS | - | — | - | MAINFRDY |
15 14 13 12 11 10 9 8

| MAINF |
7 6 5 4 3 2 1 0

| MAINF |

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

* MAINF: Main Clock Frequency

Gives the number of main clock cycles within 16 slow clock periods in order to determine the main clock frequency: fy,cx =
(MAINF X fg x) / 16

where frequency is in MHz.

* MAINFRDY: Main Clock Frequency Measure Ready
0: MAINF value is not valid or the main oscillator is disabled or a measure has just been started by means of RCMEAS.

1: The main oscillator has been enabled previously and MAINF value is available.

Note: To ensure that a correct value is read on the MAINF field, the MAINFRDY flag must be read at 1 then another read access must
be performed on the register to get a stable value on the MAINF field.

e RCMEAS: RC Oscillator Frequency Measure (write-only)
0: No effect.

1: Restarts measuring of the main RC frequency. MAINF will carry the new frequency as soon as a low to high transition
occurs on the MAINFRDY flag.

The measure is performed on the main frequency (i.e. not limited to RC oscillator only), but if the main clock frequency
source is the fast crystal oscillator, the restart of measuring is not needed because of the well known stability of crystal
oscillators.

SAMA4S Series [DATASHEET 539
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.9 PMC Clock Generator PLLA Register

Name: CKGR_PLLAR

Address: 0x400E0428

Access: Read/Write
31 30 29 28 27 26 25 24

| — | - | ONE - — MULA |
23 22 21 20 19 18 17 16

| MULA |
15 14 13 12 11 10 9 8

| — - PLLACOUNT |
7 6 5 4 3 2 1 0

| DIVA |

Possible limitations on PLLA input frequencies and multiplier factors should be checked before using the PMC.
Warning: Bit 29 must always be set to 1 when programming the CKGR_PLLAR.
This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

* DIVA: PLLA Front_End Divider

0: Divider output is stuck at 0 and PLLA is disabled.
1: Divider is bypassed (divide by 1) PLLA is enabled
2-255: Clock is divided by DIVA

* PLLACOUNT: PLLA Counter
Specifies the number of Slow Clock cycles before the LOCKA bit is set in PMC_SR after CKGR_PLLAR is written.

* MULA: PLLA Multiplier

0: The PLLA is deactivated (PLLA also disabled if DIVA = 0).

7 up to 62 = The PLLA Clock frequency is the PLLA input frequency multiplied by MULA + 1.
Unlisted values are forbidden.

* ONE: Must Be Set to 1
Bit 29 must always be set to 1 when programming the CKGR_PLLAR.

540 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.10PMC Clock Generator PLLB Register

Name: CKGR_PLLBR

Address: 0x400E042C

Access: Read/Write
31 30 29 28 27 26 25 24

- 1T - 1T = - - MULE |
23 22 21 20 19 18 17 16

| MULB |
15 14 13 12 11 10 9 8

| — - PLLBCOUNT |
7 6 5 4 3 2 1 0

| DIVB |

Possible limitations on PLLB input frequencies and multiplier factors should be checked before using the PMC.
This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

» DIVB: PLLB Front-End Divider

0: Divider output is stuck at 0 and PLLB is disabled.
1: Divider is bypassed (divide by 1)

2-255: Clock is divided by DIVB

* PLLBCOUNT: PLLB Counter
Specifies the number of Slow Clock cycles before the LOCKB bit is set in PMC_SR after CKGR_PLLBR is written.

* MULB: PLLB Multiplier

0: The PLLB is deactivated (PLLB also disabled if DIVB = 0).

7 up to 62: The PLLB Clock frequency is the PLLB input frequency multiplied by MULB + 1.
Unlisted values are forbidden.

SAMA4S Series [DATASHEET 541
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.11PMC Master Clock Register

Name: PMC_MCKR

Address: 0x400E0430

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | PLLBDIV2 | PLLADIV2 | - | - | - | - |
7 6 5 4 3 2 1 0

| - | PRES | - | - | CSS |

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

» CSS: Master Clock Source Selection

Value Name Description
0 SLOW_CLK Slow Clock is selected
1 MAIN_CLK Main Clock is selected
2 PLLA CLK PLLA Clock is selected
3 PLLB_CLK PLLBClock is selected

» PRES: Processor Clock Prescaler

Value Name Description

0 CLK_ 1 Selected clock

1 CLK_2 Selected clock divided by 2
2 CLK_4 Selected clock divided by 4
3 CLK 8 Selected clock divided by 8
4 CLK_16 Selected clock divided by 16
5 CLK_32 Selected clock divided by 32
6 CLK_64 Selected clock divided by 64
7 CLK_3 Selected clock divided by 3

 PLLADIV2: PLLA Divisor by 2
PLLADIV2 | PLLA Clock Division

0 PLLA clock frequency is divided by 1.

1 PLLA clock frequency is divided by 2.

542 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

 PLLBDIV2: PLLB Divisor by 2
PLLBDIV2 | PLLB Clock Division

0 PLLB clock frequency is divided by 1.
1 PLLB clock frequency is divided by 2.
SAMA4S Series [DATASHEET 543
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.12PMC USB Clock Register

Name: PMC_USB

Address: 0x400E0438

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | USBDIV |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - USBS |

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.
¢« USBS: USB Input Clock Selection

0: USB Clock Input is PLLA.

1: USB Clock Input is PLLB

» USBDIV: Divider for USB Clock

USB Clock is Input clock divided by USBDIV + 1.

544 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.13PMC Programmable Clock Register

Name: PMC_PCKXx

Address: 0x400E0440

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

=] PRES -] CSS |

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

» CSS: Master Clock Source Selection

Value Name Description
0 SLOW_CLK Slow Clock is selected
1 MAIN_CLK Main Clock is selected
2 PLLA CLK PLLA Clock is selected
3 PLLB_CLK PLLB Clock is selected
4 MCK Master Clock is selected

» PRES: Programmable Clock Prescaler

Value Name Description

0 CLK 1 Selected clock

1 CLK_2 Selected clock divided by 2
2 CLK_4 Selected clock divided by 4
3 CLK_8 Selected clock divided by 8
4 CLK_16 Selected clock divided by 16
5 CLK_32 Selected clock divided by 32
6 CLK_64 Selected clock divided by 64

SAMA4S Series [DATASHEET 545
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.14PMC Interrupt Enable Register

Name: PMC_IER

Address: 0x400E0460

Access: Write-only
31 30 29 28 27 26 25 24

I - I - | - - I - I - | - I - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | CFDEV | MOSCRCS | MOSCSELS |
15 14 13 12 11 10 9 8

| - | - | - | - | - | PCKRDY2 | PCKRDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

| - | — | - | - | MCKRDY | LOCKB | LOCKA | MOSCXTS |

The following configuration values are valid for all listed bit names of this register:
0: No effect.

1: Enables the corresponding interrupt.

* MOSCXTS: Main Crystal Oscillator Status Interrupt Enable

* LOCKA: PLLA Lock Interrupt Enable

 LOCKB: PLLB Lock Interrupt Enable

» MCKRDY: Master Clock Ready Interrupt Enable

* PCKRDYx: Programmable Clock Ready x Interrupt Enable

» MOSCSELS: Main Oscillator Selection Status Interrupt Enable
* MOSCRCS: Main On-Chip RC Status Interrupt Enable

» CFDEV: Clock Failure Detector Event Interrupt Enable

546 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.15PMC Interrupt Disable Register

Name: PMC_IDR

Address: 0x400E0464

Access: Write-only
31 30 29 28 27 26 25 24

I - I - | - - I - I - | - I - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | CFDEV | MOSCRCS | MOSCSELS |
15 14 13 12 11 10 9 8

| - | - | - | - | - | PCKRDY2 | PCKRDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

| - | — | - | - | MCKRDY | LOCKB | LOCKA | MOSCXTS |

The following configuration values are valid for all listed bit names of this register:
0: No effect.

1: Disables the corresponding interrupt.

* MOSCXTS: Main Crystal Oscillator Status Interrupt Disable

* LOCKA: PLLA Lock Interrupt Disable

 LOCKB: PLLB Lock Interrupt Disable

» MCKRDY: Master Clock Ready Interrupt Disable

» PCKRDYx: Programmable Clock Ready x Interrupt Disable

* MOSCSELS: Main Oscillator Selection Status Interrupt Disable
* MOSCRCS: Main On-Chip RC Status Interrupt Disable

» CFDEV: Clock Failure Detector Event Interrupt Disable

SAMA4S Series [DATASHEET 547
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.16PMC Status Register

Name: PMC_SR

Address: 0x400E0468

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - ¢ - ¢ - [- 1}
23 22 21 20 19 18 17 16

| - | - | - | FOS | CFDS | CFDEV | MOSCRCS | MOSCSELS |
15 14 13 12 11 10 9 8

| - | - | - | - | - | PCKRDY2 | PCKRDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

| OSCSELS | - | - | - | MCKRDY | LOCKB | LOCKA | MOSCXTS |

* MOSCXTS: Main Crystal Oscillator Status
0: Main crystal oscillator is not stabilized.
1: Main crystal oscillator is stabilized.

e LOCKA: PLLA Lock Status
0: PLLA is not locked
1: PLLA is locked.

« LOCKB: PLLB Lock Status
0: PLLB is not locked
1: PLLB is locked.

» MCKRDY: Master Clock Status
0: Master Clock is not ready.
1: Master Clock is ready.

» OSCSELS: Slow Clock Oscillator Selection
0: Internal slow clock RC oscillator is selected.
1: External slow clock 32 kHz oscillator is selected.

