VKQ100MS12 REV B 01/2004

VKQ100MS12

100 Watt, 12Vout, Quarter Brick DC/DC Converter

- 36 75V Input Range
- Small Size: 1.5" x 2.3" x .50"
- High Efficiency: 88%
- Fixed Frequency Operation 480kHz
- Primary Remote On/Off
- Adjustable Output Voltage
- Brick Wall Current Limiting
- On Board Input Differential Filter
- No Minimum Load Requirement Workstations
- Remote Sense

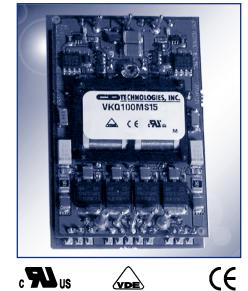
output voltage regulation. In addition, the output is fully isolated from the input, allowing for a variety of polarity and grounding configurations.

Innovative circuit design using surface mount components results in a compact, efficient and reliable solution to DC/DC conversion needs. Internal power dissipation is minimized by the VKQ100MS12's high efficiency and is aided by a metal baseplate to which all

- No Heatsink Required
- No External Components Required
- Safety per UL/CUL 60950 and VDE to EN 60950.Operational Insulation Meets TNV-SELV **Isolation Requirements**

APPLICATIONS

- Distributed Power Architectures
- Telecommunications
- Battery Powered Systems


heat dissipative elements are coupled. The control circuitry of the

VKO100MS12 has been designed to provide overvoltage protection as well as current limiting for continuous shortcircuit protection. The VKQ100MS12 is specified for operation from zero load to full load.

PRODUCT SELECTION CHART						
	NOMINAL INPUT	RATEDOUTPUT	RATED OUTPUT	INPUTCURRENT	EFFICIENCY	
	VOLTAGE	VOLTAGE	CURRENT	NOM	MIN	ТҮР
MODEL	(VDC)	(VDC)	(A)	(A)	(%)	(%)
VKQ100MS12	48	12	8.33	2.50	88	88.50

ORDERING INFORMATION				
MODEL NO.	PART NO.			
VKQ100MS12	6064924			

ABSOLUTE MAX. RATINGS					
Output Short-Circuit Duration	Continuous				
Internal Power Dissipation	13.7 Watts				
Lead Temperature (soldering, 10 seconds max)	+300°C				
Continuous Input Voltage	75 VDC				
Storage Temperature	+125°C				
Input to Output Isolation	1500 Vpc				
Input Voltage (non-operating)	100 VDC				

The VKQ100MS12 DC/DC converter

presents an economical and practical

solution for distributed power system

architectures which require high power

system modularity and upgradeability.

With the ability to operate over a wide

module is ideal for telecommunications

and battery backup applications where

input flexibility must be combined with

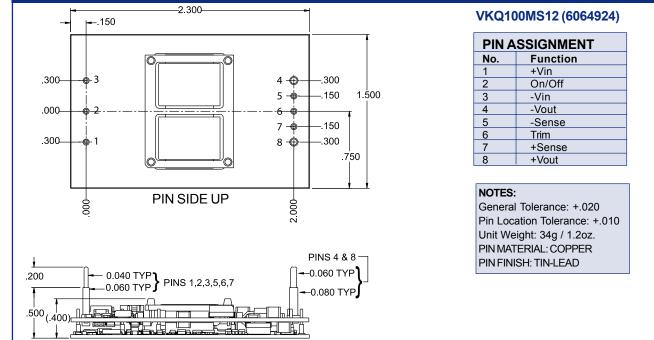
input voltage range of 36 to 75 VDC, this

density and efficiency while maintaining

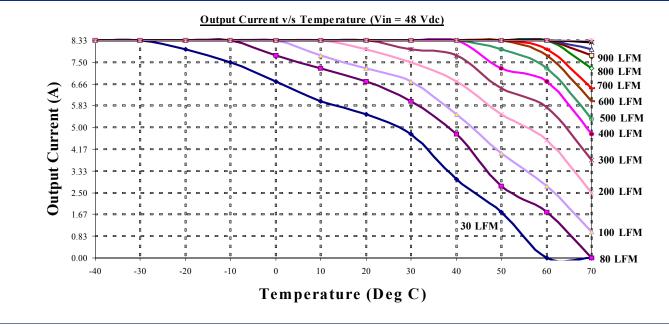
SPECIFICATIONS Unless otherwise specified, all specifications are at $T_A = +25^{\circ}$ C.

