

Ordering Guide J Rear Wire System

always on

2053681 R1

Information in this document is subject to change without notice and does not represent a commitment on the part of *Eltek Valere*.

No part of this document may be reproduced or transmitted in any form or by any means—electronic or mechanical, including photocopying and recording—for any purpose without the explicit written permission of *Eltek Valere*.

Copyright © 2008 Eltek Valere

1303 E Arapaho Rd Richardson, TX 75081 USA

Phone: +1 (469) 330-9100 Fax: +1 (469) 330-9101

Sales Support +1 (469) 330-1592 sales.us@eltekvalere.com

> Technical Support +1 (866) 240-6614

www.eltekvalere.com

2053681 R1, October 2008 Published 21 October 2008

Table of Contents

1.	Overview	4
	Power System Description	.4
2.	J Rear Wire System Combinations	5
	Chassis Types	5 6 7 7 7 9 10 11 12 13
3.	How to Order1	L 4
	How to Reach Eltek Valere for Assistance	14
Ар	pendix A - Part Numbering Conventions1	15
	Shelf Part Numbering Rectifier Naming Convention NIC-Series Controller Naming Convention Line Cord Naming Convention Temperature Probes Bullet Style Breaker Naming Convention GMT Fuse Naming Convention TPS Fuse Naming Convention	15 16 16 17 17 17
Ар	pendix B - System Controller Profiles1	19

1. Overview

The *J Rear Wire* system features extraordinary power density in a 1U footprint. Though small in size, it is a full-featured DC power system providing alarming, temperature sense, DC distribution, and an optional low-profile controller.

Power System Description

The power system consists of several configurable items, plug in modules, and associated accessories that are designed to seamlessly work together. These items include:

- Chassis
- J-series Rectifiers
- Network Interface Card (NIC) controller
- AC Line Cords
- Alarm Cables
- Temperature Probes
- Fuses and breakers

Each of these items has a unique and structured part numbering scheme that is described in the proceeding sections.

2. J Rear Wire System Combinations

Chassis Types

The following table provides details of the available chassis. The chassis includes a position for a network interface card (NIC) and J-series rectifiers.

Shelf Family	Width (inches)	Height (U)	DC Distribution Width (inches)	Controller Type	Number of Rectifiers	AC Input Type	DC Output Circuit
JJ	19	1	8	NIC,TRIO	2	S	39
JK	19	1	4	NIC,TRIO	3	S	35
JM	19	1	N/A	NIC	4		1

Table 1 - Chassis Types

Figure 1 - JJ Shelf

Figure 2 - JK Shelf

Figure 3 - JM Shelf

AC Input Types

The following table provides details of the AC connection style and AC input compatibility of the various letter codes.

AC Type Letter Code	Input Type	Termination Style	Input Voltage
S	1¢ Single	Terminal Block or Strip	120/208/240V
I	1Φ Individual	IEC 15A Receptacle	120/208/240V

Table 2 - AC Input Types

DC Distribution Circuits

The circuit diagrams below describe the available DC distribution configurations. Circuit diagrams show available positions for breakers and GMT style fuse outputs. GMT fuse blocks are rated up to 15A. Overcurrent protection devices are ordered separately.

Rectifier Models

Model	Voltage	Current	AC Input	Temperature
J0600A1-VC	48V	12amps	90-264 VAC	-40 to +70°C*
J1000A1-VC	48V	20amps	90-264 VAC	-40 to +70°C*
J1500A1-VC	48V	25amps	90-170 VAC (low line)	-40 to +70°C*
J1500A1-VC	48V	30amps	180-264 VAC (high line)	-40 to +70°C*

Table 3 - J Series Rectifier Models

*Note: Full power up to +50°C; derate above 50°C by 2% per 1°C

Figure 4 - J-Series Rectifier

Micro System Alarm and Communication Options

The Micro System provides two system alarm & communication options: TRIO and NIC.

The TRIO is a built-in control and monitoring card that provides contacts for form C relays and temperature probes through a rear alarm port. It comes standard with the JJ and JK shelves. The JM shelf does not contain a TRIO and therefore does not have form C relay contacts. Instead, the alarm port on the rear of the shelf makes use of the opto-isolated alarms of the rectifiers.

The NIC-series controller provides communication ports and control over system operating parameters. It is an optional device, but it is required to adjust system parameters. The following sections provide more detail on these options and their interactions.