» PCKRDYx: Programmable Clock Ready Status
0: Programmable Clock x is not ready.
1: Programmable Clock x is ready.

548 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

¢ MOSCSELS: Main Oscillator Selection Status
0: Selection is in progress.
1: Selection is done.

¢ MOSCRCS: Main On-Chip RC Oscillator Status
0: Main on-chip RC oscillator is not stabilized.
1: Main on-chip RC oscillator is stabilized.

¢ CFDEV: Clock Failure Detector Event
0: No clock failure detection of the fast crystal oscillator clock has occurred since the last read of PMC_SR.
1: At least one clock failure detection of the fast crystal oscillator clock has occurred since the last read of PMC_SR.

» CFDS: Clock Failure Detector Status
0: A clock failure of the fast crystal oscillator clock is not detected.
1: A clock failure of the fast crystal oscillator clock is detected.

* FOS: Clock Failure Detector Fault Output Status
0: The fault output of the clock failure detector is inactive.
1: The fault output of the clock failure detector is active.

SAMA4S Series [DATASHEET 549
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.17PMC Interrupt Mask Register

Name: PMC_IMR

Address: 0x400E046C

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - [- [- /| - -]
23 22 21 20 19 18 17 16

| - | - | - | - | - | CFDEV | MOSCRCS | MOSCSELS |
15 14 13 12 11 10 9 8

| - | - | - | - | - | PCKRDY2 | PCKRDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

| - | — | - | - | MCKRDY | LOCKB | LOCKA | MOSCXTS |

The following configuration values are valid for all listed bit names of this register:
0: No effect.

1: Enables the corresponding interrupt.

* MOSCXTS: Main Crystal Oscillator Status Interrupt Mask

* LOCKA: PLLA Lock Interrupt Mask

* LOCKB: PLLB Lock Interrupt Mask

« MCKRDY: Master Clock Ready Interrupt Mask

» PCKRDYx: Programmable Clock Ready x Interrupt Mask

* MOSCSELS: Main Oscillator Selection Status Interrupt Mask
* MOSCRCS: Main On-Chip RC Status Interrupt Mask

» CFDEV: Clock Failure Detector Event Interrupt Mask

550 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.18PMC Fast Startup Mode Register

Name: PMC_FSMR

Address: 0x400E0470

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | FLPM | LPM | - | USBAL | RTCAL | RTTAL |
15 14 13 12 11 10 9 8

| FSTT15 | FSTT14 | FSTT13 | FSTT12 | FSTT11 | FSTT10 | FSTT9 | FSTT8 |
7 6 5 4 3 2 1 0

| FSTT7 | FSTT6 | FSTTS | FSTT4 | FSTT3 | FSTT2 | FSTT1 | FSTTO |

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

 FSTTO-FSTT15: Fast Startup Input Enable 0 to 15
0: The corresponding wake-up input has no effect on the PMC.

1: The corresponding wake-up input enables a fast restart signal to the PMC.

e RTTAL: RTT Alarm Enable
0: The RTT alarm has no effect on the PMC.
1: The RTT alarm enables a fast restart signal to the PMC.

e RTCAL: RTC Alarm Enable
0: The RTC alarm has no effect on the PMC.

1: The RTC alarm enables a fast restart signal to the PMC.

e USBAL: USB Alarm Enable
0: The USB alarm has no effect on the PMC.

1: The USB alarm enables a fast restart signal to the PMC.

* LPM: Low-power Mode

0: The WaitForlInterrupt (WFI) or the WaitForEvent (WFE) instruction of the processor makes the processor enter Sleep

mode.

1: The WaitForEvent (WFE) instruction of the processor makes the system to enter Wait mode.

 FLPM: Flash Low-power Mode

Value Name Description
0 FLASH_STANDBY Flash is in Standby Mode when system enters Wait Mode
1 FLASH_DEEP_POWERDOWN Flash is in Deep-power-down mode when system enters Wait Mode
2 FLASH_IDLE Idle mode

Atmel

SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

551

29.17.19PMC Fast Startup Polarity Register

Name: PMC_FSPR

Address: 0x400E0474

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| FSTP15 | FSTP14 | FSTP13 | FSTP12 | FSTP11 | FSTP10 | FSTP9 | FSTP8 |
7 6 5 4 3 2 1 0

[FSTP7 [FSTP6 [FSTP5 [FSTP4 [FSTP3 [FSTP2 [FSTPL [FSTPO |

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

» FSTPx: Fast Startup Input Polarityx

Defines the active polarity of the corresponding wake-up input. If the corresponding wake-up input is enabled and at the
FSTP level, it enables a fast restart signal.

552 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.20PMC Fault Output Clear Register

Name: PMC_FOCR

Address: 0x400E0478

Access: Write-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - ¢ - ¢ - [- 1}
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

. - r - ¢ - - - rr - ¢ - [- /]
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | FOCLR |

» FOCLR: Fault Output Clear
Clears the clock failure detector fault output.

SAMA4S Series [DATASHEET 553
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.21PMC Write Protection Mode Register

Name: PMC_WPMR

Address: Ox400E04E4

Access: Read/Write
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - WPEN |

 WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x504D43 (“PMC” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x504D43 (“PMC” in ASCII).

See Section 29.16 "Register Write Protection” for the list of registers that can be write-protected.

 WPKEY: Write Protection Key
Value Name Description

Writing any other value in this field aborts the write operation of the WPEN bit.

0x504D43 PASSWD Always reads as 0.

554 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.22PMC Write Protection Status Register

Name: PMC_WPSR

Address: 0x400E04ES8

Access: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| WPVSRC |
15 14 13 12 11 10 9 8

| WPVSRC |
7 6 5 4 3 2 1 0

1 1T T 1 T T T W]

* WPVS: Write Protection Violation Status
0: No write protection violation has occurred since the last read of the PMC_WPSR.

1: A write protection violation has occurred since the last read of the PMC_WPSR. If this violation is an unauthorized
attempt to write a protected register, the associated violation is reported into field WPVSRC.

 WPVSRC: Write Protection Violation Source
When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

SAMA4S Series [DATASHEET 555
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.23PMC Peripheral Clock Enable Register 1

Name: PMC_PCER1

Address: 0x400E0500

Access: Write-only
31 30 29 28 27 26 25 24

. - rr - ¢ - - r - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - r - ¢ - [- 1}
15 14 13 12 11 10 9 8

. - rr - ¢ - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

| _ [_ [— [- [- | PD34 | pPD33 [P32 |

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

» PIDx: Peripheral Clock x Enable
0: No effect.
1: Enables the corresponding peripheral clock.

Notes: 1. The values for PIDx are defined in the section “Peripheral Identifiers” in the product datasheet.
2. Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.

556 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.24PMC Peripheral Clock Disable Register 1

Name: PMC_PCDR1

Address: 0x400E0504

Access: Write-only
31 30 29 28 27 26 25 24

. - rr - ¢ - - r - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - r - ¢ - [- 1}
15 14 13 12 11 10 9 8

. - rr - ¢ - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

| _ [_ [— [- [- | PD34 | pPD33 [P32 |

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

» PIDx: Peripheral Clock x Disable
0: No effect.

1: Disables the corresponding peripheral clock.
Note: The values for PIDx are defined in the section “Peripheral Identifiers” in the product datasheet.

SAMA4S Series [DATASHEET 557
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.25PMC Peripheral Clock Status Register 1

Name: PMC_PCSR1

Address: 0x400E0508

Access: Read-only
31 30 29 28 27 26 25 24

. - rr - ¢ - - r - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - r - ¢ - [- 1}
15 14 13 12 11 10 9 8

. - rr - ¢ - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

| _ [_ [— [- [- | PD34 | pPD33 [P32 |

e PIDx: Peripheral Clock x Status
0: The corresponding peripheral clock is disabled.

1: The corresponding peripheral clock is enabled.
Note: The values for PIDx are defined in the section “Peripheral Identifiers” in the product datasheet.

558 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

29.17.26PMC Oscillator Calibration Register

Name: PMC_OCR

Address: 0x400E0510

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| SEL12 | CAL12 |
15 14 13 12 11 10 9 8

| SELS8 | CALS8 |
7 6 5 4 3 2 1 0

| SEL4 | CAL4 |

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

* CAL4: RC Oscillator Calibration bits for 4 MHz
Calibration bits applied to the RC Oscillator when SEL4 is set.

» SELA4: Selection of RC Oscillator Calibration bits for 4 MHz
0: Default value stored in Flash memory.
1: Value written by user in CAL4 field of this register.

e CALS8: RC Oscillator Calibration bits for 8 MHz
Calibration bits applied to the RC Oscillator when SELS8 is set.

» SELB8: Selection of RC Oscillator Calibration bits for 8 MHz
0: Factory-determined value stored in Flash memory.
1: Value written by user in CALS field of this register.

» CAL12: RC Oscillator Calibration bits for 12 MHz
Calibration bits applied to the RC Oscillator when SEL12 is set.

» SEL12: Selection of RC Oscillator Calibration bits for 12 MHz
0: Factory-determined value stored in Flash memory.
1: Value written by user in CAL12 field of this register.

SAMA4S Series [DATASHEET 559
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

30. Chip Identifier (CHIPID)

30.1 Description

Chip Identifier (CHIPID) registers permit recognition of the device and its revision. These registers provide the
sizes and types of the on-chip memories, as well as the set of embedded peripherals.

Two CHIPID registers are embedded: Chip ID Register (CHIPID_CIDR) and Chip ID Extension Register
(CHIPID_EXID). Both registers contain a hard-wired value that is read-only.