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS
Voltage Range (Vin)		36	48	75	VDC
Reflected Ripple Current ₁	Vin = 48 VDC; Io = 8.33 A.			4	A pk-pk
Input Ripple Rejection (100 Hz – 1KH	z) Vin = 48 VDC; Io = 8.33 A.	-30			dB
No Load Input Current	Vin = 48 V DC ; lo = 0 A.		90	100	mA
Quiescent Input Current					
Primary On/Off Disabled	Vin = 48 VDC; Io = 8.33 A.			5	mA
Power Dissipation	Vin = 48 VDC				
No Load			5.80	6.30	W
Standby, Primary On/Off Disabled				0.24	W
Maximum Input Current	Vin = 36 Vdc; Io = 8.33 A.			3.20	A
Inrush Charge	Vin = 75 VDC			0.165	mC
Input Under Voltage Protection	Tamb = -40° C to $+60^{\circ}$ C;			0.100	
- input ender Folkage Freteoden	Io = 0 A to 8.33 A				
Shut down		31.50		32.50	VDC
Turn On		32.50		33.70	VDC
Input Over Voltage Protection	Tamb = -40°C to +60°C;	02.00		00.10	
input over voltage i rotection	lo = 0 A to 8.33 A				
Shut down	10 - 0 A 10 0.55 A	76.50		79.00	VDC
Turn On		76.00		79.00	VDC
	Tamb = 125% to = 0.0 to 9.220	70.00		76.00	VDC
Input Under Voltage Protection	Tamb = $+25^{\circ}$ C; lo = 0A to 8.33A	20.00		20.05	1/20
Shutdown		32.00		32.25	VDC
Turn On	T 1 1000 1 10000	33.00		33.50	VDC
Input Over Voltage Protection	Tamb = -40° C to $+60^{\circ}$ C;				
	Io = 0 A to 8.33A				
Shut down		77.70		79.00	VDC
Turn On		76.20		77.60	VDC
OUTPUT					
Nominal Voltage (Vnom)			12.000		VDC
Output Current (Io) 2	Vin = 36 VDC to 75 VDC	0	12.000	8.33	A
Rated Power 2	Vin = 36 VDC to 75 VDC	0		100	W
Set Point Accuracy	Vin = 48 VDC: lo = 4.17 A:	0		100	~~~~
Set Follit Accuracy	Tamb = -40° C to $+60^{\circ}$ C.			1	% of Vnom
	Tamb = $+40$ C to $+60$ C. Tamb = $+25^{\circ}$ C			0.50	% of Vnom
Line Degulation				0.50	% OF VHOM
Line Regulation	Vin = 36 VDC to 75 VDC;				
	Tamb = -40° C to $+60^{\circ}$ C;		0.00	0.075	0/
	lo = 8.33 A.		0.02	0.075	% of Vnom
	Tamb = +25°C		0.01	0.05	% of Vnom
Load Regulation	Vin = 36 VDC to 75 VDC;				
	Io = 0 A to 8.33 A.				
	Tamb = -40°C to +60°C;		0.50	0.75	% of Vnom
	Tamb = +25°C; Vin = 48VDC		0.10	0.25	% of Vnom
Ripple & Noise ₃	Vin = 36-75 VDC; lo = 8.33 A;				
	T _A = -40°C to +60°C				
	f < 20 MHz Bandwidth.			150	mV pk-pk
Temperature Drift	Tamb = -40°C to +60°C;				
	Vin = 48 VDC; Io = 8.33 A.		0.005	0.01	%/°C
Current Limit Inception	Vin = 48 V _{DC}	9.00		12.00	A
Output Voltage Adjust Range	Vin = 48 Vdc; Io = 0-8.33 A	-10		+10	%Vnom
Short Circuit Current	Vin = 48 VDC	8.00		13.00	A
Turn – On Time	Vin = 48 VDC; lo = 0-8.33 A				
	Output to within 1% of Vnom		7.00	10.00	ms
Over Voltage Protection Set Point	Vin = 48 VDC; lo = 8.33 A.	15.00	1.00	19.00	Vdc
Transient Response	50% to 100% Load Step to	10.00		10.00	100
Transient Response	$di/dt = 75A/\mu S;$				
Peak Deviation	$C_0 = 220\mu F$; Vin = 48VDC			250	mV
Settling Time	00 - 220μι, νιιι - 40νου			100	μS
				100	μο
GENERAL					
	1/10 = 40 1/20 = 10 = 0.000	00	00 5		0/
Efficiency ₄	Vin = 48 VDC; lo = 8.33 A.	88	88.5	500	%
Switching Frequency	Vin = 36 VDC-75 VDC; lo = 0-8.33 A	460	480	500	KHz
Remote Sense Compensation	Vin = 48 VDC			0.500	Vdc
Remote On / Off Control Inputs	Vin = 36 VDC-48 VDC; lo = 0-8.33 A				
	Tamb = -40°C to +60°C				
Remote On / Off Control Inputs Primary Sink Current – Logic Low Vlow					
Sink Current – Logic Low		0.60		1.60	mA
Vlow			0.70	0.75	Vdc
Vhigh		N/A	N/A	N/A	Open Collector
Calculated MTTF	Vin = 48 VDC; lo = 8.33 A				
Per Telcordia TR-NWT-000332		TBD			Hours
Per MIL=HDBK217E		TBD			Hours
Operating Ambient Temperature				170	
		-40		+70	°C