NIC (Network Interface Card)-Series Controller

The NIC-series controller provides various communication connections allowing power system access through a network, or on site communication via appropriate cable connections to a notebook/local computer. This connectivity provides the capability of logging onto the system to change various parameters and/or relay mappings if a TRIO is installed. All parameters are field adjustable, including TRIO-based form C alarm contacts.

Model	Communication
	RS232 (front port)
NIC2001-201-10VV	10/100BASE-T (through Ethernet port on shelf rear)

Table 4 - NIC-Series Controller

Table 5 - NIC2001

AC Line Cords

AC line cords can be purchased from Eltek Valere. The JJ and JK shelves each have a single set of terminal blocks for AC input, requiring only one line cord to power the entire shelf. The JM shelf has an IEC-style connector for each rectifier, requiring a separate line cord for every rectifier installed (up to a maximum of 4 modules). Many cords are available in different wire gauges and lengths. See the naming convention below and Table 7 for available line cords.

Shelf	Line Cord Type	Description	AC Input Type
JJ	LU	Line cord with un-terminated shelf end	S (single feed)
JK	LU	Line cord with un-terminated shelf end	S (single feed)
JM	LI	Line cord with 15A IEC connector	I (individual feed)

Table 6 - Line Cord Types

Available Line Cords

Part #	Description
LI1014-UU	Line Cord, 10', 14 AWG, IEC320-C13 Plug to Un-Terminated
111014-NI515D	Line Cord, 10', 14 AWG IEC320-C13 Plug to NEMA N515P, 120 VAC, 15 Amp
	Non Locking Plug
111014-1615P	Line Cord, 10', 14 AWG IEC320-C13 Plug to NEMA L615P, 240 VAC, 15 Amp
	Non Locking Plug
LI1014-N615P	Line Cord, 10', 14 AWG IEC320-C13 Plug to NEMA N615P, 240 VAC, 15 Amp
	Non Locking Plug
1 11 01 4-1 51 5P	Line Cord, 10', 14 AWG IEC320-C13 Plug to NEMA L515P, 120 VAC, 15 Amp
	Non Locking Plug
LU1008-UU	Line Cord, 10', 8 AWG, Un-Terminated to Un-Terminated
1111008-1650P	Line Cord, 10', 8 AWG IEC320-C13 Plug to NEMA L650P, 240 VAC, 50 Amp
201000 20301	Non Locking Plug
1111008-N650P	Line Cord, 10', 8 AWG IEC320-C13 Plug to NEMA N650P, 120 VAC, 50 Amp
201000 100001	Non Locking Plug
LU1010-UU	Line Cord, 10', 10 AWG, Un-Terminated to Un- Terminated
1111010-1530P	Line Cord, 10', 10 AWG, Un-Terminated to NEMA L530P, 120 VAC, 30 Amp
20101023301	Locking Plug
	Line Cord, 10', 10 AWG, Un-Terminated to NEMA L630P, 240 VAC, 30 Amp
10101010000	Locking Plug
1111010-NI515P	Line Cord, 10', 10 AWG, Un-Terminated to NEMA N515P, 120 VAC, 15 Amp
	Locking Plug

Part #	Description
LU1010-N530P	Line Cord, 10', 10 AWG, Un-Terminated to NEMA N530P, 120 VAC, 30 Amp Locking Plug
LU1010-N630P	Line Cord, 10', 10 AWG, Un-Terminated to NEMA N630P, 240 VAC, 30 Amp Locking Plug
LU1012- L1420P	Line Cord, 10', 12 AWG, Un-Terminated to NEMA N1420P, 480 VAC, 20 Amp Locking Plug
LU1012-L515P	Line Cord, 10', 12 AWG, Un-Terminated to NEMA N630P, 120 VAC, 15 Amp Locking Plug
LU1012-L520P	Line Cord, 10', 12 AWG, Un-Terminated to NEMA N630P, 120 VAC, 20 Amp Locking Plug
LU1012-L620P	Line Cord, 10', 12 AWG, Un-Terminated to NEMA N630P, 240 VAC, 20 Amp Locking Plug
LU1012-N520P	Line Cord, 10', 12 AWG, Un-Terminated to NEMA N630P, 120 VAC, 20 Amp Locking Plug
LU1012-N620P	Line Cord, 10', 12 AWG, Un-Terminated to NEMA N630P, 240 VAC, 20 Amp Locking Plug
LU1012-UU	Line Cord, 10', 12 AWG, Un-Terminated to Un-Terminated
LU1014-L615P	Line Cord, 10', 14 AWG, Un-Terminated to NEMA N630P, 240 VAC, 15 Amp Locking Plug
LU1014-N515P	Line Cord, 10', 14 AWG, Un-Terminated to NEMA N630P, 120 VAC, 15 Amp Locking Plug
LU1014-N615P	Line Cord, 10', 14 AWG, Un-Terminated to NEMA N630P, 240 VAC, 15 Amp Locking Plug
LU1014-UU	Line Cord, 10', 14 AWG, Un-Terminated to Un-Terminated

