
Waspmote Data Frame
Programming Guide

-2- v4.1

 Index

Document Version: v4.1 - 04/2013
© Libelium Comunicaciones Distribuidas S.L.

INDEX

1. General Considerations ... 3
1.1. Waspmote Frame Files ...3
1.2. Constructor ..3
1.3. API functions ..3
1.4. Predefined constants ..3

2. Frame Structure ... 4
2.1. ASCII Frame ..4

2.1.1. ASCII Header ..4
2.1.2. ASCII Payload ...5

2.2. Binary Frame ..6
2.2.1. Binary Header ..6
2.2.2. Binary Payload ...7

2.3. Frame Types ...7
2.4. Sensor fields ...8

3. Usage .. 12
3.1. Setting the Waspmote Identifier ...12
3.2. Creating new Frames ...12
3.3. Setting the Frame Size ..12
3.4. Setting the Frame Type ...14
3.5. Adding Sensor Fields ...15
3.6. Adding New Sensor types..16
3.7. Showing the actual Frame ...16

4. Code examples ... 17

5. Documentation changelog ... 18

-3- v4.1

General Considerations

1. General Considerations

1.1. Waspmote Frame Files
WaspFrame.h, WaspFrame.cpp, WaspFrameConstants.h

It is mandatory to include the WaspFrame library when using this class. The following line must be introduced at the beginning
of the code:

 #include <WaspFrame.h>

Libelium recommends the use of the official Data Frame format, explained in this guide. It is especially good for the projects
with a Meshlium, because it can parse frames in an automatic way thanks to the feature “Sensor Parser”.

1.2. Constructor
To start using the Waspmote Frame library, an object from the ‘WaspFrame’ class must be created. This object, called frame,
is created inside the Waspmote Frame library and it is public to all libraries. It is used through the guide to show how the
Waspmote Frame library works.

When creating this constructor, some variables are defined with a value by default.

1.3. API functions
Through this guide there are many examples of the WaspFrame class usage. In these examples, API functions are called to
execute the commands, storing in their related variables the parameter value in each case.

Example of use

{
 frame.createFrame(); // create a new frame
}

1.4. Predefined constants
There are some predefined constants in a file called ‘WaspFrame.h’. These constants define some parameters like the maximum
size of each frame:

MAX_FRAME: (default value 150) specifies the maximum size of the frames to be created.
ASCII: this constant is used to define an ASCII frame mode.
BINARY: this constant is used to define a Binary frame mode.
EXAMPLE_FRAME: defines an example frame type.
TIMEOUT_FRAME: defines a timeout frame type.
EVENT_FRAME: defines an event frame type.
ALARM_FRAME: defines an alarm frame type.
SERVICE1_FRAME: defines a service1 frame type.
SERVICE2_FRAME: defines a service2 frame type.

Besides, there are sensor TAGs defined for each kind of sensor. These labels are used to set different fields inside the frame in
order to distinguish between different sensor values and identify them.

-4- v4.1

Frame Structure

2. Frame Structure
There are two kind of frames: ASCII and Binary.

2.1. ASCII Frame
These frames are supposed to facilitate the comprehension of the data to be sent. As the frame is composed by ASCII characters
is easier to understand all the fields included within the payload.

It is possible to identify two different parts inside the frame. The first one corresponds to the header and its structure is always
the same. The second one corresponds to the payload and it is where the sensor values are included.

The following figure describes the ASCII Frame structure:

HEADER PAYLOAD

<=> Frame Type Num Fields # Serial ID # Waspmote ID # Sequence # Sensor_1 # Sensor_2 # ... Sensor_n #

Figure 1: ASCII Frame structure

2.1.1. ASCII Header

The structure fields are described below with an example:

HEADER PAYLOAD

<=> 0x80 0x03 # 35690284 # NODE_001 # 214 # Temp:35 # GPS:31.200;42.100 # DATE:12-01-01 #

A B C D E D F D G D sensor1 D sensor2 D sensor3 D

Figure 2: ASCII Frame example

A → Start Delimiter [3 Bytes]: It is composed by three characters: “<=>”. This is a 3-Byte field and it is necessary to identify each
frame starting.

B → Frame Type Byte [1 Byte]: This field is used to determine the frame type. There are two kind of frames: Binary and ASCII.
But it also defines the aim of the frame such event frames or alarm frames. This field will be explained in the following sections.