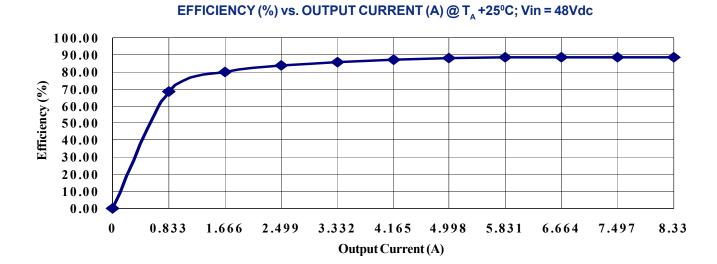
SPECIFICATIONS Unless otherwise specified, all specifications are at $T_A = +25^{\circ}C$.

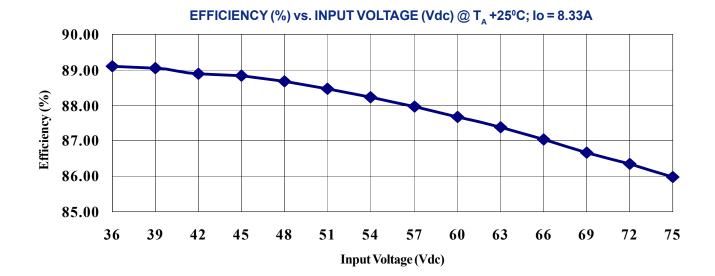

			А			
Z	PARAMETER	CONDITIONS	MIN	NOM	MAX	UNITS
δ	ISOLATION					
Ĕ.	Input to Output		1500			VDC
4	Input to Base Plate		1500			VDC
	Output to Base Plate		500			VDC
Q	Resistance	Input to Output	10			MΩ
<u></u>	Capacitance	Input to Output		2000		pF
	Leakage Current	V(input – output) = 240 VAC, 60 Hz		180		μA, rms

Notes: 1. Refer to figure 1 (measurement per "B") in Application Note DCAN-53 for details on the measurement technique used to measure the reflected ripple current.
2. Refer to the performance curves section for details on Output Current Derating with Ambient Temperature. Also refer to figure 10 in the Application Note DCAN-53 for details on air flow characterization.