The CHIPID_CIDR contains the following fields:

VERSION: Identifies the revision of the silicon

EPROC: Indicates the embedded ARM processor

NVPTYP and NVPSIZ: Identify the type of embedded non-volatile memory and the size
SRAMSIZ: Indicates the size of the embedded SRAM

ARCH: Identifies the set of embedded peripherals

EXT: Shows the use of the extension identifier register

The CHIPID_EXID register is device-dependent and reads 0 if CHIPID_CIDR.EXT = 0.

560 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

30.2 Embedded Characteristics

e Chip ID Registers

— Identification of the Device Revision, Sizes of the Embedded Memories, Set of Peripherals,
Embedded Processor

Table 30-1. SAMA4S Chip ID Registers

Chip Name CHIPID_CIDR CHIPID_EXID
SAM4SD32C (Rev A) OX29A7_OEEO 0x0
SAM4SD32C (Rev B) 0x29A7_OEE1 0x0
SAM4SD32B (Rev A) 0x2997_OEEO 0x0
SAM4SD32B (Rev B) 0x2997 OEE1 0x0
SAM4SD16C (Rev A) 0x29A7_OCEO 0x0
SAM4SD16C (Rev B) O0x29A7_OCE1 0x0
SAM4SD16B (Rev A) 0x2997_OCEO 0x0
SAM4SD16B (Rev B) 0x2997_OCE1 0x0
SAM4SA16C (Rev A) 0x28A7_OCEO 0x0
SAM4SA16C (Rev B) 0x28A7_OCE1 0x0
SAM4SA16B (Rev A) 0x2897_OCEO 0x0
SAM4SA16B (Rev B) 0x2897_OCE1 0x0
SAM4S16B (Rev A) 0x289C_0CED 0x0
SAM4S16B (Rev B) 0x289C_OCE1 0x0
SAM4S16C (Rev A) 0x28AC_OCEO 0x0
SAM4S16C (Rev B) 0x28AC_OCE1 0x0
SAMA4S8B (Rev A) 0x289C_OAEQ 0x0
SAMA4S8B (Rev B) 0x289C_OAE1 0x0
SAM4SSC (Rev A) 0x28AC_OAEQ 0x0
SAMA4SSC (Rev B) 0x28AC_OAE1 0x0
SAM4S4C (Rev A) 0x28AB_09ED 0x0
SAM4SAC (Rev B) 0x28AB_09E1 0x0
SAM4S4B (Rev A) 0x289B_09EO 0x0
SAM4S4B (Rev B) 0x289B_09E1 0x0
SAM4S4A (Rev A) 0x288B_09EQ 0x0
SAM4S4A (Rev B) 0x288B_09E1 0x0
SAM4S2C (Rev A) 0x28AB_07EO 0x0
SAM4S2C (Rev B) 0x28AB_07E1 0x0
SAM4S2B (Rev A) 0x289B_07EO 0x0
SAM4S2B (Rev B) 0x289B_07E1 0x0
SAM4S2A (Rev A) 0x288B_07E0 0x0
SAM4S2A (Rev B) 0x288B_07E1 0x0

SAMA4S Series [DATASHEET 561
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

30.3 Chip Identifier (CHIPID) User Interface

Table 30-2. Register Mapping

Offset Register Name Access Reset
0x0 Chip ID Register CHIPID_CIDR Read-only -
Ox4 Chip ID Extension Register CHIPID_EXID Read-only -

562 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

30.3.1 Chip ID Register

Name: CHIPID_CIDR
Address: 0x400E0740
Access: Read-only

31 30 29 28 27 26 25 24
| EXT | NVPTYP ARCH

23 22 21 20 19 18 17 16
| ARCH SRAMSIZ

15 14 13 12 11 10 9 8
| NVPSIZ2 NVPSIZ

7 6 5 4 3 2 1 0
| EPROC VERSION

* VERSION: Version of the Device
Current version of the device.

« EPROC: Embedded Processor

Value Name Description
0 SAM x7 Cortex-M7
1 ARMO946ES ARM946ES
2 ARM7TDMI ARM7TDMI
3 CM3 Cortex-M3
4 ARM920T ARM920T
5 ARM926EJS ARM926EJS
6 CA5 Cortex-A5
7 Cm4 Cortex-M4

» NVPSIZ: Nonvolatile Program Memory Size

Value Name Description
0 NONE None
1 8K 8 Kbytes
2 16K 16 Kbytes
3 32K 32 Kbytes
4 - Reserved
5 64K 64 Kbytes
6 — Reserved
7 128K 128 Kbytes
8 160K 160 Kbytes
9 256K 256 Kbytes
10 512K 512 Kbytes

Atmel

SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

563

Value Name Description
11 - Reserved
12 1024K 1024 Kbytes
13 - Reserved
14 2048K 2048 Kbytes
15 - Reserved

» NVPSIZ2: Second Nonvolatile Program Memory Size

Value Name Description
0 NONE None
1 8K 8 Kbytes
2 16K 16 Kbytes
3 32K 32 Kbytes
4 - Reserved
5 64K 64 Kbytes
6 — Reserved
7 128K 128 Kbytes
8 - Reserved
9 256K 256 Kbytes
10 512K 512 Kbytes
11 - Reserved
12 1024K 1024 Kbytes
13 - Reserved
14 2048K 2048 Kbytes
15 - Reserved

» SRAMSIZ: Internal SRAM Size

Value Name Description
0 48K 48 Kbytes
1 192K 192 Kbytes
2 384K 384 Kbytes
3 6K 6 Kbytes
4 24K 24 Kbytes
5 4K 4 Kbytes
6 80K 80 Kbytes
7 160K 160 Kbytes
8 8K 8 Kbytes
9 16K 16 Kbytes
10 32K 32 Kbytes
1 64K 64 Kbytes

564 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Value Name Description
12 128K 128 Kbytes
13 256K 256 Kbytes
14 96K 96 Kbytes
15 512K 512 Kbytes
» ARCH: Architecture Identifier
Value Name Description
0x88 SAM4SxA SAM4SXxA (48-pin version)
0x89 SAM4SxB SAM4SxB (64-pin version)
0x8A SAM4SxC SAM4SxC (100-pin version)

* NVPTYP: Nonvolatile Program Memory Type

Value Name Description
0 ROM ROM
1 ROMLESS ROMIless or on-chip Flash
2 FLASH Embedded Flash Memory
ROM and Embedded Flash Memory
3 ROM_FLASH ® NVPSIZ is ROM size
® NVPSIZ2 is Flash size
4 SRAM SRAM emulating ROM
» EXT: Extension Flag

0: Chip ID has a single register definition without extension.
1: An extended Chip ID exists.

Atmel

SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

565

30.3.2 Chip ID Extension Register

Name: CHIPID_EXID

Address: 0x400E0744

Access: Read-only
31 30 29 28 27 26 25 24

| EXID |
23 22 21 20 19 18 17 16

| EXID |
15 14 13 12 11 10 9 8

| EXID |
7 6 5 4 3 2 1 0

| EXID |

« EXID: Chip ID Extension
This field is cleared if CHIPID_CIDR.EXT = 0.

566 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31. Parallel Input/Output Controller (P1O)

31.1 Description

The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output lines. Each 1/O line
may be dedicated as a general-purpose 1/O or be assigned to a function of an embedded peripheral. This ensures
effective optimization of the pins of the product.

Each /O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide user interface.

Each 1/O line of the PIO Controller features:

An input change interrupt enabling level change detection on any /O line.

Additional Interrupt modes enabling rising edge, falling edge, low-level or high-level detection on any 1/O
line.

A glitch filter providing rejection of glitches lower than one-half of peripheral clock cycle.

A debouncing filter providing rejection of unwanted pulses from key or push button operations.
Multi-drive capability similar to an open drain 1/O line.

Control of the pull-up and pull-down of the I/O line.

Input visibility and output control.

The PIO Controller also features a synchronous output providing up to 32 bits of data output in a single write
operation.

An 8-bit parallel capture mode is also available which can be used to interface a CMOS digital image sensor, an
ADC, a DSP synchronous port in synchronous mode, etc.

Atmel

SAM4S Series [DATASHEET] 567

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.2 Embedded Characteristics

e Upto 32 Programmable I/O Lines

e Fully Programmable through Set/Clear Registers

e Multiplexing of Four Peripheral Functions per I/O Line

e Foreach I/O Line (Whether Assigned to a Peripheral or Used as General Purpose 1/0O)
— Input Change Interrupt
— Programmable Glitch Filter
— Programmable Debouncing Filter
— Multi-drive Option Enables Driving in Open Drain
— Programmable Pull-Up on Each I/O Line
— Pin Data Status Register, Supplies Visibility of the Level on the Pin at Any Time

— Additional Interrupt Modes on a Programmable Event: Rising Edge, Falling Edge, Low-Level or High-
Level

— Lock of the Configuration by the Connected Peripheral
Synchronous Output, Provides Set and Clear of Several I/O Lines in a Single Write
Register Write Protection
Programmable Schmitt Trigger Inputs
Parallel Capture Mode
— Can Be Used to Interface a CMOS Digital Image Sensor, an ADC, etc.
— One Clock, 8-bit Parallel Data and Two Data Enable on 1/O Lines
— Data Can be Sampled Every Other Time (For Chrominance Sampling Only)

— Supports Connection of One Peripheral DMA Controller (PDC) Channel Which
Offers Buffer Reception Without Processor Intervention

568 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.3 Block Diagram

Figure 31-1. Block Diagram

<—|:| PIODCCLK
Data
PIODC[7:0
PDC | Status | Parallel Capture D [0l
Events Mode | | PIODCEN
4—[| PIODCEN2
PIO Interrupt
Interrupt Controller [«
Peripheral Clock P10 Controller
PMC >
| Data, Enable N
(—)
| ¢ > > Up to x
peripheral 10s
Embedded e
Peripheral
7 4—.|Z| PIN 0
Data, Enable
|<—> N D PIN 1
|(—) °
> Up to x ®
Embedded > peripheral 10s °
Peripheral I:l PIN x-1
J

X is an integer representing the maximum number APB
of IOs managed by one PIO controller.
Table 31-1. Signal Description

Signal Name Signal Description Signal Type
PIODCCLK Parallel Capture Mode Clock Input
PIODC[7:0] Parallel Capture Mode Data Input
PIODCEN1 Parallel Capture Mode Data Enable 1 Input
PIODCEN2 Parallel Capture Mode Data Enable 2 Input

SAMA4S Series [DATASHEET 569
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.4 Product Dependencies

31.4.1 Pin Multiplexing

Each pin is configurable, depending on the product, as either a general-purpose I/O line only, or as an 1/O line
multiplexed with one or two peripheral I/Os. As the multiplexing is hardware defined and thus product-dependent,
the hardware designer and programmer must carefully determine the configuration of the PIO Controllers required
by their application. When an 1/O line is general-purpose only, i.e., not multiplexed with any peripheral /O,
programming of the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO
Controller can control how the pin is driven by the product.