Table 7 – Line Cord Naming Examples

Alarm Cables

The controller can use three standard length alarm cables (10', 50', and 100'). Note that there are different alarm cables for form C relay contacts and optoisolated alarms. Since the variability of these cables is low, part numbers do not have any set convention.

Part #	Description	Shelf
CA210203104	Form C Relay Alarm Cable – Solid Wire, 10'	JJ, JK
CA210203105	Form C Relay Alarm Cable – Solid Wire, 50'	JJ, JK
CA210203106	Form C Relay Alarm Cable – Solid Wire, 100'	JJ, JK
CA312181178	Opto-isolated Alarm Cable – Solid Wire, 10'	JM

Table 8 - Alarm Cables

Temperature Probes

Temperature probes are available in two styles, ring terminal and paddle, and in two lengths, 10' and 20'.

Part #	Description
TPR10	Thermal Probe, ¼" Ring Terminal, 10'
TPR20	Thermal Probe, ¼" Ring Terminal, 20'
TPP10	Thermal Probe, Paddle Terminal, 10'

Part #	Description
TPP20	Thermal Probe, Paddle Terminal, 20'
TPL10	Thermal Probe, 5/16" Ring Terminal, 10'
TPL20	Thermal Probe, 5/16" Ring Terminal, 20'

Table 9 - Temperature Probes

Figure 5 - Thermal probe (ring terminal)

Figure 6 - Thermal probe (paddle style)

Circuit Breakers

Plug-in circuit breakers with bullet-nosed terminals are compatible only with systems using circuit 35 (JJ shelf) or circuit 39 (JK shelf). Circuit 35 requires a special 1U-high plug-in breaker. Available breakers are listed in the tables on the next page. The JM shelf features bulk DC output only and therefore cannot use breakers or fuses.

Electro-mechanical trip breakers (CBBxxxE) produce an alarm when they are in a tripped state or in the OFF position, and are most useful when protecting batteries in which the user will not know that a breaker has been turned off without an alarm. These breakers have black actuators.

Mid-trip breakers (CBBxxxM) only produce an alarm when in a tripped state, and are most useful when the user wishes to leave a breaker in the system in the OFF position. These breakers have white actuators.

Figure 7 - E-trip bullet-style circuit breaker "CBB"

Circuit 35 Breakers

Circuit 35 (used in the JK shelf) has a single vertical position for a special 1U breaker. This breaker is designated with the prefix "JB". It is available in both electro-mechanical and mid-trip.

Figure 8 - 1U Bullet-style breaker "JBB" for Circuit 35

Circuit Breaker Examples

Common bullet-style circuit breakers:

Part #	Description
CBB000	Strap for bridging circuit breaker position, Bullet Style
CBB005E	Circuit Breaker, Bullet Style, Single Pole, 5 A Electro-Mechanical Trip
CBB010E	Circuit Breaker, Bullet Style, Single Pole,10 A Electro-Mechanical Trip
CBB020E	Circuit Breaker, Bullet Style, Single Pole, 20 A Electro-Mechanical Trip
CBB030E	Circuit Breaker, Bullet Style, Single Pole, 30 A Electro-Mechanical Trip
CBB040E	Circuit Breaker, Bullet Style, Single Pole, 40 A Electro-Mechanical Trip
CBB050E	Circuit Breaker, Bullet Style, Single Pole, 50 A Electro-Mechanical Trip
CBB060E	Circuit Breaker, Bullet Style, Single Pole, 60 A Electro-Mechanical Trip
CBB075E	Circuit Breaker, Bullet Style, Single Pole, 75 A Electro-Mechanical Trip
CBB080E	Circuit Breaker, Bullet Style, Single Pole, 80 A Electro-Mechanical Trip
CBB100E	Circuit Breaker, Bullet Style, Single Pole, 100 A Electro-Mechanical Trip
CBB005M	Circuit Breaker, Bullet Style, Single Pole, 5 A Mid-Trip
CBB010M	Circuit Breaker, Bullet Style, Single Pole, 10 A Mid-Trip
CBB020M	Circuit Breaker, Bullet Style, Single Pole, 20 A Mid-Trip
CBB030M	Circuit Breaker, Bullet Style, Single Pole, 30 A Mid-Trip
CBB040M	Circuit Breaker, Bullet Style, Single Pole, 40 A Mid-Trip
CBB050M	Circuit Breaker, Bullet Style, Single Pole, 50 A Mid-Trip
CBB060M	Circuit Breaker, Bullet Style, Single Pole, 60 A Mid-Trip
CBB075M	Circuit Breaker, Bullet Style, Single Pole, 75 A Mid-Trip
CBB080M	Circuit Breaker, Bullet Style, Single Pole, 80 A Mid-Trip
CBB100M	Circuit Breaker, Bullet Style, Single Pole, 100 A Mid-Trip