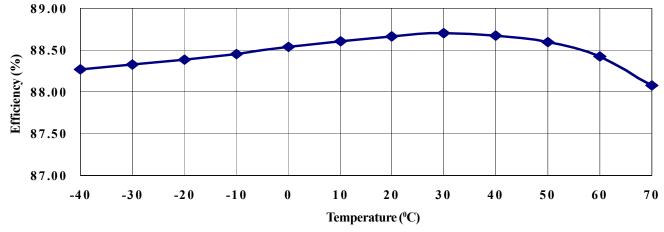

 Refer to figure 7 in Application Note DCAN-53 for details on measurement set up for output ripple and noise. Also refer to performance curves section for variation in output ripple and noise with Ambient Temperature, Input Voltage and Output Current. The unit requires a ceramic capacitor of 0.10µF across measurement terminals.

4. Refer to performance curves section for variation in efficiency against Input Voltage, Ambient Temperature, Output Load and Frequency.

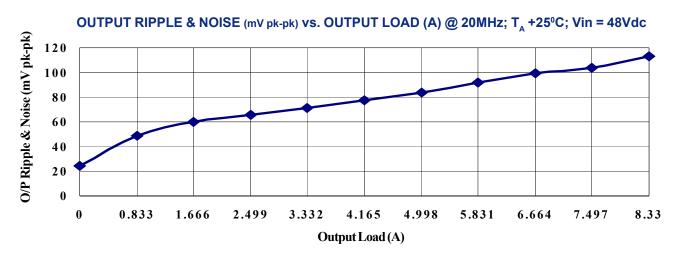

MECHANICAL

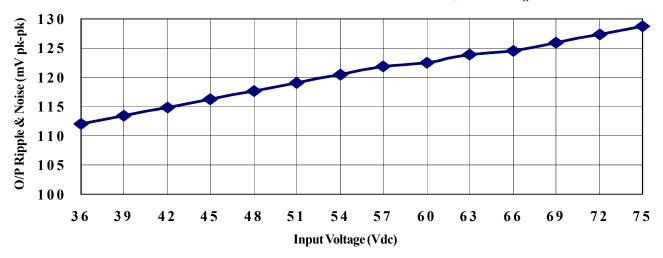


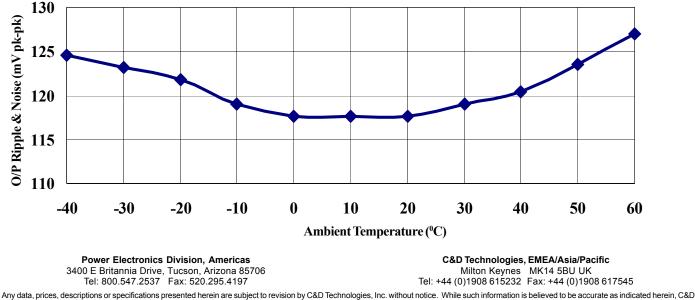
POWER DERATING CURVE (Vin = 48Vdc)



TYPICAL PERFORMANCE CURVES




EFFICIENCY (%) vs. AMBIENT TEMP. (°C) @ Vin = 48Vdc; lo = 8.33A


TYPICAL PERFORMANCE CURVES

OUTPUT RIPPLE & NOISE (mV pk-pk) vs. AMBIENT TEMP. (°C) @ 20MHz; Vin = 48Vdc; Io = 8.33A

Technologies, Inc. makes no warranty and hereby disclaims all warranties, express or implied, with regard to the accuracy or completeness of such information. Further, because the product(s) featured herein may be used under conditions beyond its control, C&D Technologies, Inc. hereby disclaims all warranties, either express or implied, concerning the fitness or suitability of such product(s) featured herein may specific application or arising from any course of dealing or usage of trade. The user is solely responsible for determining the suitability of the product(s) featured herein for user's intended purpose and in user's specific application. C&D Technologies, Inc. does not warrant or recommend that any of its products be used in any life support or aviation or aerospace applications.