31.4.2 Power Management

The Power Management Controller controls the peripheral clock in order to save power. Writing any of the
registers of the user interface does not require the peripheral clock to be enabled. This means that the
configuration of the I/O lines does not require the peripheral clock to be enabled.

However, when the clock is disabled, not all of the features of the PIO Controller are available, including glitch
filtering. Note that the input change interrupt, the interrupt modes on a programmable event and the read of the pin
level require the clock to be validated.

After a hardware reset, the peripheral clock is disabled by default.
The user must configure the Power Management Controller before any access to the input line information.

31.4.3 Interrupt Sources

For interrupt handling, the PIO Controllers are considered as user peripherals. This means that the PIO Controller
interrupt lines are connected among the interrupt sources. Refer to the PIO Controller peripheral identifier in the
Peripheral Identifiers table to identify the interrupt sources dedicated to the PIO Controllers. Using the PIO
Controller requires the Interrupt Controller to be programmed first.

The PIO Controller interrupt can be generated only if the peripheral clock is enabled.

Table 31-2. Peripheral IDs

Instance ID
PIOA 11
PIOB 12
PIOC 13

570 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.5 Functional Description

The PIO Controller features up to 32 fully-programmable 1/O lines. Most of the control logic associated to each 1/0
is represented in Figure 31-2. In this description each signal shown represents one of up to 32 possible indexes.

Figure 31-2. I/O Line Control Logic

PIO_OERI0]

PIO_OSRI0] B
O_PUER(O] TL Integrated
PIO_ODRI0] PIO_PUSR[0] 2 Pull-up
PIO_PUDRI0] Resistor
Peripheral A Output Enable —— X X
Peripheral B Output Enable —— X X X X 01
Peripheral C Output Enable ——— 10
Peripheral D Output Enable —9
PIO_PER[0]
PIO_ABCDSR1[0]
PIO_PSR[0]
PIO_ABCDSR2[0]
PIO_PDR[0]
Peripheral A Output —&)
Peripheral B Output —— 01
Peripheral C Output 10
Peripheral D Output 11 PIO_SODRI[0]
PIO_ODSR][0]
PIO_CODRI[0]
4 Integrated
PIO_PPDSRI[0] < Pull-Down
PIO_PPDDR[0] L Resistor
GN
—— > Peripheral A Input
Peripheral B Input
[——>Peripheral C Input
——>Peripheral D Input
| PIO_PDSR[0] I
PIO_ISR[0]
(Up to 32 possible inputs)
Peripheral Clock Programmable DETECTOR .
0 L] Glitch PIO Interrupt
or .
Slow Clock Debouncing Peripheral CIO(_:k
—_] Clock div_sick L Filter Resynchronization PIO_IER[0]
Divider Stage r
| PIO_SCDR |— PIO_IMRI[0]
PIO_IFER[0] PIO_IDR[0]

PIO_IFSR[0]

PIO_IFDR[0]

PIO_ISR[31]

PIO_IER[31]
PIO_IMR[31]
PIO_IDR[31]

| PIO_IFSCERI0] |

| PIO_IFSCSR[0
| Pio_IFscDRI0]

31.5.1 Pull-up and Pull-down Resistor Control

Each 1/O line is designed with an embedded pull-up resistor and an embedded pull-down resistor. The pull-up
resistor can be enabled or disabled by writing to the Pull-up Enable Register (PIO_PUER) or Pull-up Disable
Register (PIO_PUDR), respectively. Writing to these registers results in setting or clearing the corresponding bit in
the Pull-up Status Register (PIO_PUSR). Reading a one in PIO_PUSR means the pull-up is disabled and reading
a zero means the pull-up is enabled. The pull-down resistor can be enabled or disabled by writing the Pull-down
Enable Register (PIO_PPDER) or the Pull-down Disable Register (PIO_PPDDR), respectively. Writing in these

SAMA4S Series [DATASHEET 571
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

registers results in setting or clearing the corresponding bit in the Pull-down Status Register (PIO_PPDSR).
Reading a one in PIO_PPDSR means the pull-up is disabled and reading a zero means the pull-down is enabled.

Enabling the pull-down resistor while the pull-up resistor is still enabled is not possible. In this case, the write of
P1O_PPDER for the relevant I/O line is discarded. Likewise, enabling the pull-up resistor while the pull-down
resistor is still enabled is not possible. In this case, the write of PIO_PUER for the relevant 1/O line is discarded.

Control of the pull-up resistor is possible regardless of the configuration of the 1/O line.
After reset, depending on the I/O, pull-up or pull-down can be set.

31.5.2 1I/O Line or Peripheral Function Selection

When a pin is multiplexed with one or two peripheral functions, the selection is controlled with the Enable Register
(PIO_PER) and the Disable Register (PIO_PDR). The Status Register (PIO_PSR) is the result of the set and clear
registers and indicates whether the pin is controlled by the corresponding peripheral or by the PIO Controller. A
value of zero indicates that the pin is controlled by the corresponding on-chip peripheral selected in the ABCD
Select registers (PIO_ABCDSR1 and PIO_ABCDSR?2). A value of one indicates the pin is controlled by the PIO
Controller.

If a pin is used as a general-purpose I/O line (not multiplexed with an on-chip peripheral), PIO_PER and PIO_PDR
have no effect and PIO_PSR returns a one for the corresponding bit.

After reset, the I/O lines are controlled by the PIO Controller, i.e., PIO_PSR resets at one. However, in some
events, it is important that P10 lines are controlled by the peripheral (as in the case of memory chip select lines that
must be driven inactive after reset, or for address lines that must be driven low for booting out of an external
memory). Thus, the reset value of PIO_PSR is defined at the product level and depends on the multiplexing of the
device.

31.5.3 Peripheral A or B or C or D Selection

The PIO Controller provides multiplexing of up to four peripheral functions on a single pin. The selection is
performed by writing PIO_ABCDSR1 and PIO_ABCDSR2.

For each pin:

e The corresponding bit at level zero in PIO_ABCDSR1 and the corresponding bit at level zero in
PIO_ABCDSR2 means peripheral A is selected.

e The corresponding bit at level one in PIO_ABCDSR1 and the corresponding bit at level zero in
P1IO_ABCDSR2 means peripheral B is selected.

e The corresponding bit at level zero in PIO_ABCDSR1 and the corresponding bit at level one in
P1IO_ABCDSR2 means peripheral C is selected.

e The corresponding bit at level one in PIO_ABCDSR1 and the corresponding bit at level one in
PIO_ABCDSR2 means peripheral D is selected.

Note that multiplexing of peripheral lines A, B, C and D only affects the output line. The peripheral input lines are
always connected to the pin input (see Figure 31-2).

Writing in PIO_ABCDSR1 and PIO_ABCDSR2 manages the multiplexing regardless of the configuration of the
pin. However, assignment of a pin to a peripheral function requires a write in PIO_ABCDSR1 and PIO_ABCDSR2
in addition to a write in PIO_PDR.

After reset, PIO_ABCDSR1 and PIO_ABCDSR?2 are zero, thus indicating that all the PIO lines are configured on
peripheral A. However, peripheral A generally does not drive the pin as the PIO Controller resets in I/O line mode.

If the software selects a peripheral A, B, C or D which does not exist for a pin, no alternate functions are enabled
for this pin and the selection is taken into account. The PIO Controller does not carry out checks to prevent
selection of a peripheral which does not exist.

572 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.5.4 Output Control

When the I/O line is assigned to a peripheral function, i.e., the corresponding bit in PIO_PSR is at zero, the drive of
the 1/0O line is controlled by the peripheral. Peripheral A or B or C or D depending on the value in PIO_ABCDSR1
and PIO_ABCDSR?2 determines whether the pin is driven or not.

When the I/O line is controlled by the PIO Controller, the pin can be configured to be driven. This is done by writing
the Output Enable Register (PIO_OER) and Output Disable Register (PIO_ODR). The results of these write
operations are detected in the Output Status Register (PIO_OSR). When a bit in this register is at zero, the
corresponding I/O line is used as an input only. When the bit is at one, the corresponding I/O line is driven by the
P10 Controller.

