

SINU 3050

Product Specification & User Guide

Document Number: DOC00592

Document Revision: H

Product Part Number: MP00067

Product Revision: C

MEMSENSE.COM

888.668.8743

Information provided herein is considered accurate however is not guaranteed. Memsense reserves the right to change specifications at any time, without notice.

TABLE OF CONTENTS

1.0	OVERVIEW	
2.0	SPECIFICATIONS	
3.0		
3.0		
3.1		
3.2	.2 Coordinate System	7
4.0	COMMUNICATIONS	8
4.1	.1 Default Communication Settings	8
4.2	.2 Hardware Interface	8
4	4.2.1 Time of Validity Output – Internal Sample Rate	<u>c</u>
4	4.2.2 External Trigger Input	9
4.3	.3 Internal Sample Rate	10
4.4	.4 Communication Interface Protocol	10
4	4.4.1 IMU Sample Rate Configure 0x0204	12
4	4.4.2 Configure Filter 0x0203	12
4	4.4.3 Select Sensors 0x0205	13
4	4.4.4 Config Accel Range 0x0207	14
4	4.4.5 Config Gyro Range 0x0208	15
5.0	OPTIONS	16
5.1	.1 Part Numbering	16
6.0	DOCUMENT REVISION HISTORY	17
7.0	PRODUCT REVISION HISTORY	17

1.0 OVERVIEW

The MS-IMU3050 delivers extreme performance in a compact durable aluminum package at a value point that is unmatched. The gyro bias instability of 0.3 °/h combined with an angle random walk of 0.065 °/h^{-1/2} provide low drift performance supporting a range of applications from pipeline inspection to navigation systems. accelerometer bias instability of 2.6 µg and ultra-low noise density (14 µg/VHz) provide increased accuracy in orientation applications. User configurable options allow the IMU to be tuned to your application with configurable bandwidth, sample rate, gyro ranges, accel ranges, 1 PPS input and other measurement parameters. The MS-IMU3050 provides all these benefits in a package that only

measures $1.8 \times 1.6 \times 0.98$ inches with a mass of only 90 grams. The MS-IMU3050's combination of performance, size, configurability, and value surpasses all IMUs in the high-performance MEMS IMU market.

2.0 SPECIFICATIONS

Table 1 - Specifications

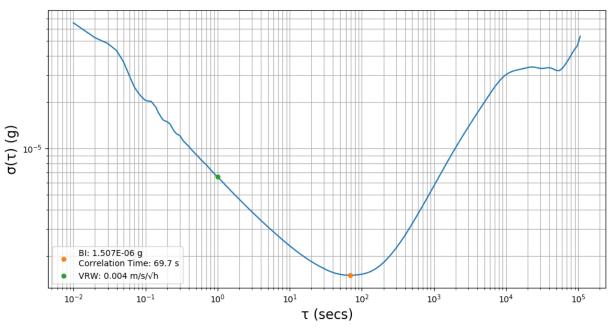
ACCELEROMETER	MP0006	7-001 & MP000	067-002	UNITS	NOTES
Dynamic Range	± 2	± 4	± 8	g	Note 1
Bias Instability			1.44 3.37	μg	Typical XY Typical Z
Bias Offset			± 466 ± 1947 ± 515 ± 2619	μg	Typical XY Maximum XY, Note 2 Typical Z Maximum Z, Note 2
Bias Temperature Coefficient	± 7.3 ± 26.6		± 5.7 ± 14.3	μg/°C	Typical Maximum, Note 3
Nonlinearity			± 0.3	% of FS	Typical, Note 4
Scale Factor Error			± 217 ± 950 ± 460 ± 1100	ppm	Typical XY Maximum XY Typical Z Maximum Z
Scale Factor Temperature Coefficient	± 2.15 ± 6.17 ± 8.12 ± 15.1	± 1.74 ± 5.09 ± 7.69 ± 15.1	± 1.73 ± 4.01 ± 7.95 ± 15.1	ppm/°C	Typical XY Maximum XY Typical Z Maximum Z
Cross Axis Sensitivity			± 1700	ppm	Maximum
Velocity Random Walk			0.004 0.005	m/s/h ^{-1/2}	Typical XY Typical Z
Noise Density	9.06 12.27 12.29 15.55		10.49 15.08 13.57 19.04	μ <i>g/</i> Hz ^{-1/2}	Typical XY Maximum XY Typical Z Maximum Z
Bandwidth			50	Hz	-3dB point, Note 5