Circuit 35 1U bullet-style breakers:

Part #	Description
JBB005E	1U Circuit Breaker, Bullet Style, Single Pole, 5 Amp Electro-Mechanical Trip
JBB010E	1U Circuit Breaker, Bullet Style, Single Pole,10 Amp Electro-Mechanical Trip
JBB020E	1U Circuit Breaker, Bullet Style, Single Pole, 20 Amp Electro-Mechanical Trip
JBB030E	1U Circuit Breaker, Bullet Style, Single Pole, 30 Amp Electro-Mechanical Trip
JBB040E	1U Circuit Breaker, Bullet Style, Single Pole, 40 Amp Electro-Mechanical Trip
JBB050E	1U Circuit Breaker, Bullet Style, Single Pole, 50 Amp Electro-Mechanical Trip
JBB060E	1U Circuit Breaker, Bullet Style, Single Pole, 60 Amp Electro-Mechanical Trip
JBB005M	1U Circuit Breaker, Bullet Style, Single Pole, 5 Amp Mid-Trip
JBB010M	1U Circuit Breaker, Bullet Style, Single Pole, 10 Amp Mid-Trip
JBB020M	1U Circuit Breaker, Bullet Style, Single Pole, 20 Amp Mid-Trip
JBB030M	1U Circuit Breaker, Bullet Style, Single Pole, 30 Amp Mid-Trip
JBB040M	1U Circuit Breaker, Bullet Style, Single Pole, 40 Amp Mid-Trip
JBB050M	1U Circuit Breaker, Bullet Style, Single Pole, 50 Amp Mid-Trip
JBB060M	1U Circuit Breaker, Bullet Style, Single Pole, 60 Amp Mid-Trip

Fuses

GMT fuses are small blade type fuses that have a maximum rating of 15 amps.

TPS fuses are larger fuses, which fit into a holding device that looks similar to a bullet-style circuit breaker. TPS fuses are rated and available up to 100 amps and take up one circuit breaker position. All TPS fuse holders come with a 0.18A GMT fuse for alarm indication. A fuse holder, which is the same for all fuse sizes, and the fuse are ordered as separate line items.

Figure 9 - TPS fuse and holder

Figure 10 - GMT indicator fuse

Fuse Examples

Part #	Description
GMT0018	Fuse, GMT Style, 0.18 A
GMT0100	Fuse, GMT Style, 1 A
GMT0133	Fuse, GMT Style, 1.33 A
GMT0200	Fuse, GMT Style, 2 A
GMT0300	Fuse, GMT Style, 3 A
GMT0400	Fuse, GMT Style, 4 A
GMT0500	Fuse, GMT Style, 5 A
GMT0700	Fuse, GMT Style, 7 A
GMT0750	Fuse, GMT Style, 7.5 A
GMT1000	Fuse, GMT Style, 10 A
GMT1500	Fuse, GMT Style, 15 A
TPS010	Fuse, TPS Style, 10 A
TPS015	Fuse, TPS Style, 15 A
TPS020	Fuse, TPS Style, 20 A
TPS025	Fuse, TPS Style, 25 A
TPS030	Fuse, TPS Style, 30 A
TPS040	Fuse, TPS Style, 40 A
TPS050	Fuse, TPS Style, 50 A
TPS060	Fuse, TPS Style, 60 A
TPS100	Fuse, TPS Style, 100 A
TPSB100	Fuse Holder, Bullet-Nose Terminal

For TPS fuses, part number TPSB100 is a bullet-nosed plug-in fuse holder that fits into standard bullet breaker positions.