C → Number of Fields Byte [1 Byte]: This field specifies the number of sensor fields sent in the frame. This helps to calculate
the frame length.

D → Separator [1 Byte]: The ‘#’ character defines a separator and it is put before and after each field of the frame.

E → Serial ID [10 Bytes]: This is at most a 10-Byte field which identifies each Waspmote device uniquely. The serial ID is get from
a specific chip integrated in Waspmote that gives a different identifier to each Waspmote device. So, it is only readable and it
can not be modified.

F → Waspmote ID [0Byte-16Bytes]: This is a string defined by the user which may identify each Waspmote inside the user’s
network. The field size is variable [from 0 to 16Bytes]. When the user do not want to give any identifier, the field remains empty
between frame’s separators: “##”.

G → Frame sequence [1Byte-3Bytes]: This field indicates the number of sequence frame. This counter is 8-bit, so it goes from 0
to 255. However, as it is an ASCII frame, the number is converted to a string so as to be understood. This is the reason the length
of this field varies between one and three bytes. Each time the counter reaches the maximum 255, it is reset to 0. This sequence
number is used in order to detect loss of frames.

Note: There is only one frame counter, so in the case two communication modules are used, this counter is incremented each time a
new frame is created. If each module needs to create a new frame, the counter will be incremented by 2 in the same loop, one for each
frame creation.

-5- v4.1

Frame Structure

2.1.2. ASCII Payload

The frame payload is composed by several sensor data. All data sent in these fields correspond to a predefined sensor data type
in the sensor table. This sensor table is stored in Meshlium (gateway of the network) and it will be used in order to interact with
the database.

There are three types of ASCII sensor fields:

 • Simple Data: Sensor field is composed by a unique data. The format is: “sensor_label:value” and a separator character [#] is
set at the end of the value. For example, a temperature field indicating 23ºC would be as follows:

 #TC:23#

 • Complex Data: This is the format used to send data composed by two or three values. The format is: “sensor_
label:value;value;value“ and a separator character [#] is set at the end of the last value. Accelerometer and GPS measurements
are some examples:

 #ACC:996;-250;-100#
 #GPS:41.680616;-0.886233#

 • Special Data: Date and time are defined in a special format.

 Date is defined as “yy-mm-dd” where:
 - yy: year
 - mm: month
 - dd: day of month
 Example: #DATE:13-01-01#

 Time is formatted as “hh-mm-ss+GMT” where:

 - hh: hours
 - mm: minutes
 - ss: seconds
 - GMT: GMT is added after hh-mm-ss. It is possible to avoid this information in order to save frame size.

 Example without GMT: #TIME:12-24-16#
 Example with GMT: #TIME:12-24-16+1#

-6- v4.1

Frame Structure

2.2. Binary Frame
This frame type has been designed to create more compressed frames. The main goal of defining binary fields is to save bytes in
frame’s payload in order to send as much information as possible. The main disadvantage is the legibility of the frame.

As the ASCII frames, the Binary frames are also composed by two different parts: header and payload. The header of the Binary
frame is quite similar to the ASCII frame except for the frame sequence number and the separator at the end of the header.

The following figure describes the Binary Frame structure:

HEADER PAYLOAD

<=> Frame Type Num Fields Serial ID Waspmote ID # Sequence Sensor_1 Sensor_2 ... Sensor_n

Figure 3: Binary Frame structure

2.2.1. Binary Header

The structure fields are described below with an example:

HEADER PAYLOAD

<=> 0x00 0x03 0x74F94515 NODE_001 # 0x00 ID Byte 1 Byte 2 ID Byte 1 Byte 2 ID Byte 1 Byte 2

A B C E F D G Sensor 1 Sensor 2 Sensor 3

Figure 4: Binary Frame example

A → Start Delimiter [3 Bytes]: It is composed by three characters: “<=>”. This is a 3-Byte field and it is necessary to identify each
frame starting.

B → Frame Type Byte [1Byte]: This field is used to determine the frame type. There are two kind of frames: Binary and ASCII.
But it also defines the aim of the frame such event frames or alarm frames. This field will be explained in the following sections.

C → Number of Fields Byte [1Byte]: This field specifies the number of sensor fields sent in the frame. This helps to calculate
the frame length.