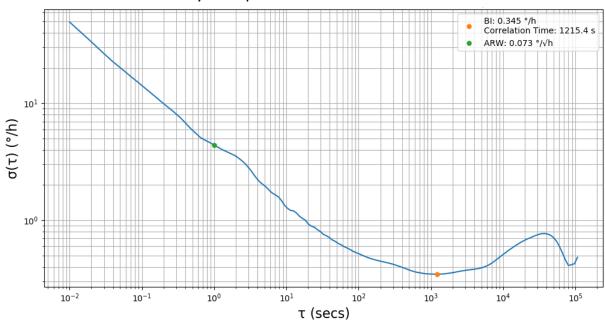
Information provided herein is considered accurate however is not guaranteed. Memsense reserves the right to change specifications at any time, without notice.

ACCELEROMETER	MP0006	67-007 & MP000	067-008	UNITS	NOTES
Dynamic Range	± 10	± 20	± 40	g	Note 1
Bias Instability	7.5	7.5	7.5	μg	Typical
Bias Offset			± 427 ± 2057 ± 593 ± 2676	μg	Typical XY Maximum XY, Note 2 Typical Z Maximum Z, Note 2
Bias Temperature Coefficient			9.3 21.4	μ <i>g/</i> °C	Typical Maximum, Note 3
Nonlinearity			± 0.3	% of FS	Typical, Note 4
Scale Factor Error			± 138 ± 500 ± 600 ± 1250	ppm	Typical XY Maximum XY Typical Z Maximum Z
Scale Factor Temperature Coefficient			± 4.4 ± 7.8 ± 17.8 ± 26.5	ppm/°C	Typical XY Maximum XY Typical Z Maximum Z
Cross Axis Sensitivity			± 2000	ppm	Maximum
Velocity Random Walk			0.02	m/s/h ^{-1/2}	Typical
Noise Density	41.84 45.59 33.95 37.97		48.32 52.99 41.96 47.89	μ <i>g</i> /Hz ^{-1/2}	Typical XY Maximum XY Typical Z Maximum Z
Bandwidth			50	Hz	-3dB point, Note 5

ANGULAR RATE						UNITS	NOTES
Dynamic Range	± 75	± 200	± 480	± 960	± 1920	°/s	Minimum, Notes 1
Bias Instability					0.33 0.22	°/h	Typical XY Typical Z
Bias Offset					11.6 60.0 9.4 60.0 5.9 30.0	°/h	Typical X Maximum X Typical Y Maximum Y Typical Z Maximum Z
Bias Temperature Coefficient					0.324 0.718	°/h/°C	Typical Maximum, Note 3
G-Sensitivity					1.48	°/h/ <i>g</i>	Typical
Bias Vibration Rectification					0.095 0.417	°/h/g _{rms} ²	Typical Maximum
Nonlinearity					± 0.05	% of FS	Typical, Note 4
Scale Factor Error					± 1613 ±2850 ± 1071 ±1950	ppm	Typical XY Maximum XY Typical Z Maximum Z
Scale Factor Temperature Coefficient	22.49 35.07 22.16 31.14	21.85 33.41 15.15 18.58			19.29 24.85 14.85 19.11	ppm/°C	Typical XY Maximum XY Typical Z Maximum Z
Cross Axis Sensitivity					1950	ppm	Maximum
Angle Random Walk					0.08	°/h ^{-1/2}	Typical XY Typical Z
Noise Density					0.00203 0.0025 0.00140 0.00159	°/s /Hz ^{-1/2}	Typical XY Maximum XY Typical Z Maximum Z
Vibration 1σ Noise Coefficient					0.012 0.038	°/s/g _{rms} ²	Typical Maximum
Bandwidth					50	Hz	-3dB point, Note 5
MAGNETIC FIELD		1	NOTE 6			UNITS	NOTES
Dynamic Range					± 1.9	gauss	Minimum
Bias Offset					± 0.005	gauss	Typical
Noise Density					79.2	μgauss /Hz ^{-1/2}	Typical
Bandwidth					50	Hz	-3dB point
DEVICE TEMPERATURE						UNITS	NOTES
Temperature Error					± 1.5	°C	Maximum
1 PULSE PER SECOND INPUT							
Voltage Low Level Input					0.9	V	Maximum
Voltage High Level Input					2.3	V	Minimum
Trigger Edge					Rising		

