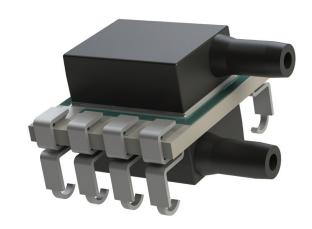


DATA SHEET

LP Series - Digital


LP Series - Digital is a surface mountable pressure sensor package with a compensated digital output suitable fo **ultra-low pressure sensing applications**.

COMPANY: Merit Sensor is a leader in piezoresistive pressure sensing and partners with clients to create high performing solutions for a variety of applications and industries.

SENTIUM: Merit Sensor products incorporate a proprietary Sentium® technology developed to provide a best-in-class operating temperature range (-40°C to 85°C) and superior stability.

TECHNOLOGY: Merit Sensor utilizes a piezoresistive Wheatstone bridge in a design that anodically bonds glass to a chemically etched silicon diaphragm. All products are RoHS compliant.

CAPABILITIES: Merit Sensor designs, engineers, fabricates, dices, assembles, tests, sells and services die and packaged products from a state-of-the-art facility near Salt Lake City, Utah.

FFATURES

Pressure 0.15 to 1 psi (10.3 to 68.9 mbar; 1.03 to 6.89 KPa;

Range 4.2 to 27.7 in H_2O)

Output I²C

Type Gage and Differential

Media Clean, Dry Air and Non-corrosive Gases

Packaging Tape and Reel

Customization Sensitivity, Resistance, Bridge, Constraint, etc.

BENEFITS

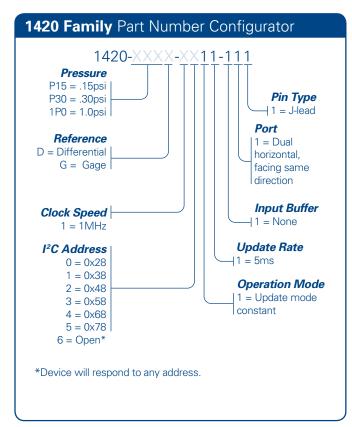
Performance Enjoy best-in-class performance due to Merit's

proprietary Sentium technology

Cost Save money over time with high-performing die

Security Feel confident doing business with an experienced

company backed by a solid parent company

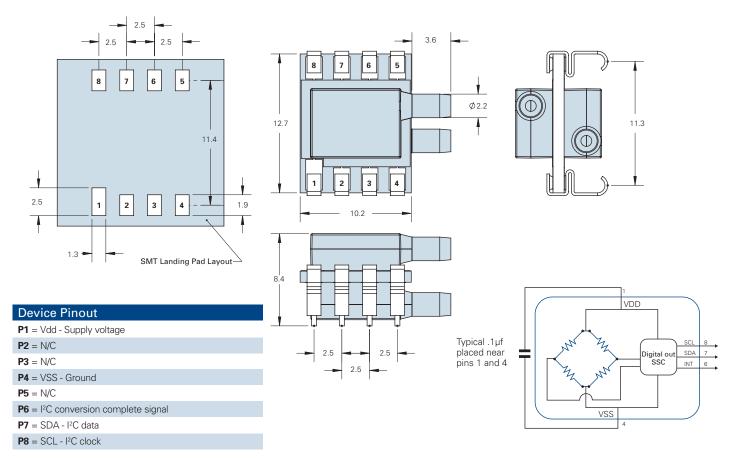

(NASDAQ: MMSI)

Speed Get to market quickly with creative and

flexible solutions

Service Experience prompt, personal and

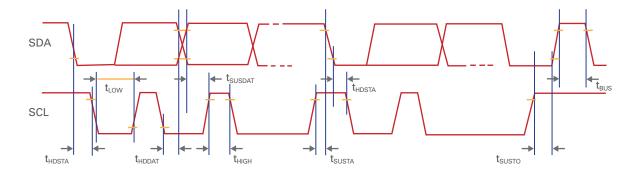
professional support



SPECIFICATIONS

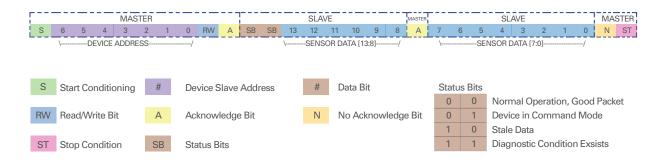
Parameter	Minimum	Typical	Maximum	Units	Notes			
Electrical								
Supply Voltage (Vdd)	4.5	5	5.5	V				
Supply Current		3		mA	(1)			
Operating Temperature	-40		85	°C				
Storage Temperature	-55		100	°C		Notes:		
Performance	Performance							
Pressure ADC Resolution			14	Bits		(2) Over 0°C to 60°C		
Pressure Accuracy	-1.5		1.5	% FSO	(2) (3)	(3) Applicable if Vdd = 4.75V to 5.25V		
Startup time		15		ms		(4) Full scale pressure		
Digital update time	0.5		125	ms				
Proof Pressure	5X				(4)			
Burst Pressure	10 psi							
Transfer Function Formula								
$P_{psi} = (P_{max} - P_{min}) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max}\right) + P_{min}$			Where P _{psi} = Measured Pressure in PSI Resource Counter from Marit Concer Port					
Media Compatibility			P _{counts} = Pressure Counts from Merit Sensor Part P _{Min} = Minimum Calibrated Pressure					
For Use With Non-corrosive Dry Gasses Solder temperature: max 250 °C, 5 seconds max			P _{Max} = Maximum Calibrated Pressure Max = 16384 = 14 Bit Resolution					