D → Separator [1Byte]: The ‘#’ character defines a separator and it is put between some fields which length is not specified. This
helps to parse the different fields in reception.

E → Serial ID [4Byte]: This is a 4-Byte field which identifies each Waspmote device uniquely. The serial ID is get from a specific
chip integrated in Waspmote that gives a different identifier to each Waspmote device. So, it is only readable and it can not be
modified. Note that the Serial ID is sent as a binary field too.

F → Waspmote ID [variable]: This is a string defined by the user which may identify each Waspmote inside the user’s network.
The field size is variable [from 0 to 16Bytes]. When the user do not want to give any identifier, the field remains empty indicated
by a unique ‘#’ character.

G → Frame sequence [1Byte]: This field indicates the number of sent frame. This counter is 8-bit, so it goes from 0 to 255. Each
time it reaches the maximum 255 is reset to 0. This sequence number is used in order to detect loss of frames.

Note: There is only one frame counter, so in the case two communication modules are used, this counter is incremented each time a
new frame is created. If each module needs to create a new frame, the counter will be incremented by 2 in the same loop, one for each
frame creation.

-7- v4.1

Frame Structure

2.2.2. Binary Payload

The frame payload might be composed by several sensor data. All data sent in these fields correspond to a predefined sensor
data type in the sensor table. Regarding the binary format, each sensor in the sensor table determines the number of necessary
bytes to express the sensor value. The sensor table is stored in Meshlium (gateway of the network) and it will be used in order
to interact with the database.

There are three types of Binary sensor fields:

 • Simple Data: The sensor field is composed by a unique data. The format of this field is: the first byte codifies the sensor
type. Following the first byte and according to the sensor table, there is a number of bytes which correspond to the sensor
value. For example, the temperature sensor is a float number, so it is a 4-byte field. Thus, the sensor field for 27ºC will be set
as follows:

ID (1 Byte) Byte1 Byte2 Byte3 Byte4

SENSOR_TCA 0x00 0x00 0xD8 0x41

Figure 5: Binary simple sensor field

Note: Floats are codified so they are not a simple conversion.

 • Complex Data: This is the format used to send data composed by more than one value. The format of this field is: the first
byte codifies the sensor type. Then, the different values are codified using as many bytes as they specify in the sensor table.
For example, the GPS field is composed by both latitude and longitude floats, which means that 8 bytes are needed for both
float values:

ID (1 Byte) Byte1 Byte2 Byte3 Byte4 Byte1 Byte2 Byte3 Byte4

SENSOR_GPS 0x59 0x9D 0x26 0x42 0xE0 0x10 0x61 0xBF

Figure 6: Binary complex sensor field

Note: Floats are codified so they are not a simple conversion.

 • String: This is the only field that is formed differently: the first byte codifies the sensor type, the second byte defines the
string length, and the rest of the bytes belong to the string itself according to the length previously defined. For example,
the string “hello” is formatted as follows:

ID (1 Byte) Length Byte1 (‘h’) Byte2 (‘e’) Byte3 (‘l’) Byte4 (‘l’) Byte5 (‘o’)

SENSOR_STR 0x05 0x68 0x65 0x6C 0x6C 0x6F

Figure 7: Binary string sensor field

2.3. Frame Types
As it was said before, there is a specific field in the header which specifies the frame type. This field is defined by a byte noted as
the sequence of the following bits: b7b6b5b4b3b2b1b0:

b7: The most significant bit specifies if the frame is ASCII (b7=1) or Binary (b7=0).

b6-b0: The rest of the bits determine the frame type which might be an event frame, a time out frame, etc.

-8- v4.1

Frame Structure

Frame Types

Frame Type Byte Decimal
value Identifier Description

bit7 bit6-bit0

0
(Binary)