EXTERNAL TRIGGER INPU	JТ			
Voltage Low Le	vel Input	0.9	V	Maximum
Voltage High Le	vel Input	2.3	V	Minimum
Pul	se Width	1.0	μs	Minimum
TIME OF VALIDITY OUTP	UT			
Voltage Low Leve	el Output	0.4	V	Maximum
Voltage High Leve	el Output	2.6	V	Minimum
Rise and	Fall Time	30	ns	Maximum
PHYSICAL			UNITS	NOTES
Dimensions		1.80 (45.72) × 1.60 (40.64) × 1.01 (25.67)	in. (mm)	(L x W x H)
Mass		79	grams	
OPERATIONAL REQUIR	EMENTS		UNITS	NOTES
Supply Voltage		4.9 to 36.0	VDC	
Supply Power				
		2.5	W	Typical
Operating Temperature		2.5 -40 to 85	°C	Typical
Operating Temperature Interface Connector				Typical 10 pin
		-40 to 85		
Interface Connector	RATINGS	-40 to 85 Harwin Gecko G125-MS11005L		10 pin
Interface Connector Mating Connector	RATINGS	-40 to 85 Harwin Gecko G125-MS11005L Harwin Gecko G125-2041096L0	°C	10 pin 10 pin
Interface Connector Mating Connector ABSOLUTE MAXIMUM F	RATINGS	-40 to 85 Harwin Gecko G125-MS11005L Harwin Gecko G125-2041096L0 NOTE 7	°C UNITS	10 pin 10 pin NOTES
Interface Connector Mating Connector ABSOLUTE MAXIMUM F Acceleration Powered	RATINGS	-40 to 85 Harwin Gecko G125-MS11005L Harwin Gecko G125-2041096L0 NOTE 7 800	°C UNITS g	10 pin 10 pin NOTES

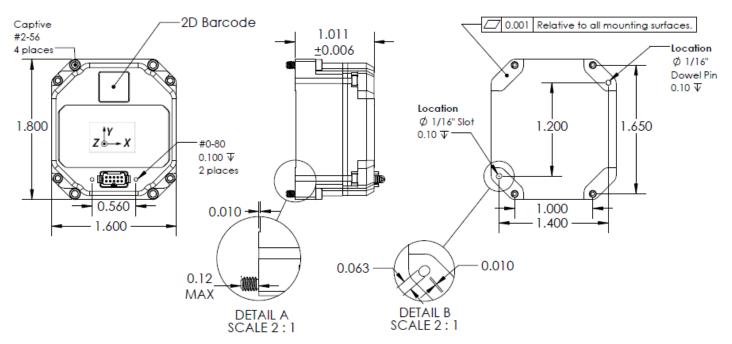

- 1. Dynamic ranges configurable see Section 4.4.4 Config Accel Range and Section 4.4.5 Config Gyro Range.
- 2. Bias Offset determined from maximum absolute bias at ambient temperature.
- 3. Bias Temperature Coefficient is determined from maximum minus minimum bias over operating environment temperature with ±1 ° C/min. gradient.
- 4. Nonlinearity is specified from -30 to 85°C. For gyros an input angular rate of \pm 450 °/s is used.
- 5. Bandwidth is configurable see section 4.4.2 Configure Filter.
- 6. See Table 16 for applicability to model numbers.
- 7. Absolute Maximum Ratings list device survivability specifications and are non-operational.
- 8. Typical Values at 25°C, 0°/s, unless otherwise noted.