The level driven on an 1/O line can be determined by writing in the Set Output Data Register (PIO_SODR) and the
Clear Output Data Register (PIO_CODR). These write operations, respectively, set and clear the Output Data
Status Register (PIO_ODSR), which represents the data driven on the 1/0O lines. Writing in PIO_OER and
PIO_ODR manages PIO_OSR whether the pin is configured to be controlled by the PIO Controller or assigned to
a peripheral function. This enables configuration of the I/O line prior to setting it to be managed by the PIO
Controller.

Similarly, writing in PIO_SODR and PIO_CODR affects PIO_ODSR. This is important as it defines the first level
driven on the I/O line.

31.5.5 Synchronous Data Output

Clearing one or more PIO line(s) and setting another one or more PIO line(s) synchronously cannot be done by
using PIO_SODR and PIO_CODR. It requires two successive write operations into two different registers. To
overcome this, the PIO Controller offers a direct control of PIO outputs by single write access to PIO_ODSR. Only
bits unmasked by the Output Write Status Register (PIO_OWSR) are written. The mask bits in PIO_OWSR are set
by writing to the Output Write Enable Register (PIO_OWER) and cleared by writing to the Output Write Disable
Register (PIO_OWDR).

After reset, the synchronous data output is disabled on all the 1/O lines as PIO_OWSR resets at 0x0.

31.5.6 Multi-Drive Control (Open Drain)

Each I/0 can be independently programmed in open drain by using the multi-drive feature. This feature permits
several drivers to be connected on the 1/O line which is driven low only by each device. An external pull-up resistor
(or enabling of the internal one) is generally required to guarantee a high level on the line.

The multi-drive feature is controlled by the Multi-driver Enable Register (PIO_MDER) and the Multi-driver Disable
Register (PIO_MDDR). The multi-drive can be selected whether the 1/O line is controlled by the PIO Controller or
assigned to a peripheral function. The Multi-driver Status Register (PIO_MDSR) indicates the pins that are
configured to support external drivers.

After reset, the multi-drive feature is disabled on all pins, i.e., PIO_MDSR resets at value 0x0.

31.5.7 Output Line Timings

Figure 31-3 shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by directly writing
PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is set. Figure 31-3 also shows when
the feedback in the Pin Data Status Register (PIO_PDSR) is available.

SAMA4S Series [DATASHEET 573
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 31-3. Output Line Timings

Peripheral clock J | |_

Write PIO_SODR APB Access
Write PIO_ODSR at 1

Write PIO_CODR APB Access
Write PIO_ODSR at 0

PIO_ODSR

2 cycles N 2 cycles

PIO_PDSR

31.5.8 Inputs

The level on each I/O line can be read through PIO_PDSR. This register indicates the level of the 1/O lines
regardless of their configuration, whether uniquely as an input, or driven by the PIO Controller, or driven by a
peripheral.

Reading the 1/O line levels requires the clock of the PIO Controller to be enabled, otherwise PIO_PDSR reads the
levels present on the 1/O line at the time the clock was disabled.

31.5.9 Input Glitch and Debouncing Filters
Optional input glitch and debouncing filters are independently programmable on each 1/O line.

The glitch filter can filter a glitch with a duration of less than 1/2 peripheral clock and the debouncing filter can filter
a pulse of less than 1/2 period of a programmable divided slow clock.

The selection between glitch filtering or debounce filtering is done by writing in the PIO Input Filter Slow Clock
Disable Register (PIO_IFSCDR) and the PIO Input Filter Slow Clock Enable Register (PIO_IFSCER). Writing
PIO_IFSCDR and PIO_IFSCER, respectively, sets and clears bits in the Input Filter Slow Clock Status Register
(PIO_IFSCSR).

The current selection status can be checked by reading the PIO_IFSCSR.
e If PIO_IFSCSRYJi] = 0: The glitch filter can filter a glitch with a duration of less than 1/2 master clock period.
e If PIO_IFSCSRYi] = 1: The debouncing filter can filter a pulse with a duration of less than 1/2 programmable
divided slow clock period.

For the debouncing filter, the period of the divided slow clock is defined by writing in the DIV field of the Slow Clock
Divider Debouncing Register (PIO_SCDR):

taiv sick = ((DIV + 1) X 2) Xty

When the glitch or debouncing filter is enabled, a glitch or pulse with a duration of less than 1/2 selected clock
cycle (selected clock represents peripheral clock or divided slow clock depending on PIO_IFSCDR and
PIO_IFSCER programming) is automatically rejected, while a pulse with a duration of one selected clock
(peripheral clock or divided slow clock) cycle or more is accepted. For pulse durations between 1/2 selected clock
cycle and one selected clock cycle, the pulse may or may not be taken into account, depending on the precise
timing of its occurrence. Thus for a pulse to be visible, it must exceed one selected clock cycle, whereas for a glitch
to be reliably filtered out, its duration must not exceed 1/2 selected clock cycle.

The filters also introduce some latencies, illustrated in Figure 31-4 and Figure 31-5.

574 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

The glitch filters are controlled by the Input Filter Enable Register (PIO_IFER), the Input Filter Disable Register
(PIO_IFDR) and the Input Filter Status Register (PIO_IFSR). Writing PIO_IFER and PIO_IFDR respectively sets
and clears bits in PIO_IFSR. This last register enables the glitch filter on the I/O lines.

When the glitch and/or debouncing filter is enabled, it does not modify the behavior of the inputs on the
peripherals. It acts only on the value read in PIO_PDSR and on the input change interrupt detection. The glitch and
debouncing filters require that the peripheral clock is enabled.

Figure 31-4. Input Glitch Filter Timing
PIO_IFCSR =0

Peripheral clcok J I I I I I I I I I I |

up tp 1.5 cycles

Pin Level ”l -"-l ” ”
1 cycle 1 cycle 1 cycle 1cycle
PIO_PDSR
if PIO_IFSR =0
2 cycles 1 cycle
PIO_PDSR up to 2.5 pycles
ifPIO_IFSR=1 up to 2 cycles

Figure 31-5. Input Debouncing Filter Timing
PIO_IFCSR =1

Divided Slow Clock J | | [[| ‘ _|__|_ I_

(div_slck)

Pin Level ” I” I”

UP 10 2 CYCIPS Tpera o upto2 CYEILS Cerpneraiciook

PIO_PDSR
if PIO_IFSR =0 r I |

1 cycleft,, qu lcyclet,

div_slick

PIO_PDSR up to 1.5 cyples ty,
if PIO_IFSR = 1 ..
g - up to 1.5 cyclest,, N

up to 2 cyclest up to 2 cycles t

peripheral clock peripheral clock

31.5.10 Input Edge/Level Interrupt

The PIO Controller can be programmed to generate an interrupt when it detects an edge or a level on an 1/O line.
The Input Edge/Level interrupt is controlled by writing the Interrupt Enable Register (PIO_IER) and the Interrupt
Disable Register (PIO_IDR), which enable and disable the input change interrupt respectively by setting and
clearing the corresponding bit in the Interrupt Mask Register (PIO_IMR). As input change detection is possible only
by comparing two successive samplings of the input of the 1/O line, the peripheral clock must be enabled. The
Input Change interrupt is available regardless of the configuration of the 1/O line, i.e., configured as an input only,
controlled by the PIO Controller or assigned to a peripheral function.

By default, the interrupt can be generated at any time an edge is detected on the input.

Some additional interrupt modes can be enabled/disabled by writing in the Additional Interrupt Modes Enable
Register (PIO_AIMER) and Additional Interrupt Modes Disable Register (PIO_AIMDR). The current state of this
selection can be read through the Additional Interrupt Modes Mask Register (PIO_AIMMR).

These additional modes are:

SAMA4S Series [DATASHEET 575
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Rising edge detection
Falling edge detection
Low-level detection
High-level detection

In order to select an additional interrupt mode:

e The type of event detection (edge or level) must be selected by writing in the Edge Select Register
(PIO_ESR) and Level Select Register (PIO_LSR) which select, respectively, the edge and level detection.
The current status of this selection is accessible through the Edge/Level Status Register (PIO_ELSR).

e The polarity of the event detection (rising/falling edge or high/low-level) must be selected by writing in the
Falling Edge/Low-Level Select Register (PIO_FELLSR) and Rising Edge/High-Level Select Register
(PIO_REHLSR) which allow to select falling or rising edge (if edge is selected in PIO_ELSR) edge or high-
or low-level detection (if level is selected in PIO_ELSR). The current status of this selection is accessible
through the Fall/Rise - Low/High Status Register (PIO_FRLHSR).

When an input edge or level is detected on an /O line, the corresponding bit in the Interrupt Status Register
(PIO_ISR) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller interrupt line is asserted.The
interrupt signals of the 32 channels are ORed-wired together to generate a single interrupt signal to the interrupt
controller.

When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that all the interrupts
that are pending when PIO_ISR is read must be handled. When an Interrupt is enabled on a “level”, the interrupt is
generated as long as the interrupt source is not cleared, even if some read accesses in PIO_ISR are performed.

576 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 31-6. Event Detector on Input Lines (Figure Represents Line 0)
— ==
Detector
Falling Edge
!

PIO_FRLHSR[0]
PIO_FELLSR[0]

High Level
Detector

P Low Level
Detector

Event Detector

7

1
\ Event detection on line 0

N—

\ -

0
/1

Resynchronized input on line 0

PIO_LSR[0]

PIO_ELSRI[0] PIO_AIMERI[0]

PIO_AIMDR[0]

Detector
Example of interrupt generation on following lines:
e Rising edge on PIO line 0
Falling edge on PIO line 1
Rising edge on PIO line 2
Low-level on PIO line 3
High-level on PIO line 4
High-level on PIO line 5
Falling edge on PIO line 6
Rising edge on PIO line 7
Any edge on the other lines

Table 31-3 provides the required configuration for this example.