0000000 0 Example Regular frame for examples

0000001 1 TimeOut Frame sent when time is out

0000010 2 Event Frame sent when an event occurs

0000011 3 Alarm Frame sent when an alarm occurs

0000100 4 Service1 Frame for “keep alive” advertisement

0000101 5 Service2 Frame for “low battery” advertisement

… 6 to 99 … Reserved types

1100100 100 INITIAL_PACKET Transmission packet to init a file Transmission

1100101 101 ID_PACKET Transmision packet to send the session ID to Waspmote

1100110 102 DATA_PACKET Transmision packet to send data to Meshlium

1100111 103 ACK_PACKET Transmision packet to sned ACK/NACK to Waspmote

1101000 104 END_PACKET Transmision packet to end the file transmision

… 105 to 119 … Reserved types

1111000 120 delete_firmware OTA packet to delete a firmware from boot.txt

1111001 121 check_new_program OTA packet to give starting information

1111010 122 new_firmware_received OTA packet to start receiving a new firmware

1111011 123 new_firmware_packets OTA packet to receive firmware packets

1111100 124 new_firmware_end OTA packet to end a firmware transmission

1111101 125 upload_firmware OTA packet to run a new firmware to Waspmote

1111110 126 request_ID OTA packet to request the mote ID

1111111 127 request_bootlist OTA packet to request the boot.txt list

1
(ASCII)

0000000 128 Example Regular frame for examples

0000001 129 TimeOut Frame sent when time is out

0000010 130 Event Frame sent when an event occurs

0000011 131 Alarm Frame sent when an alarm occurs

0000100 132 Service1 Frame for “keep alive” advertisement

0000101 133 Service2 Frame for “low battery” advertisement

… 134 to 255 … Reserved types

Figure 8: Frame types

2.4. Sensor fields
The following table describes all possible sensor fields.

Reference: This column refers to the sensor reference given by Libelium to each sensor in the sensor catalog.

Sensor TAG: This column defines the constants needed to add each sensor to the frame using addSensor function.

SENSOR ID: Each sensor field has its own identifier. Depending on the Sensor TAG chosen, a different identifier will be set as
sensor identifier. ASCII frames use a string label as sensor identifier. Binary frames use a byte as sensor identifier so as to save
frame size.

Number of Fields: Defines the number of different fields a sensor value presents. Most of sensors only need a unique field.
But there are some cases which need more than one, i.e. the GPS module which needs 2 fields for both latitude and longitude
measurements.

-9- v4.1

Frame Structure

Type and Size: Indicates the variable type which has to be used for each sensor. The possibilities are: uint8_t (1 Byte), int (2
Bytes), float (4 Bytes), unsigned long (4 Bytes), string (variable size). ASCII frames don’t have constraints when adding sensor
fields in order to facilitate the user to insert new sensor data.

Default Decimal Precision: Defines for each sensor the number of decimals used in ASCII frames when using float variable
types.

Units: This column defines the units used for each sensor.

-10- v4.1

Frame Structure

Sensor Sensor
Reference

Sensor
TAG

SENSOR ID
Number
Of Fields

Binary ASCII

Units
Binary ASCII Type of

variable

Size per
 Field

(Bytes)