MS-IMU3050 ALLAN VARIANCE CURVES

Accelerometer Root Allan Deviation

Gyroscope Root Allan Deviation



3.0 MECHANICAL

3.1 Dimensions

The MS-IMU3050 is contained in a 6061-T6 aluminum housing anodized to MIL-A-8625 standards. Mounting of the IMU is achieved through four 2-56 captive socket head cap screws while alignment is facilitated through two one sixteenth inch dowel pins. The mounting surface of the mechanical interface is flat to within one one-thousandths of an inch. The dimensions below are only an overview of the housing, detailed mechanical drawings in Imperial and Metric units are provided at Memsense.com under the MS-IMU3050 product page.

Note 1: Suggested Maximum Torque: 2.5 in-lbs

This value is a maximum, it is not recommended to torque to this value. While this value is provided from reliable sources, there are many variables that may effect this value and the use of this information is at the sole risk of the user.

Figure 1 - Physical dimensions (inches)

Information provided herein is considered accurate however is not guaranteed. Memsense reserves the right to change specifications at any time, without notice.

3.2 Coordinate System

The coordinate system for the MS-IMU3050 follows the right-hand rule convention. As an example, with the IMU pictured in Figure 2, if the Z axis is pointed straight UP away from the earth, it will produce 0 g for the X and Y axes and a positive 1 g for the Z axis. A counterclockwise rotation of the IMU about any of the depicted axis will produce a positive angular rate output for the corresponding axis. The magnetometer sign convention produces a positive output on the corresponding axis aligned in the North direction with the IMU bottom parallel and facing the Earth's surface.

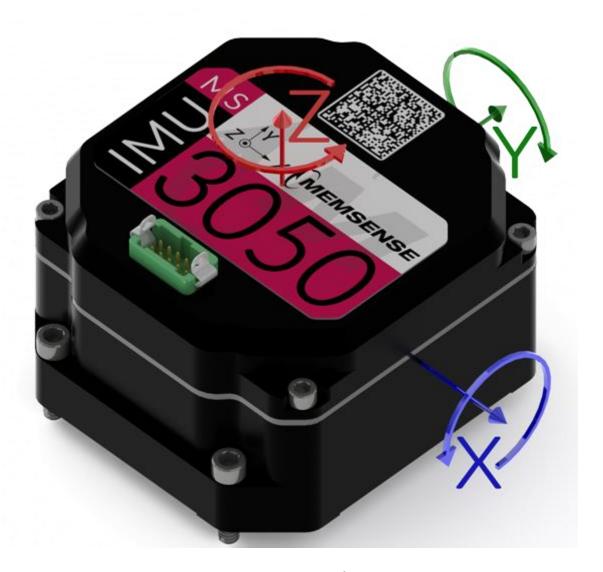


Figure 2 - MS-IMU3050 coordinate system

Information provided herein is considered accurate however is not guaranteed. Memsense reserves the right to change specifications at any time, without notice.

4.0 COMMUNICATIONS

4.1 Default Communication Settings

The MS-IMU3050 is configured in manufacture to default settings. Knowledge of these settings is important when connecting to the IMU in the MS-CIP Evaluation Application. The following table provides the necessary default settings to connect to the IMU.

Table 2 –IMU Default Settings

Setting	Default
Baud Rate	460800 bps
Sample Rate Decimation	4
Filter Cutoff	50 Hz
Gyro Range	±480 °/s
Accel Range	±2 g ¹
Sensor Select	Angular Rate and Acceleration

Note 1: Default accel range in the MP00067-003 and MP00067-004 is ±20g.

4.2 Hardware Interface

The MS-IMU3050 utilizes a 1.25mm pitch 10-pin Harwin Gekco connector for an electrical interface. The IMU connector manufacturer part number is G125-MS11005L with a mating connector manufacturer part number of G125-2041096L0. The IMU communications are transmitted and received via 3.3-volt level RS-422 physical signals. The IMU also receives a single ended 3.3-volt input to signal a one pulse per second synchronization from a GPS receiver. The electrical interface is further detailed in the figure and table below.