3. How to Order

To order a complete working system, select part numbers and quantity for the following items.

- 1. Chassis and TRIO (if applicable)
- 2. J-series rectifier(s)
- 3. Network interface card controller (optional)
- 4. AC line cord(s)
- 5. Alarm cable
- 6. Thermal probes
- 7. GMT fuses (circuit 35 or circuit 39)
- 8. Circuit breaker or TPS fuses

How to Reach Eltek Valere for Assistance

Eltek Valere Headquarters (Business hours are 8AM to 6PM Central US)	1-877-825-3731
Sales Support (sales.us@eltekvalere.com)	1-469-330-1592
24-Hour Tech Services Line	1-866-240-6614

Appendix A - Part Numbering Conventions

The following sections show how to read the *J Rear Wire* part numbering conventions. Other configurations based on these guidelines may also be available. Please consult your Eltek Valere representative for availability and lead time.

Shelf Part Numbering

The following part numbering convention can be used to identify the J Rear Wire shelf:

Figure 11 - Shelf Naming

Rectifier Naming Convention

Use the naming convention below to determine the part number of the required rectifiers.

Figure 12 - Rectifier Naming

NIC-Series Controller Naming Convention

<u>NIC 2001 - Z 01 - 10 VC</u>

Figure 13 - NIC Naming Convention

Line Cord Naming Convention

Refer to AC Cable drawing CA113002282 for more information. Use the following naming convention to identify appropriate AC cables:

Figure 14 - Line cord naming convention

The NEMA AC plug type suffix (L615P in the example above) is in the form: **wxyyz**

 $\mathbf{w} - \mathbf{L} = \mathbf{Locking}$ or $\mathbf{N} = \mathbf{Non-locking}$

 \mathbf{x} – 5 is for 3-wire (delta), low line AC; 6 is for 3-wire, high line AC; 14 is for 4-wire (wye), high line AC

yy – Current rating of plug in amps

z – Plug (P)

Temperature Probes

Bullet Style Breaker Naming Convention

Figure 16 - Bullet Style Breaker Naming Conventions

GMT Fuse Naming Convention

TPS Fuse Naming Convention

Figure 18 - TPL Fuse Naming Convention

Appendix B – System Controller Profiles

The controller has many adjustable system operating parameters that provide tremendous flexibility in managing a variety of applications. These operating parameters are field adjustable and can also be factory programmed to a specific set of values. Up to three presets or "setting registers" may be stored to make future system adjustments easy. Each profile is given a two-digit identifier. The 01 profile is the standard parameter set that ensures safe system operation. The following tables list some of the system operating parameters for a 48V *J Rear Wire* system.

		Register
System Parameters	Description	Values
Plant Settings		Nominal 48 Vdc
Float Voltage	The voltage to which the rectifiers will regulate the plant voltage during float mode (Volts)	54 V DC
High Voltage Shutdown	The Controller/NIC will shut down the rectifiers if the plant voltage exceeds this set point. (Volts)	58 V DC
Rectifier Current Limit	Enables the system current limit feature	Disabled
Current per Rectifier	The Controller/NIC will limit the current of the rectifiers to this value (Amps)	220 A
Language	Webpage language display	English
Alarm Settings		
High Voltage Alarm	The Controller/NIC will issue a High Voltage Alarm if the plant voltage exceeds this set point (Volts)	57 V DC
Battery on Discharge	The Controller/NIC will issue a Battery-On- Discharge alarm if the plant voltage falls below this set point (Volts)	48 V DC
Low Voltage Alarm	The controller will issue a Low Voltage Alarm if the plant voltage falls below this set point (Volts)	44 V DC
Communication Alarm	An alarm is set if any rectifier either stops communicating or is removed from the shelf. User action is required to clear the alarm	Disabled
Battery Boost Settings		
Boost Voltage	The output voltage to which the rectifiers will raise to when the Boost feature is executed (Volts)	56.5 V DC
Boost Duration	Duration of time the boost charge is active (H:M:S)	12:00:00
Boost Stop Current	The lower limit at which the boost test will stop. 0 = disabled. Requires battery shunt (Amps)	0
Battery Boost Start Modes		
Manual Mode	Enables or disables the manual boost mode feature	Disabled
Periodic Mode	Enables or disables automatic boost mode that runs a boost test every x number of days	Disabled