Default
Decimal

Precision

G
as

es

Carbon Monoxide 9229 SENSOR_CO 0 CO 1 float 4 3 voltage

Carbon Dioxide 9230 SENSOR_CO2 1 CO2 1 float 4 3 voltage

Oxygen 9231 SENSOR_O2 2 O2 1 float 4 3 voltage

Methane 9232 SENSOR_CH4 3 CH4 1 float 4 3 voltage

Liquefied Petroleum Gases 9234 SENSOR_LPG 4 LPG 1 float 4 3 voltage

Ammonia 9233 SENSOR_NH3 5 NH3 1 float 4 3 voltage

Air Pollutants 1 9235 SENSOR_AP1 6 AP1 1 float 4 3 voltage

Air Pollutants 2 9236 SENSOR_AP2 7 AP2 1 float 4 3 voltage

Solvent Vapors 9237 SENSOR_SV 8 SV 1 float 4 3 voltage

Nitrogen Dioxide 9238 SENSOR_NO2 9 NO2 1 float 4 3 voltage

Ozone 9258 SENSOR_O3 10 O3 1 float 4 3 voltage

Hydrocarbons 9201 SENSOR_VOC 11 VOC 1 float 4 3 voltage

Temperature Celsius 9203 SENSOR_TCA 12 TCA 1 float 4 2 º C

Temperature Fahrenheit 9203 SENSOR_TFA 13 TFA 1 float 4 2 º F

Humidity 9204 SENSOR_HUMA 14 HUMA 1 float 4 1 %RH

Pressure atmospheric 9250 SENSOR_PA 15 PA 1 float 4 2 Kilo Pascales

Ev
en

ts

Pressure/Weight 9219 SENSOR_PW 16 PW 1 float 4 3 Ohms

Bend 9218 SENSOR_BEND 17 BEND 1 float 4 3 Ohms

Vibration 9221 / 9222 SENSOR_VBR 18 VBR 1 uint8_t 1 0 Open /
Closed

Hall Effect 9207 SENSOR_HALL 19 HALL 1 uint8_t 1 0 Open /
Closed

Liquid Presence 9243 SENSOR_LP 20 LP 1 uint8_t 1 0 Open /
Closed

Liquid Level 9239 / 9240 /
9242 SENSOR_LL 21 LL 1 uint8_t 1 0 Open /

Closed

Luminosity 9205 SENSOR_LUM 22 LUM 1 float 4 3 Ohms

Presence 9212 SENSOR_PIR 23 PIR 1 uint8_t 1 0
presence /

Not
presence

Stretch 9217 SENSOR_ST 24 ST 1 float 4 3 Ohms

Sm
ar

t C
it

ie
s

Microphone 9259 SENSOR_MCP 25 MCP 1 uint8_t 1 0 dBA

Crack detection gauge 9321 SENSOR_CDG 26 CDG 1 uint8_t 1 0 true/false

Crack propagation gauge 9322 SENSOR_CPG 27 CPG 1 float 4 3 Ohms

Linear Displacement 9319 SENSOR_LD 28 LD 1 float 4 3 mm

Dust 9320 SENSOR_DUST 29 DUST 1 float 4 3 mg/m3

Ultrasound 9246 / 9213 SENSOR_US 30 US 1 float 4 2 m

Pa
rk

in
g Magnetic Field N/A SENSOR_MF 31 MF 3 int 2 0 LSBs

Parking Spot Status N/A SENSOR_PS 32 PS 1 uint8_t 1 0 "Occupied
/ Empty"

A
gr

ic
ul

tu
re

Temperature ºC (Sensirion) 9247 SENSOR_TCB 33 TCB 1 float 4 2 º C

Temperature ºF (Sensirion) 9247 SENSOR_TFB 34 TFB 1 float 4 2 º F

Humidity (Sensirion) 9247 SENSOR_HUMB 35 HUMB 1 float 4 1 %RH

Soil Temperature 9255 SENSOR_SOILT 36 SOILT 1 float 4 2 ºC

Soil Moisture 9248 SENSOR_SOIL 37 SOIL 1 float 4 2 Frequency

Leaf Wetness 9249 SENSOR_LW 38 LW 1 uint8_t 1 0 %

-11- v4.1

Frame Structure

Sensor Sensor
Reference

Sensor
TAG

SENSOR ID
Number
Of Fields

Binary ASCII

Units
Binary ASCII Type of

variable

Size per
 Field

(Bytes)