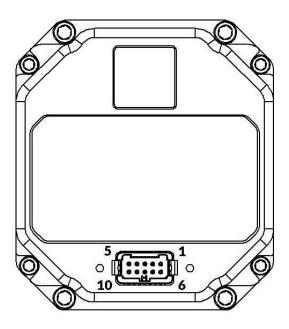


Figure 3 – MS-IMU3050 electrical interface connector

Table 3 – MS-IMU3050 Signal Interface

PIN	SIGNAL	DESCRIPTION
1	PWR	Power Supply Input
2	RSVD	Reserved
3	1PPS	GPS 1 Pulse Per Second Input
4	RCV A	RS-422 Non-Inverting Input
5	RCV B	RS-422 Inverting Input
6	GND	Power Supply Return
7	TOV	Time Of Validity
8	X TRIG	External Trigger
9	TX Y	RS-422 Non-Inverting Output
10	TX Z	RS-422 Inverting Output

Information provided herein is considered accurate however is not guaranteed. Memsense reserves the right to change specifications at any time, without notice.

4.2.1 Time of Validity Output – Internal Sample Rate

The *Time of Validity (TOV)*, pin 7, output provides a signal that indicates when the internal sensors are sampled at the internal sample rate and when the samples complete transmission. The TOV falling edge is correlated with sampling of the first element in a sample. The TOV rising edge occurs after the last bit of a sample has finished transmission. Figure 4 provides a timing diagram depicting the relation between the internal sample rate, sample transmission and the TOV output. See 4.2.2 External Trigger Input for TOV output with external trigger enabled.

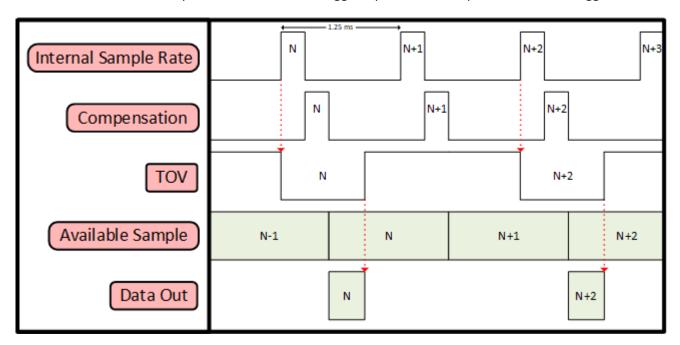


Figure 4 – TOV timing diagram with output sample rate at decimation of 2.

4.2.2 External Trigger Input

The External Trigger (X TRIG), pin 8, input provides a means to synchronize the IMU's sample transmission with an external sampling period. A rising edge signal on the External Trigger input initiates the transmission of the most recent complete sample. When in the External Trigger Mode, the TOV falling edge occurs with the beginning of an internal sample and its rising edge is initiated by the completion of the sample's compensation. Figure 5 depicts the timing associated with the use of the External Trigger and its relation to the TOV signal.

Please note that the External Trigger Mode must be enabled through the communications protocol for the input to be active, see the protocol section or the MS-CIP specification for details on enabling or disabling the External Trigger.

Figure 5 - External Trigger timing diagram.

4.3 Internal Sample Rate

The MS-IMU3050 internally samples sensors selected by the configuration at a rate of 800 samples per second. The internal sample rate is used in the output sample rate configuration detailed in the Memsense Communication Interface Protocol.

4.4 Communication Interface Protocol

The communication interface protocol is defined in detail in the Memsense Communication Interface Protocol document (MS-CIP DOC00381) which can be found on the MS-IMU3050 product page at memsense.com. The following information contains MS-IMU3050 specific portions of the communication protocol.

The Memsense Communication Interface Protocol (MS CIP) is implemented as a simple architecture to communicate information to and from the measurement device. The protocol is intended to be flexible in allowing customers to configure various features of the device achieving optimized communication modes for various application requirements. Below is a table showing the default output from the MS-IMU3050.