Table 31-3. Configuration for Example Interrupt Generation

Configuration Description

All the interrupt sources are enabled by writing 32’hFFFF_FFFF in PIO_IER.

Interrupt Mode Then the additional interrupt mode is enabled for lines 0 to 7 by writing 32’h0000_00FF in
PIO_AIMER.

Lines 3, 4 and 5 are configured in level detection by writing 32’h0000_0038 in PIO_LSR.

The other lines are configured in edge detection by default, if they have not been previously
configured. Otherwise, lines 0, 1, 2, 6 and 7 must be configured in edge detection by writing
32’h0000_00C7 in PIO_ESR.

Edge or Level Detection

Lines 0, 2, 4, 5 and 7 are configured in rising edge or high-level detection by writing

. " . 32’h0000_00B5 in PIO_REHLSR.
Falling/Rising Edge or Low/High-Level))))))
The other lines are configured in falling edge or low-level detection by default if they have

Detection
not been previously configured. Otherwise, lines 1, 3 and 6 must be configured in falling
edge/low-level detection by writing 32’h0000_004A in PIO_FELLSR.
SAMA4S Series [DATASHEET 577
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 31-7. Input Change Interrupt Timings When No Additional Interrupt Modes

Peripheral clock J | | | | | | | | | | |

Pin Level

PIO_ISR

/ /

Read PIO_ISR APB Access APB Access

31.5.11 I/O Lines Lock

When an I/O line is controlled by a peripheral (particularly the Pulse Width Modulation Controller PWM), it can
become locked by the action of this peripheral via an input of the PIO Controller. When an I/O line is locked, the
write of the corresponding bit in PIO_PER, PIO_PDR, PIO_MDER, PIO_MDDR, PIO_PUDR, PIO_PUER,
PIO_ABCDSR1 and PIO_ABCDSR?2 is discarded in order to lock its configuration. The user can know at anytime
which 1/O line is locked by reading the PIO Lock Status Register (PIO_LOCKSR). Once an /O line is locked, the
only way to unlock it is to apply a hardware reset to the PIO Controller.

31.5.12 Programmable Schmitt Trigger

It is possible to configure each input for the Schmitt trigger. By default the Schmitt trigger is active. Disabling the
Schmitt trigger is requested when using the QTouch® Library.

31.5.13 Parallel Capture Mode

31.5.13.1 Overview

The PIO Controller integrates an interface able to read data from a CMOS digital image sensor, a high-speed
parallel ADC, a DSP synchronous port in synchronous mode, etc. For better understanding and to ease reading,
the following description uses an example with a CMOS digital image sensor.

31.5.13.2 Functional Description

The CMOS digital image sensor provides a sensor clock, an 8-bit data synchronous with the sensor clock and two
data enables which are also synchronous with the sensor clock.

Figure 31-8. PIO Controller Connection with CMOS Digital Image Sensor

PIO Controller

Parallel Capture '

Mode ' CMOS Digital
Data PIODCCLK <—|::I:|<— pcLk mage Sensor
_
Status PIODCI[7:0] <—| : |<—-DATA[7:O]

Events PIODCEN1 <—|I|<—-VSYNC
(—
PIODCEN2 <—| . |‘_.HSYNC

578 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

As soon as the parallel capture mode is enabled by writing a one to the PCEN bit in PIO_PCMR, the /O lines
connected to the sensor clock (PIODCCLK), the sensor data (PIODC[7:0]) and the sensor data enable signals
(PIODCEN1 and PIODCENZ2) are configured automatically as inputs. To know which I/O lines are associated with
the sensor clock, the sensor data and the sensor data enable signals, refer to the I/O multiplexing table(s) in the
section “Package and Pinout”.

Once enabled, the parallel capture mode samples the data at rising edge of the sensor clock and resynchronizes it
with the peripheral clock domain.

The size of the data which can be read in PIO_PCRHR can be programmed using the DSIZE field in PIO_PCMR.
If this data size is larger than 8 bits, then the parallel capture mode samples several sensor data to form a
concatenated data of size defined by DSIZE. Then this data is stored in PIO_PCRHR and the flag DRDY is set to
one in PIO_PCISR.

The parallel capture mode can be associated with a reception channel of the Peripheral DMA
Controller (PDC). This performs reception transfer from parallel capture mode to a memory
buffer without any intervention from the CPU. Transfer status signals from PDC are available
in PIO_PCISR through the flags ENDRX and RXBUFF.

The parallel capture mode can take into account the sensor data enable signals or not. If the bit ALWYS is set to
zero in PIO_PCMR, the parallel capture mode samples the sensor data at the rising edge of the sensor clock only
if both data enable signals are active (at one). If the bit ALWYS is set to one, the parallel capture mode samples
the sensor data at the rising edge of the sensor clock whichever the data enable signals are.

The parallel capture mode can sample the sensor data only one time out of two. This is particularly useful when
the user wants only to sample the luminance Y of a CMOS digital image sensor which outputs a YUV422 data
stream. If the HALFS bit is set to zero in PIO_PCMR, the parallel capture mode samples the sensor data in the
conditions described above. If the HALFS bit is set to one in PIO_PCMR, the parallel capture mode samples the
sensor data in the conditions described above, but only one time out of two. Depending on the FRSTS bit in
PIO_PCMR, the sensor can either sample the even or odd sensor data. If sensor data are numbered in the order
that they are received with an index from zero to n, if FRSTS equals zero then only data with an even index are
sampled. If FRSTS equals one, then only data with an odd index are sampled. If data is ready in PIO_PCRHR and
it is not read before a new data is stored in PIO_PCRHR, then an overrun error occurs. The previous data is lost
and the OVRE flag in PIO_PCISR is set to one. This flag is automatically reset when PIO_PCISR is read (reset
after read).

The flags DRDY, OVRE, ENDRX and RXBUFF can be a source of the PIO interrupt.

Figure 31-9. Parallel Capture Mode Waveforms (DSIZE = 2, ALWYS =0, HALFS =0)

MCK

PIODCLK N /Y N Y 1 Y O
PIODC[7:0] X 001 X o2 X 023 X 034 X o5 X 06 X 0fo7 X o7z X o X X
PIODCEN1 | |

PIODCEN2 : |
DRDY (PIO_PCISR) | |
Read of PIO_PCISR /I\
RDATA (PIO_PCRHR) X 0x5645_3423

SAMA4S Series [DATASHEET 579
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 31-10. Parallel Capture Mode Waveforms (DSIZE = 2, ALWYS =1, HALFS = 0)

MCK

PIODCLK I O O I I O O/ ML
PIODC[7:0] X 001 X o2 X o3 X o X 0xz;|5 X o6 X o7 X o X 0x%9 X X
PIODCEN1 | | :

PIODCEN2 : [
DRDY (PIO_PCISR) | | | |
Read of PIO_PCISR : /I\ : /]\
RDATA (PIO_PCRHR) X 0x3423 1201 X 0x7867_5645

Figure 31-11. Parallel Capture Mode Waveforms (DSIZE = 2, ALWYS =0, HALFS = 1, FRSTS = 0)

MCK

PIODCLK (I N I /O A I I
PIODC[7:0] X 001 X o2 X 023 X 034 X o5 X 06 X ox67 X 0xzis X o X X
PIODCENL | |
PIODCEN2 | |
DRDY (PIO_PCISR) I_l

Read of PIO_PCISR - /I\
RDATA (PIO_PCRHR) X 0x6745_2301
580 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 31-12. Parallel Capture Mode Waveforms (DSIZE = 2, ALWYS =0, HALFS = 1, FRSTS = 1)

MCK

PIODCLK [S S N O A/ 0 I O

PIODCI[7:0] X 001 X ox12 X 03 X 034 X oxa5s X o6 X ox67 X o078 X OxéQ X X
PIODCENL | | l
PIODCEN2 4 |

DRDY (PIO_PCISR) |—|—

Read of PIO_PCISR : /I\

RDATA (PIO_PCRHR) 0x7856_3412

31.5.13.3 Restrictions
e Configuration fields DSIZE, ALWYS, HALFS and FRSTS in PIO_PCMR can be changed ONLY if the parallel
capture mode is disabled at this time (PCEN = 0 in PIO_PCMR).

e The frequency of peripheral clock must be strictly superior to two times the frequency of the clock of the
device which generates the parallel data.

31.5.13.4 Programming Sequence

Without PDC

1. Write PIO_PCIDR and PIO_PCIER in order to configure the parallel capture mode
interrupt mask.

2. Write PIO_PCMR to set the fields DSIZE, ALWYS, HALFS and FRSTS in order to
configure the parallel capture mode WITHOUT enabling the parallel capture mode.

3. Write PIO_PCMR to set the PCEN bit to one in order to enable the parallel capture
mode WITHOUT changing the previous configuration.

4. Wait for a data ready by polling the DRDY flag in PIO_PCISR or by waiting for the
corresponding interrupt.

5. Check OVRE flag in PIO_PCISR.
6. Read the data in PIO_PCRHR.
7. If new data are expected, go to step 4.
8. Write PIO_PCMR to set the PCEN bit to zero in order to disable the parallel capture
mode WITHOUT changing the previous configuration.
With PDC

SAMA4S Series [DATASHEET 581
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

1. Write PIO_PCIDR and PIO_PCIER in order to configure the parallel capture mode
interrupt mask.

2. Configure PDC transfer in PDC registers.
3. Write PIO_PCMR to set the fields DSIZE, ALWYS, HALFS and FRSTS in order to
configure the parallel capture mode WITHOUT enabling the parallel capture mode.