Default
Decimal

Precision

A
gr

ic
ul

tu
re

Solar Radiation 9251 SENSOR_PAR 39 PAR 1 float 4 2 μmol*m-2*s-1

Ultraviolet Radiation 9257 SENSOR_UV 40 UV 1 float 4 2 μmol*m-2*s-1

Trunk Diameter 9252 SENSOR_TD 41 TD 1 float 4 3 mm

Stem Diameter 9253 SENSOR_SD 42 SD 1 float 4 3 mm

Fruit Diameter 9254 SENSOR_FD 43 FD 1 float 4 3 mm

Anemometer 9256 SENSOR_ANE 44 ANE 1 float 4 2 km/h

Wind Vane 9256 SENSOR_WV 45 WV 1 uint8_t 1 N/A Direction

Pluviometer 9256 SENSOR_PLV 46 PLV 1 float 4 2 mm/min

Ra
di

at
io

n

Geiger tube N/A SENSOR_RAD 47 RAD 1 float 4 6 or 0 uSv/h or
cpm

Sm
ar

t M
et

er
in

g Current 9266 SENSOR_CU 48 CU 1 float 4 2 A

Water flow 9296 / 9297 /
9298 SENSOR_WF 49 WF 1 float 4 3 l/min

Load cell 9260 / 9261 /
9262 SENSOR_LC 50 LC 1 float 4 3 voltaje

Distance Foil 9267 / 9268 SENSOR_DF 51 DF 1 float 4 3 Ohms

A
di

ti
on

al

Battery N/A SENSOR_BAT 52 BAT 1 uint8_t 1 0 %

Global Positioning System WGPS SENSOR_GPS 53 GPS 2 float 4 6 degrees

RSSI N/A SENSOR_RSSI 54 RSSI 1 int 2 0 N/A

MAC Address N/A SENSOR_MAC 55 MAC 1 string variable N/A N/A

Network Address (XBee) N/A SENSOR_NA 56 NA 1 string variable N/A N/A

Network ID origin (XBee) N/A SENSOR_NID 57 NID 1 string variable N/A N/A

Date N/A SENSOR_DATE 58 DATE 3 uint8_t 1 N/A N/A

Time N/A SENSOR_TIME 59 TIME 3 or 4 uint8_t 1 N/A N/A

GMT N/A SENSOR_GMT 60 GMT 1 int 1 N/A N/A

Free_RAM N/A SENSOR_RAM 61 RAM 1 int 2 0 bytes

Internal_temperature N/A SENSOR_IN_
TEMP 62 IN_

TEMP 1 float 4 2 º C

Accelerometer N/A SENSOR_ACC 63 ACC 3 int 2 0 mg

Millis N/A SENSOR_MILLIS 64 MILLIS 1 ulong 4 0 ms

Sp
ec

ia
l

String N/A SENSOR_STR 65 STR 1 string variable N/A N/A

M
es

hl
iu

m Meshlium BT Scanner N/A SENSOR_MBT 66 MBT 1 string variable N/A N/A

Meshlium WiFi Scanner N/A SENSOR_MWIFI 67 MWIFI 1 string variable N/A N/A

RF
ID Unique Identifier N/A SENSOR_UID 68 UID 1 string variable N/A N/A

RFID block N/A SENSOR_RB 69 RB 1 string variable N/A N/A

Figure 9: Field types

-12- v4.1

Usage

3. Usage
The following sections show how to create frames and add sensor fields.

3.1. Setting the Waspmote Identifier
There is a function which allows the user to store the Waspmote ID in the EEPROM memory. This function is named setID. The
Waspmote ID will be used to set the corresponding field in the frame’s header when calling createFrame function.

Example of use:

{
 // store Waspmote ID in EEPROM memory (16-Byte max)
 frame.setID(“Waspmote_Pro”);
}

3.2. Creating new Frames
The function in charge of creating a new frame is: createFrame. This function selects the frame mode:

 • ASCII
 • BINARY

Besides, it is possible to define the Waspmote ID which will be included in the frame’s header (16 bytes maximum) instead of
using the mote identifier stored in the EEPROM memory.

The function prototypes are the following:

 • Create an ASCII frame. The Waspmote ID is get from the EEPROM memory that setID function has previously set:

 {
 frame.createFrame();
 }

 • Create an ASCII frame. The Waspmote ID (i.e. “Waspmote_Pro”) is set as an input parameter:

 {
 frame.createFrame(ASCII,”Waspmote_Pro”);
 }

 • Create a Binary frame. The Waspmote ID (i.e. “Waspmote_Pro”) is set as an input parameter:

 {
 frame.createFrame(BINARY,”Waspmote_Pro”);
 }

3.3. Setting the Frame Size
The class constructor initializes the attribute _maxSize, used to limit the maximum frame size, to MAX_FRAME constant. This
constant defines a maximum default size of 150 bytes per frame. As this is the maximum possible value, it can be modified in
WaspFrameConstants.h in order to create frames with larger sizes.

On the other hand, setFrameSize is the function which permits to set the frame size according to the user’s consideration.
Besides, it is possible to set the frame size depending on the XBee module, link encryption mode and AES encryption use.
The following table defines the maximum frame size to be used for each communication protocol and several encryption
possibilities:

-13- v4.1

Usage

Module
Maximum frame size

No AES encryption AES encryption

XBee – 802.15.4
Link Encrypted

@16bit Unicast 98 Bytes 93 Bytes

@64bit Unicast 94 Bytes 77 Bytes

Broadcast 95 Bytes 77 Bytes

Link Unencrypted 100 Bytes 93 Bytes

XBee – 868 100 Bytes 93 Bytes

XBee – 900
Link Encrypted 80 Bytes 77 Bytes

Link Unencrypted 100 Bytes 93 Bytes

XBee - Digimesh 73 Bytes 61 Bytes

XBee - ZigBee

Link Encrypted
@64bit Unicast 66 Bytes 61 Bytes

Broadcast 84 Bytes 77 Bytes

Link Unencrypted
@64bit Unicast 74 Bytes 61 Bytes

Broadcast 92 Bytes 77 Bytes

Bluetooth – transparent connection Limited by MAX_FRAME Limited by MAX_FRAME

GPRS Limited by MAX_FRAME Limited by MAX_FRAME

3G Limited by MAX_FRAME Limited by MAX_FRAME

WiFi Limited by MAX_FRAME Limited by MAX_FRAME

Figure 10: Maximum frame size per protocol

Note: MAX_FRAME is 100 bytes but can be changed by te user.

The function prototypes are:

Set frame size via parameter given by the user:

 void setFrameSize(uint8_t size);

Where “size” must be less than MAX_FRAME, if not MAX_FRAME will be set as frame maximum size

Set frame size depending on the protocol, addressing and encryption used:

 void setFrameSize(uint8_t protocol,
 uint8_t addressing,
 uint8_t linkEncryption,
 uint8_t AESEncryption);

Where “protocol” specifies the XBee module protocol between:

 XBEE_802_15_4
 ZIGBEE
 DIGIMESH
 XBEE_900
 XBEE_868

“addressing” specifies the addressing mode between:

 UNICAST_16B: for Unicast 16-bit addressing (only for XBee-802.15.4)
 UNICAST_64B: for Unicast 64-bit addressing
 BROADCAST_MODE: for Broadcast addressing

-14- v4.1

Usage

“linkEncryption” specifies the XBee encryption mode between:

 ENABLED = 1
 DISABLED = 0
“AESEncryption” specifies if AES encryption is used or not:

 ENABLED = 1
 DISABLED = 0

Set frame size depending on the protocol and encryption used (default UNICAST_64B addressing):

void setFrameSize(uint8_t protocol,
 uint8_t linkEncryption,
 uint8_t AESEncryption);

Examples of use:

{
 // set frame size to 125 Bytes
 frame.setFrameSize(125);

 // XBee-802, unicast 16-b addressing, XBee encryption Disabled, AES encryption Disabled
 frame.setFrameSize(XBEE_802_15_4, UNICAST_16B, DISABLED, DISABLED);

 // XBee-868, unicast 64-b addressing, XBee encryption Enabled, AES encryption Enabled
 frame.setFrameSize(XBEE_868, ENABLED, ENABLED);

 // XBee-ZigBee, Broadcast addressing, XBee encryption Enabled, AES encryption Disabled
 frame.setFrameSize(ZIGBEE, BROADCAST, ENABLED, DISABLED);

 // XBee-900, unicast 64-b addressing, XBee encryption Disabled, AES encryption Enabled
 frame.setFrameSize(XBEE_900, DISABLED, ENABLED);

 // XBee-Digimesh, Broadcast addressing, XBee encryption Enabled, AES encryption Enabled
 frame.setFrameSize(DIGIMESH, BROADCAST, ENABLED, ENABLED);

 }

Example:

• How to set the frame size depending on the protocol and encryption used:

 http://www.libelium.com/development/waspmote/examples/frame-05-set-frame-size

3.4. Setting the Frame Type
There is a function which allows the user to set the required frame type. This function must be called after calling createFrame
function. In the case it is not called, a default “EXAMPLE_FRAME” type is chosen by createFrame. The function that permits
the setting of the frame type is setFrameType. It is possible to select between different constants predefined in WaspFrame.h
in order to set the sort of packet to be sent:

 EXAMPLE_FRAME
 TIMEOUT_FRAME
 EVENT_FRAME
 ALARM_FRAME
 SERVICE1_FRAME
 SERVICE2_FRAME

-15- v4.1

Usage

These constants permit to set the Frame Type in spite of the frame mode (ascii or binary).

Example of use:

{
 frame.setFrameType(TIMEOUT_FRAME); // set a TIMEOUT frame type
}

Example:

• How to set the frame type:

 http://www.libelium.com/development/waspmote/examples/frame-06-set-frame-type

3.5. Adding Sensor Fields
This is the function which appends new sensor fields to the frame. The first parameter is the sensor tag to identify the sensor to
be added. The sensor identifier is followed up by the sensor values which might be presented in various types: int, float, strings,
etc. This function is defined by several prototypes so as to permit so many input possibilities.