Table 4 – Default IMU Data Message 0xA2

Byte	Byte Name	Value	Description
0	Sync1	0xA5	First synchronization value used in sample parsing.
1	Sync2	0xA5	Second synchronization value used in sample parsing.
2	Message Type	0xA2	Message type identification code.
3	Payload Size	0x1C	Byte length of the payload.
4	Message Code	0x81	Scaled Acceleration Vector identification code.
5	Data Size	0x0C	Data Size in bytes.
6	X Accel MSB	0x37	X Accel in g. MSB of F32.
7	X Accel Byte 2	0xA7	X Accel in g. Byte 2 of F32.
8	X Accel Byte 1	0xC5	X Accel in g. Byte 1 of F32.
9	X Accel LSB	0xAC	X Accel in g. LSB of F32.
10	Y Accel MSB	0x37	Y Accel in g. MSB of F32.
11	Y Accel Byte 2	0x7B	Y Accel in g. Byte 2 of F32.
12	Y Accel Byte 1	0xA8	Y Accel in g. Byte 1 of F32.
13	Y Accel LSB	0x82	Y Accel in g. LSB of F32.
14	Z Accel MSB	0x3F	Z Accel in g. MSB of F32.
15	Z Accel Byte 2	0x80	Z Accel in g. Byte 2 of F32.
16	Z Accel Byte 1	0x00	Z Accel in g. Byte 1 of F32.
17	Z Accel LSB	0x65	Z Accel in g. LSB of F32.
18	Message Code	0x82	Scaled Angular Rate Vector identification code.
19	Data Size	0x0C	Data Size in bytes.
20	X Gyro MSB	0x37	X Gyro in degrees per second. MSB of F32.
21	X Gyro Byte 2	0xA7	X Gyro in degrees per second. Byte 2 of F32.
22	X Gyro Byte 1	0xC5	X Gyro in degrees per second. Byte 1 of F32.
23	X Gyro LSB	0xAC	X Gyro in degrees per second. LSB of F32.
24	Y Gyro MSB	0x37	Y Gyro in degrees per second. MSB of F32.
25	Y Gyro Byte 2	0x7B	Y Gyro in degrees per second. Byte 2 of F32.
26	Y Gyro Byte 1	0xA8	Y Gyro in degrees per second. Byte 1 of F32.
27	Y Gyro LSB	0x82	Y Gyro in degrees per second. LSB of F32.
28	Z Gyro MSB	0x37	Z Gyro in degrees per second. MSB of F32.
29	Z Gyro Byte 2	0x49	Z Gyro in degrees per second. Byte 2 of F32.
30	Z Gyro Byte 1	0x53	Z Gyro in degrees per second. Byte 1 of F32.
31	Z Gyro LSB	0x9C	Z Gyro in degrees per second. LSB of F32.
32	Checksum 1	0x0C	Fletcher-16 checksum block 1 MSB
33	Checksum 2	0x23	Fletcher-16 checksum block 2 LSB
Result	ting Complete Comman	d	

A5A5A21C810C37A7C5AC377BA8823F800065820C37A7C5AC377BA8823749539C0C23

4.4.1 IMU Sample Rate Configure 0x0204

The *IMU Sample Rate Configure* provides a means to configure and save the rate at which all IMU data messages are transmitted. *IMU Message Config* is used to control individual measurements.

The *IMU Sample Rate Configure* function codes define the function to be performed on the device's inertial measurements. The associated codes and functions are listed in Table 5 below.

Table 5 – IMU Sample Rate Function Codes

Code	IMU Sample Rate Function
0X01	Use new settings.
0x02	Request current settings.
0x03	Save current settings as startup settings.
0x04	Load saved startup settings.
0x05	Reset to default settings.

A 16-bit decimation value must be provided and is used to divide the internal sample rate to the desired output sample rate. The MS-IMU3050 has an internal sample rate of 800Hz therefore providing a decimation value of 0x0008 (8 decimal) configures the output sample rate to 100Hz.