4. Write PIO_PCMR to set PCEN bit to one in order to enable the parallel capture mode
WITHOUT changing the previous configuration.

5. Wait for end of transfer by waiting for the interrupt corresponding to the flag ENDRX in
PIO_PCISR.

6. Check OVRE flag in PIO_PCISR.
7. If a new buffer transfer is expected, go to step 5.

8. Write PIO_PCMR to set the PCEN bit to zero in order to disable the parallel capture
mode WITHOUT changing the previous configuration.

582 SAMA4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15 /I t m e L

31.5.14 1/O Lines Programming Example

The programming example shown in Table 31-4 is used to obtain the following configuration:

e 4-bit output port on I/O lines 0 to 3 (should be written in a single write operation), open-drain, with pull-up
resistor

e Four output signals on I/O lines 4 to 7 (to drive LEDs for example), driven high and low, no pull-up resistor,
no pull-down resistor

e Fourinput signals on I/O lines 8 to 11 (to read push-button states for example), with pull-up resistors, glitch
filters and input change interrupts

e Fourinput signals on I/O line 12 to 15 to read an external device status (polled, thus no input change
interrupt), no pull-up resistor, no glitch filter

e 1/Olines 16 to 19 assigned to peripheral A functions with pull-up resistor
e /O lines 20 to 23 assigned to peripheral B functions with pull-down resistor

e 1/O lines 24 to 27 assigned to peripheral C with input change interrupt, no pull-up resistor and no pull-down
resistor

e |/Olines 28 to 31 assigned to peripheral D, no pull-up resistor and no pull-down resistor

Table 31-4. Programming Example

Register Value to be Written
PIO_PER 0x0000_FFFF
PIO_PDR OXFFFF_0000
PIO_OER 0x0000_O00FF
PIO_ODR OxFFFF_FFOO0
PIO_IFER 0x0000_0FO00
PIO_IFDR OxFFFF_FOFF
PIO_SODR 0x0000_0000
PIO_CODR OXOFFF_FFFF
PIO_IER 0x0F00_0F00
PIO_IDR OxFOFF_FOFF
PIO_MDER 0x0000_000F
PIO_MDDR OxFFFF_FFFO
PIO_PUDR OxFFFO_O0OFO0
PIO_PUER OX000F _FFOF
PIO_PPDDR OXFFOF_FFFF
PIO_PPDER 0x00F0_0000
PIO_ABCDSR1 O0xFOF0_0000
PIO_ABCDSR2 O0xFFO0_0000
PIO_OWER 0x0000_000F
PIO_OWDR OXOFFF_ FFFO

Atmel

SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

583

31.5.15 Register Write Protection

To prevent any single software error from corrupting PIO behavior, certain registers in the address space can be
write-protected by setting the WPEN bit in the PIO Write Protection Mode Register (PIO_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the PIO Write Protection Status
Register (PIO_WPSR) is set and the field WPVSRC indicates the register in which the write access has been
attempted.

The WPVS bit is automatically cleared after reading the PIO_WPSR.

The following registers can be write-protected:
e PIO Enable Register

P10 Disable Register

P10 Output Enable Register

PIO Output Disable Register

P1O Input Filter Enable Register

PIO Input Filter Disable Register

P1O Multi-driver Enable Register

P10 Multi-driver Disable Register

P10 Pull-Up Disable Register

P10 Pull-Up Enable Register

P10 Peripheral ABCD Select Register 1

PIO Peripheral ABCD Select Register 2

P10 Output Write Enable Register

PIO Output Write Disable Register

P10 Pad Pull-Down Disable Register

P10 Pad Pull-Down Enable Register

P10 Parallel Capture Mode Register

584 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6 Parallel Input/Output Controller (PIO) User Interface

Each I/O line controlled by the PIO Controller is associated with a bit in each of the PIO Controller User Interface
registers. Each register is 32-bit wide. If a parallel I/O line is not defined, writing to the corresponding bits has no
effect. Undefined bits read zero. If the I/O line is not multiplexed with any peripheral, the 1/O line is controlled by the
PI1O Controller and PIO_PSR returns one systematically.

Table 31-5. Register Mapping

Offset Register Name Access Reset
0x0000 PIO Enable Register PIO_PER Write-only -
0x0004 PIO Disable Register PIO_PDR Write-only -
0x0008 PIO Status Register PIO_PSR Read-only @
0x000C Reserved - - -
0x0010 Output Enable Register PIO_OER Write-only -
0x0014 Output Disable Register PIO_ODR Write-only -
0x0018 Output Status Register PIO_OSR Read-only 0x00000000
0x001C Reserved - - -
0x0020 Glitch Input Filter Enable Register PIO_IFER Write-only -
0x0024 Glitch Input Filter Disable Register PIO_IFDR Write-only -
0x0028 Glitch Input Filter Status Register PIO_IFSR Read-only 0x00000000
0x002C Reserved - - -
0x0030 Set Output Data Register PIO_SODR Write-only -
0x0034 Clear Output Data Register PIO_CODR Write-only

Read-only
0x0038 Output Data Status Register PIO_ODSR or® -

Read/Write
0x003C Pin Data Status Register PIO_PDSR Read-only ®)
0x0040 Interrupt Enable Register PIO_IER Write-only -
0x0044 Interrupt Disable Register PIO_IDR Write-only -
0x0048 Interrupt Mask Register PIO_IMR Read-only 0x00000000
0x004C Interrupt Status Register® PIO_ISR Read-only 0x00000000
0x0050 Multi-driver Enable Register PIO_MDER Write-only -
0x0054 Multi-driver Disable Register PIO_MDDR Write-only -
0x0058 Multi-driver Status Register PIO_MDSR Read-only 0x00000000
0x005C Reserved - - -
0x0060 Pull-up Disable Register PIO_PUDR Write-only -
0x0064 Pull-up Enable Register PIO_PUER Write-only -
0x0068 Pad Pull-up Status Register PIO_PUSR Read-only @
0x006C Reserved - - -

SAMA4S Series [DATASHEET 585
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Table 31-5. Register Mapping (Continued)
Offset Register Name Access Reset
0x0070 Peripheral Select Register 1 PIO_ABCDSR1 Read/Write 0x00000000
0x0074 Peripheral Select Register 2 PIO_ABCDSR2 Read/Write 0x00000000
0x0078-0x007C Reserved - - -
0x0080 Input Filter Slow Clock Disable Register PIO_IFSCDR Write-only -
0x0084 Input Filter Slow Clock Enable Register PIO_IFSCER Write-only -
0x0088 Input Filter Slow Clock Status Register PIO_IFSCSR Read-only 0x00000000
0x008C Slow Clock Divider Debouncing Register PIO_SCDR Read/Write 0x00000000
0x0090 Pad Pull-down Disable Register PIO_PPDDR Write-only -
0x0094 Pad Pull-down Enable Register PIO_PPDER Write-only -
0x0098 Pad Pull-down Status Register PIO_PPDSR Read-only @
0x009C Reserved - - -
0x00A0 Output Write Enable PIO_OWER Write-only -
0x00A4 Output Write Disable PIO_OWDR Write-only -
0x00A8 Output Write Status Register PIO_OWSR Read-only 0x00000000
0x00AC Reserved - - -
0x00B0O Additional Interrupt Modes Enable Register PIO_AIMER Write-only -
0x00B4 Additional Interrupt Modes Disable Register PIO_AIMDR Write-only -
0x00B8 Additional Interrupt Modes Mask Register PIO_AIMMR Read-only 0x00000000
0x00BC Reserved - - -
0x00CO0 Edge Select Register PIO_ESR Write-only -
0x00C4 Level Select Register PIO_LSR Write-only -
0x00C8 Edge/Level Status Register PIO_ELSR Read-only 0x00000000
oxooccC Reserved - - -
0x00DO0 Falling Edge/Low-Level Select Register PIO_FELLSR Write-only -
0x00D4 Rising Edge/High-Level Select Register PIO_REHLSR Write-only -
0x00D8 Fall/Rise - Low/High Status Register PIO_FRLHSR Read-only 0x00000000
0x00DC Reserved - - -
0x00EO Lock Status PIO_LOCKSR Read-only 0x00000000
O0x00E4 Write Protection Mode Register PIO_WPMR Read/Write 0x00000000
Ox00E8 Write Protection Status Register PIO_WPSR Read-only 0x00000000
0xXO0EC-0x00FC Reserved - - -
0x0100 Schmitt Trigger Register PIO_SCHMITT Read/Write 0x00000000
0x0104-0x010C Reserved - - -
0x0110 Reserved - - -
0x0114-0x011C Reserved - - -
0x0120-0x014C Reserved - - -
0x0150 Parallel Capture Mode Register PIO_PCMR Read/Write 0x00000000

586 SAMA4S Series [DATASHEET]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Atmel

Table 31-5. Register Mapping (Continued)

Offset Register Name Access Reset
0x0154 Parallel Capture Interrupt Enable Register PIO_PCIER Write-only -
0x0158 Parallel Capture Interrupt Disable Register PIO_PCIDR Write-only -
0x015C Parallel Capture Interrupt Mask Register PIO_PCIMR Read-only 0x00000000
0x0160 Parallel Capture Interrupt Status Register PIO_PCISR Read-only 0x00000000
0x0164 Parallel Capture Reception Holding Register PIO_PCRHR Read-only 0x00000000
0x0168-0x018C Reserved for PDC Registers - - -

Notes: 1. Reset value depends on the product implementation.
2. PIO_ODSR is Read-only or Read/Write depending on PIO_OWSR I/O lines.