DIMENSIONS (millimeters)



I²C PARAMETERS *

Parameter	Symbol	Min	Тур	Max	Units
SCL clock frequency	fscL	100		400	kHz
Start condition hold time relative to SCL edge	T HDSTA	0.1			μs
Minimum SCL clock low width ¹	tLOW	0.6			μs
Minimum SCL clock high width ¹	thigh	0.6			μs
Start condition setup time relative to SCL edge	t susta	0.1			μs
Data hold time on SDA relative to SCL edge	t hddat	0.0			μs
Data setup time on SDA relative to SCL edge	t SUDAT	0.1			μs
Stop condition setup time on SCL	tsusto	0.1			μs
Bus free time between stop condition and start condition	tBUS	2			μs


¹Combined low and high widths must equal or exceed minimum SCLK period.

I²C TIMING DIAGRAM*

MERIT SENSOR 1420 I²C COMMUNICATION

Communications to the 1420 is read only. To read the pressure counts, the master performs a read request by asserting a start condition, sending the 7 bit address of the part (If the part has an open address, 7 bits of anything is acceptable), and sets the read/write bit. The master then waits for an acknowledgment. The acknowledgment is sent by the pressure sensor along with 2 bits of status and bits 13:8 of the pressure counts, the master acknowledges the first 8 bits, and the pressure sensor sends the remaining 8 bits of data. The Master then does not acknowledge and sends a stop condition signaling the end of the transaction.

^{*}Used by permission, ZMDI

TRANSFER FUNCTION EXAMPLES

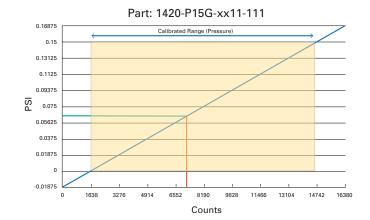
Example 1: 0.15 PSI Gage

Part: 1420-P15G-xx11-111

 $P_{\min} = 0.0 PSI$

Pmax =0.15 PSI

Pcounts = 7215


Max = 16384

$$P_{psi} = (P_{max} - P_{min}) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max}\right) + P_{mi}$$

$$P_{psi} = \left(P_{max} - P_{min}\right) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max}\right) + P_{min}$$

$$P_{Psi} = \left(0.15 - 0.0\right) \cdot \left(\frac{7215 - 0.1 \cdot 16384}{0.8 \cdot 16384}\right) + 0$$

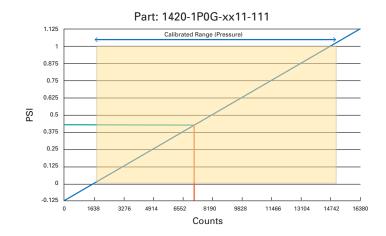
 $P_{Psi} = .0638 \ Psi$

Example 2: 1.0 PSI Gage

Part: 1420-1P0G-xx11-111

 $P_{\min} = 0.0 PSI$

 $P_{\text{max}} = 1.0 PSI$


 $P_{\text{counts}} = 7215$

Max = 16384

$$P_{psi} = \left(P_{max} - P_{min}\right) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max}\right) + P_{min}$$

$$P_{Psi} = (1 - 0.0) \cdot \left(\frac{7215 - 0.1 \cdot 16384}{0.8 \cdot 16384}\right) + 0$$

 $P_{Psi} = .4255 \ Psi$

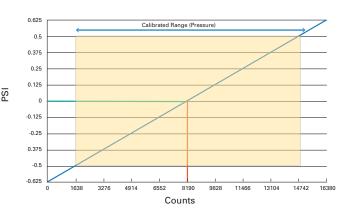
Example 3: -.5 to .5 PSI Differential

Part: 1420-P50D-xx11-111

 $P_{\min} = -0.5 PSI$

 $P_{\text{max}} = 0.5 PSI$

Pcounts =8192


Max = 16384

$$P_{psi} = \left(P_{max} - P_{min}\right) \cdot \left(\frac{P_{counts} - 0.1 \cdot Max}{0.8 \cdot Max}\right) + P_{min}$$

$$P_{Psi} = (0.5 - (-0.5)) \cdot \left(\frac{8192 - 0.1 \cdot 16384}{0.8 \cdot 16384}\right) + (-0.5)$$

 $P_{Psi} = 0.0 Psi$

Part: 1420-P50D-xx11-111

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Merit Sensor:

<u>1420-1P0G-1011-111</u> <u>1420-P15G-1011-111</u> <u>1420-P30D-1011-111</u> <u>1420-P30G-1011-111</u> <u>1420-P15D-1011-111</u> <u>1420-P07D-1011-211</u> <u>1420-P07D-1011-211</u> <u>1420-P07G-1011-211</u> <u>1420-P07G-1011-211</u> <u>1420-P07G-1011-211</u> <u>1420-P07G-1011-211</u> <u>1420-P07G-1011-211</u> <u>1420-P07G-1011-211</u> <u>1420-P07G-1011-211</u>