		Register
System Parameters	Description	Values
Doriod	The number of days in between periodic boost	30 Days
Pendu	The time of day the periodic boost mode will	
Time of Day	start (H:M:S). 24 hour format	8:00:00
	Enables or disables the current based	
	autoboost test. When enabled the boost	Disabled
Auto Current Mada	feature will automatically start if the start	
Auto current Mode	The amount of time the start current must be	
Current Delay	exceeded before the test will start. (Minutes)	0
	The value at which the current autoboost test	100 4
Start Current	will start. (Amps)	100 A
	Enables or disables the AC fail based autoboost	
	test. When enabled the boost feature will	Disabled
AC Fail Mode	than the AC fail duration	
	The length of time the AC failure must last to	0.1 5.00
AC Fail Duration	trigger the autoboost feature (H:M:S)	0:15:00
	The voltage the batteries must drop below	
	during the AC failure to trigger the autoboost	44 V DC
DC Drop Voltage	feature (Volts)	
Battery Discharge Test	Sate the length of time that the battery	
Duration	discharge test will run (H·M·S)	0:30:00
Daration	Sets the voltage at which an alarm will be	
	generated if the battery voltage falls below it	42 V DC
Alarm Voltage	during the Battery Discharge Test. (Volts)	
	The voltage at which the battery discharge test	(0) (0 0
Abort Voltage	will abort at when the battery voltage drop	42 V DC
Abort voltage	Enabling this value will take thermal	
	compensation effects into account during the	
	test. Disabling this value will disable Thermal	
	Compensation effects during the test. Both	Disabled
	Thermal Compensation and T Comp BDT have to	
Thormal Comp Adjust	be Enabled for thermal comp. effects to take	
BDT Start Modes		
BDT Start Houes	Enables or Disables the battery discharge test	
Manual Mode	feature	Disabled
Rechrg I Limit		
Battery Recharge Current Limit Enable	Enables the battery recharge current limit function	Disabled
Battery Pechargo Current	The maximum amount of current that the	
	controller will allow to flow into the battery	40 V DC
	during recharge. (Amps)	
Thermal Comp Setpoints	Engling or display theread correspondential	Dischlad
Inermal Compensation	Enables of disables thermal compensation	DISADLED

		Register
System Parameters	Description	Values
Thermal Sense	Selects temperature sensing device to use for battery temperature compensation; Internal sensor or External temp probes.	External
Temperature Units	Select either degrees C or F	Celsius
T Comp Boost		
High Start Temp	The controller begins to reduce the float voltage when the highest measured battery temperature reaches this value (°C)	35℃
High Slope	If battery temperature is above the start temperature, the controller will linearly reduce the plant voltage by this slope (mV/°C)	72 mV/°C
High Stop Voltage	The minimum voltage to which the controller will reduce plant voltage for thermal compensation (Volts)	50.5 V DC
Low Start Temp	The controller begins to increase the float voltage when the lowest measured battery temperature reaches this value (°C)	-20°C
Low Slope	If battery temperature is below the start temperature, the controller will linearly increase the plant voltage by this slope (mV/°C)	0 mV/℃
Low Stop Voltage	The maximum voltage to which the controller will raise plant voltage for thermal compensation (Volts)	56 V DC
Runaway Temperature	The temperature at which the controller will reduce the Float Voltage to Runaway Clamp Voltage (°C)	60°C
Runaway Stop Voltage	The Float Voltage to which the controller will reduce for temperatures above Runaway Clamp Voltage (Volts)	50 V DC
LVD Setpoints		
Battery LVD Open Voltage	The battery LVD contactor will open if the plant voltage falls below this setpoint (Volts)	42 V DC
Battery LVD Disconnect Delay Time	The amount of time the system voltage must be below the battery LVD disconnect voltage before the contactor will open (Sec)	0:00:05
Battery LVD Reconnect Voltage	The battery LVD contactor will reconnect if the plant voltage exceeds this setpoint (Volts)	50 V DC
Battery LVD Reconnect Delay Time	The amount of time that the plant voltage must exceed the battery LVD reconnect setpoint prior to reconnecting the LVD contactor (secs)	0:00:20

Table 10 - Controller Parameters (Profile A01)

www.eltekvalere.com

Gråterudv. 8, Pb 2340 Strømsø, 3003 Drammen, Norway Phone: +47 32 20 32 00 Fax: +47 32 20 32 10

Eltek Valere