Depending on the sensor field a specific type is needed for Binary frames. If a mismatch occurs, a message will appear through
USB port. The sensor table shows the needed data type for each sensor.

Each call to this function appends a new field if there is enough space for the new field. If not, the field will not be attached.

Example of use:

{
	 //	set	frame	fields	(String	-	char*)
	 frame.addSensor(SENSOR_STR,	(char*)	“STRING”);

	 //	set	frame	fields	(Battery	sensor	-	uint8_t)
 frame.addSensor(SENSOR_BAT, (uint8_t) PWR.getBatteryLevel());

	 //	set	frame	fields	(Temperature	in	Celsius	sensor	-	float)
	 frame.addSensor(SENSOR_IN_TEMP,	(float)	RTC.getTemperature());
}

The last example would create a frame payload with the following structure (depending on the frame mode):

 • ASCII frame. Payload length: 32Bytes

Payload

S T R : S T R I N G # B A T : 8 7 # I N _ T E M P : 2 7 . 2 5 #

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 11: ASCII frame payload example

 • Binary frame. Payload length: 15Bytes

Payload

SENSOR_STR Length “STRING” SENSOR_BAT 0x57 SENSOR_IN_TEMP 0x00 0x00 0xDA 0x41

0 1 2-7 8 9 10 11 12 13 14

Figure 12: Binary frame payload example

-16- v4.1

Usage

Examples:

• Create ASCII frames with simple sensor data (1 field per sensor):

 http://www.libelium.com/development/waspmote/examples/frame-01-ascii-simple

• Create ASCII frames with complex sensor data (more than 1 field per sensor):

 http://www.libelium.com/development/waspmote/examples/frame-02-ascii-multiple

• Create BINARY frames with simple sensor data (1 field per sensor):

 http://www.libelium.com/development/waspmote/examples/frame-03-binary-simple

• Create BINARY frames with complex sensor data (more than 1 field per sensor):

 http://www.libelium.com/development/waspmote/examples/frame-04-binary-multiple

3.6. Adding New Sensor types
In case the user is interested in adding new sensor types, this guide explains how to do this process.

a) Define the new sensor identifier. As the rest of the sensors, it is necessary to define a unique identifier for the new sensor in
WaspFrameConstants.h:

 #define SENSOR_CO 0
 #define SENSOR_CO2 1
 #define SENSOR_O2 2
 #define SENSOR_CH4 3
 ...
 #define NEW_SENSOR ?

b) Define label for the new sensor. As the rest of the sensors, it is necessary to define a unique label for the new sensor in
WaspFrameConstants.h:

 prog_char str_CO[] PROGMEM = “CO”; // 0
 prog_char str_CO2[] PROGMEM = “CO2”; // 1
 prog_char str_O2[] PROGMEM = “O2”; // 2
 prog_char str_CH4[] PROGMEM = “CH4”; // 3
 ...
 prog_char str_NEW[] PROGMEM = “NEW_LABEL”; // ?

c) Fill the Flash Memory tables respecting the defined index in section “a”. The Flash Memory tables are:

 • SENSOR_TABLE: This is a string table in order to define the sensor labels. For ASCII frames.
 • SENSOR_TYPE_TABLE: This is a uint8_t table which specifies the type of sensor depending on the type of value the user

must put as input. Only for Binary frames.
 • SENSOR_FIELD_TABLE: This is a uint8_t table which specifies the number of fields for each sensor.
 • DECIMAL_TABLE: This is a uint8_t table which specifies the number of decimals a float must be set when adding each sensor

to an ASCII frame.

3.7. Showing the actual Frame
There is a function called showFrame which prints the frame structure at the moment this function is called.

Example of use:

{
 frame.showFrame();
}

-17- v4.1

Code examples

4. Code examples
In the Waspmote Development section you can find complete examples:

 http://www.libelium.com/development/waspmote/examples

-18- v4.1

Documentation changelog

5. Documentation changelog
 • Added references to 3G/GPRS Board in section: Expansion Radio Board
 • Added 3G/GPRS in table maximum frame size per protocol
 • Added changes respect to maximum frame size for GPRS, 3G y BT in table maximum frame size per protocol
 • Added changes respect to Serial ID in ASCII and Binary
 • Added changes in tables binary Frame structure and binary Frame example