See the MS-CIP at memsense.com under the MS-IMU3050 product page for more details regarding IMU Sample Rate Configure.

4.4.2 Configure Filter 0x0203

The *Configure Filter* message provides a means for configuring and saving internal digital filtering options. The *Filter Function* allows the configuration to be used, queried, saved, loaded from startup settings, and reset to defaults. Table 6 details the associated codes and functions.

Table 6 -Filter Function Codes

Code	Filter Function
0X01	Use new settings.
0x02	Request current settings.
0x03	Save current settings as startup settings.
0x04	Load saved startup settings.
0x05	Reset to default settings.

The *Filter Control* codes allow filtering to be disabled or enabled in Infinite Impulse Response (IIR) mode. Care in selecting a filter bandwidth value that supports the Nyquist Sampling Theorem is suggested. The filter cutoff options listed here are specific to the MS-IMU3050. Filter cutoff options for the MS-IMU3050 are listed in Table 7.

Table 7 - Filter Bandwidth Control Codes

Code	Filter Control Codes
0x00	Disable Filter
0x01	IIR Filter -3 dB at 25Hz
0x02	IIR Filter -3 dB at 50Hz (Default)
0x03	IIR Filter -3 dB at 75Hz
0x04	IIR Filter -3 dB at 100Hz
0x05	IIR Filter -3 dB at 10Hz
0x06	IIR Filter -3 dB at 150Hz
0x07	IIR Filter -3 dB at 200Hz

4.4.3 Select Sensors 0x0205

The *Select Sensors* message provides a means to configure and save the contents of the IMU data messages transmitted.

The *Select Sensors* function codes define the function to be performed on the device's message format. The associated codes and functions for the MS-IMU3050 are listed in Table 8 below.

Table 8 - Select Sensors Function Codes

Code	Select Sensors Function
0X01	Use new settings.
0x02	Request current settings.
0x03	Save current settings as startup settings.
0x04	Load saved startup settings.
0x05	Reset to default settings.

Table 9 lists the codes for the available measurements to be selected.

Table 9 – Select Sensors Options

Code	Select Sensors Options
0x81	Scaled Acceleration Vector in g
0x82	Scaled Angular Rate Vector in deg/sec
0x83	Scaled Magnetic Field Vector in gauss
0x84	Delta Theta Vector in Radians
0x85	Delta Velocity Vector in m/s
0x87	Scaled Temperature in Celsius
0x88	GPS Correlated Time

For each measurement selected the associated data code must be provided. When a Select Sensor message requests a sensor option that doesn't exist in the IMU (magnetometer or pressure), a NACK message will be returned.

See the MS-CIP at memsense.com under the MS-IMU3050 product page for more details regarding Select Sensors.

4.4.4 Config Accel Range 0x0207

The MS-IMU3050 supports the configuration of accelerometer dynamic ranges. The following configuration information details the options available and associated codes used in the communication protocol.

The *Config Accel Range* message provides a means for configuring and saving the triaxial accelerometer dynamic range options.

The *Config Accel Range Function* allows the configuration to be used, queried, saved, loaded from startup settings, and reset to defaults. Table 10 details the associated codes and functions.

Table 10 - Config Accel Range Function Codes

Code	Configure Accel Range Function Codes
0X01	Use new settings.
0x02	Request current settings.
0x03	Save current settings as startup settings.
0x04	Load saved startup settings.
0x05	Reset to default settings.

The Accel Range codes allow the dynamic range of the accelerometer to be changed to one of the 3 supported ranges and effect all three axes of the sensor. The options for the accelerometer dynamic range are controlled in the Accel Range Codes listed in Table 11.