3. Reset value of PIO_PDSR depends on the level of the I/O lines. Reading the 1/O line levels requires the clock of the PIO
Controller to be enabled, otherwise PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.

4. PIO_ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have
occurred.

5. If an offset is not listed in the table it must be considered as reserved.

SAMA4S Series [DATASHEET 587
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.1 PIO Enable Register

Name: PIO_PER

Address: 0x400EOQEQ0 (PIOA), 0x400E1000 (PIOB), 0x400E1200 (P1OC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

« P0-P31: PIO Enable
0: No effect.

1: Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

588 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.2 PIO Disable Register

Name: PIO_PDR

Address: Ox400EOE04 (PIOA), 0x400E1004 (PIOB), 0x400E1204 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

» P0-P31: PIO Disable
0: No effect.

1: Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).

SAMA4S Series [DATASHEET 589
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.3 PIO Status Register

Name: PIO_PSR

Address: 0x400EOQE08 (PIOA), 0x400E1008 (PIOB), 0x400E1208 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» P0O-P31: PIO Status
0: PIO is inactive on the corresponding I/O line (peripheral is active).
1: PIO is active on the corresponding I/O line (peripheral is inactive).

500 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.4 PIO Output Enable Register

Name: PIO_OER

Address: O0x400EOE10 (PIOA), 0x400E1010 (PIOB), 0x400E1210 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

* PO-P31: Output Enable
0: No effect.
1: Enables the output on the 1/O line.

SAMA4S Series [DATASHEET 591
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.5 PIO Output Disable Register

Name: PIO_ODR

Address: Ox400EOE14 (PIOA), 0x400E1014 (PIOB), 0x400E1214 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

¢ P0-P31: Output Disable
0: No effect.
1: Disables the output on the I/O line.

502 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.6 PIO Output Status Register

Name: PIO_OSR

Address: Ox400EOQE18 (PIOA), 0x400E1018 (PIOB), 0x400E1218 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO-P31: Output Status
0: The I/O line is a pure input.
1: The I/O line is enabled in output.

SAMA4S Series [DATASHEET 593
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.7 PIO Input Filter Enable Register

Name: PIO_IFER

Address: 0x400EOE20 (PIOA), 0x400E1020 (PIOB), 0x400E1220 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

¢ PO-P3L1: Input Filter Enable
0: No effect.
1: Enables the input glitch filter on the 1/O line.

504 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.8 PIO Input Filter Disable Register

Name: PIO_IFDR

Address: Ox400EQE24 (PIOA), 0x400E1024 (PIOB), 0x400E1224 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

* PO-P31: Input Filter Disable
0: No effect.
1: Disables the input glitch filter on the I/O line.

SAMA4S Series [DATASHEET 595
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.9 PIO Input Filter Status Register

Name: PIO_IFSR

Address: Ox400EOE28 (PIOA), 0x400E1028 (PIOB), 0x400E1228 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» PO-P31: Input Filter Status
0: The input glitch filter is disabled on the 1/O line.
1: The input glitch filter is enabled on the I/O line.

506 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.10 PIO Set Output Data Register

Name: PIO_SODR

Address: 0x400EOQE30 (PIOA), 0x400E1030 (PIOB), 0x400E1230 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

* PO-P31: Set Output Data
0: No effect.
1: Sets the data to be driven on the I/O line.

SAMA4S Series [DATASHEET 597
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.11 PIO Clear Output Data Register

Name: PIO_CODR

Address: Ox400EOE34 (PIOA), 0x400E1034 (PIOB), 0x400E1234 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» PO-P31: Clear Output Data
0: No effect.
1: Clears the data to be driven on the 1/O line.

508 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.12 PIO Output Data Status Register

Name: PIO_ODSR

Address: 0x400EOQE38 (PIOA), 0x400E1038 (PIOB), 0x400E1238 (PIOC)

Access: Read-only or Read/Write
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO-P31: Output Data Status
0: The data to be driven on the 1/O line is 0.
1: The data to be driven on the I/O line is 1.

SAMA4S Series [DATASHEET 599
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.13 PIO Pin Data Status Register

Name: PIO_PDSR

Address: 0x400EQOE3C (PIOA), 0x400E103C (PIOB), 0x400E123C (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

* PO-P31: Output Data Status
0: The I/O line is at level 0.
1: The I/O line is at level 1.

600 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.14 PIO Interrupt Enable Register

Name: PIO_IER

Address: Ox400EOE40 (PIOA), 0x400E1040 (PIOB), 0x400E1240 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

* PO-P31: Input Change Interrupt Enable
0: No effect.
1: Enables the input change interrupt on the 1/O line.

SAMA4S Series [DATASHEET 601
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.15 PIO Interrupt Disable Register

Name: PIO_IDR

Address: Ox400EQE44 (PIOA), 0x400E1044 (PIOB), 0x400E1244 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

* PO-P31: Input Change Interrupt Disable
0: No effect.
1: Disables the input change interrupt on the 1/O line.

602 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.16 PIO Interrupt Mask Register

Name: PIO_IMR

Address: Ox400EOQE48 (PIOA), 0x400E1048 (PIOB), 0x400E1248 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» PO-P31: Input Change Interrupt Mask
0: Input change interrupt is disabled on the 1/O line.

1: Input change interrupt is enabled on the I/O line.

SAMA4S Series [DATASHEET 603
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.17 PIO Interrupt Status Register

Name: PIO_ISR

Address: Ox400EQE4C (PIOA), 0x400E104C (PIOB), 0x400E124C (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

* PO-P31: Input Change Interrupt Status
0: No input change has been detected on the I/O line since PIO_ISR was last read or since reset.
1: At least one input change has been detected on the 1/O line since PIO_ISR was last read or since reset.

604 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.18 PIO Multi-driver Enable Register

Name: PIO_MDER

Address: 0x400EOQES50 (PIOA), 0x400E1050 (PIOB), 0x400E1250 (P1OC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

* PO-P31: Multi-drive Enable
0: No effect.
1: Enables multi-drive on the I/O line.

SAMA4S Series [DATASHEET 605
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.19 PIO Multi-driver Disable Register

Name: PIO_MDDR

Address: Ox400EOE54 (PIOA), 0x400E1054 (PIOB), 0x400E1254 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

¢ PO-P31: Multi-drive Disable
0: No effect.
1: Disables multi-drive on the 1/O line.

606 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.20 PIO Multi-driver Status Register

Name: PIO_MDSR

Address: 0x400EOQES58 (PIOA), 0x400E1058 (PIOB), 0x400E1258 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» PO-P31: Multi-drive Status
0: The multi-drive is disabled on the 1/O line. The pin is driven at high- and low-level.
1: The multi-drive is enabled on the 1/O line. The pin is driven at low-level only.

SAMA4S Series [DATASHEET 607
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.21 PIO Pull-Up Disable Register

Name: PIO_PUDR

Address: 0x400EOQE60 (PIOA), 0x400E1060 (PIOB), 0x400E1260 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

¢ P0-P31: Pull-Up Disable
0: No effect.
1: Disables the pull-up resistor on the 1/O line.

608 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.22 PIO Pull-Up Enable Register

Name: PIO_PUER

Address: Ox400EOQE64 (PIOA), 0x400E1064 (PIOB), 0x400E1264 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

* PO0—P31: Pull-Up Enable
0: No effect.
1: Enables the pull-up resistor on the 1/O line.

SAMA4S Series [DATASHEET 609
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.23 PIO Pull-Up Status Register

Name: PIO_PUSR

Address: 0x400EQE68 (PIOA), 0x400E1068 (PIOB), 0x400E1268 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0O-P31: Pull-Up Status
0: Pull-up resistor is enabled on the 1/O line.
1: Pull-up resistor is disabled on the I/O line.

610 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.24 PIO Peripheral ABCD Select Register 1

Name: PIO_ABCDSR1

Access: Read/Write
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

» PO-P31: Peripheral Select
If the same bit is set to 0 in PIO_ABCDSR2:
0: Assigns the I/O line to the Peripheral A function.

1: Assigns the I/O line to the Peripheral B function.

If the same hit is setto 1 in PIO_ABCDSR2:
0: Assigns the I/O line to the Peripheral C function.

1: Assigns the I/O line to the Peripheral D function.

SAMA4S Series [DATASHEET 611
Atmel !]

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.25 PIO Peripheral ABCD Select Register 2

Name: PIO_ABCDSR2

Access: Read/Write
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

» PO-P31: Peripheral Select
If the same bit is setto 0 in PIO_ABCDSR1:
0: Assigns the I/O line to the Peripheral A function.

1: Assigns the I/O line to the Peripheral C function.

If the same hit is setto 1 in PIO_ABCDSR1.:
0: Assigns the I/O line to the Peripheral B function.

1: Assigns the I/O line to the Peripheral D function.

612 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.26 PIO Input Filter Slow Clock Disable Register

Name: PIO_IFSCDR

Address: 0x400EOQES80 (PIOA), 0x400E1080 (PIOB), 0x400E1280 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» PO-P31: Peripheral Clock Glitch Filtering Select
0: No effect.
1: The glitch filter is able to filter glitches with a duration < t,e/pneral ciock/2-

SAMA4S Series [DATASHEET 613
Atmel []

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.27 PIO Input Filter Slow Clock Enable Register

Name: PIO_IFSCER

Address: Ox400EOE84 (PIOA), 0x400E1084 (PIOB), 0x400E1284 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» PO-P31: Slow Clock Debouncing Filtering Select
0: No effect.
1: The debouncing filter is able to filter pulses with a duration < tg;, gc/2.

614 SAMA4S Series [DATASHEET] Atmel

Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15