Table 11 - Accel Range Codes

Code	Accel Range Codes	IMU Model Number
0x00	Accelerometer range ±2 g	MS-IMU3050M
		MS-IMU3050
0x01	Accelerometer range ±4 g	MS-IMU3050M
		MS-IMU3050
0x02	Accelerometer range ±8 g	MS-IMU3050M
		MS-IMU3050
0x03	Accelerometer range ±10 g	MS-IMU3050MHH
		MS-IMU3050HH
0x05	Accelerometer range ±20 g	MS-IMU3050MHH
		MS-IMU3050M
0x06	Accelerometer range ±40 g	MS-IMU3050MHH
		MS-IMU3050HH

4.4.5 Config Gyro Range 0x0208

The MS-IMU3050 supports the configuration of gyroscope dynamic ranges. The following configuration information details the options available and associated codes used in the communication protocol.

The *Config Gyro Range* message provides a means for configuring and saving the triaxial gyroscope dynamic range options. The *Config Gyro Range Function* allows the configuration to be used, queried, saved, loaded from startup settings, and reset to defaults. Table 12 details the associated codes and functions.

Table 12 - Config Gyro Range Function Codes

Code	Configure Gyro Range Function Codes
0X01	Use new settings.
0x02	Request current settings.
0x03	Save current settings as startup settings.
0x04	Load saved startup settings.
0x05	Reset to default settings.

The *Gyro Range* codes allow the dynamic range of the gyroscope to be changed to 1 of the 5 supported ranges and effect all 3 axes of the sensor. The options for the gyroscope dynamic range are controlled in the *Gyro Range Codes*. The MS-IMU3050 codes are listed in Table 13.

Table 13 - MS-IMU3050 Gyro Range Codes

Code	Gyro Range Codes
0x06	Gyroscope range ±75 °/s
0x07	Gyroscope range ±200 °/s
0x03	Gyroscope range ±480 °/s (Default)
0x04	Gyroscope range ±960 °/s
0x05	Gyroscope range ±1920 °/s

5.0 OPTIONS

5.1 Part Numbering

The standard part numbers, sensor ranges and associated ECCNs for the MS-IMU3050 are listed in the table below.

Table 14 - Standard part numbers

Maximum Ranges						
		Accel	Aux Accel	Rate	Mag	
_Model Number	_Part Number	(g)	(g)	(°/s)	(gauss)	ECCNs
MS-IMU3050M	MP00067-001 ¹	±8	None	±1920	2	7A003
MS-IMU3050	MP00067-002 ¹	±8	None	±1920	None	7A003
MS-IMU3050MHH	MP00067-007 ²	±40	None	±1920	2	7A003
MS-IMU3050HH	MP00067-008 ²	±40	None	±1920	None	7A003

Note 1: The ±8g range is configurable to ±2g, ±4g or ±8g.

Note 2: The ±40g range is configurable to ±10g, ±20g or ±40g.

6.0 DOCUMENT REVISION HISTORY

REV	STATUS	DESCRIPTION	DATE
Prelim	Obsolete	Specification preliminary release.	2-12-2018
А	Obsolete	Specification release. Figure 3 Connector Pinout updated to correct version and pinout. Updated Options section.	9-3-2018
В	Obsolete	Updated Mechanical drawing. Added export ECCNs to the development kit part number table.	10-7-2018
С	Obsolete	Remove export version from part numbers due to all versions being export controlled.	11-5-2018
D	Obsolete	Remove export language from overview. Added accel and gyro over temperature specifications. Increased maximum supply voltage. Added gyro vibration specifications. Added Product Revision History section.	11-12-2019
E	Obsolete	Updated specifications. Updated Allan Deviation plots. Updated mechanical dimensions	10-30-2020
F	Obsolete	Corrected error pertaining to external trigger edge. External trigger is rising edge activation. Two associated figures were updated.	3-9-2021
G	Obsolete	Updated gyro noise density specifications.	3-12-2021
Н	Released	Updated product revision. Remove accessories section	2-16-2022

7.0 PRODUCT REVISION HISTORY

REV	STATUS	DESCRIPTION	DATE
A	Released	Product initial release.	8-29-2018
В	Released	The housing top was revised to accommodate a connector back shell with #0-80 screws for mechanical attachment.	10-11-2018
С	Current	IMU housing alignment pin interface geometry change to improve alignment repeatability.	2-14-2022