Active safety systems

SMI860 combined inertial sensor for vehicle dynamics control

PRODUCT BENEFITS

- ► Target applications
 - ESP®
 - Roll-over sensing
 - Adaptive cruise control
 - Short-term localization
 - and other safety and ADAS functions
- ► Excellent vibration robustness and offset stability
- ► Developed for systems with requirements up to ASIL D

1 Ball grid array package (BGA), 7 mm × 7 mm × 1.5 mm

reliable operation

due to excellent vibration resistance

TASK

The SMI860 is especially designed to support safety and ADAS functions with ASIL rating: ESP®, roll-over sensing, adaptive cruise control, hill-hold control, and short-term localization for ADAS functions. The SMI860 is a five axis sensor measuring yaw rate (Ω_z) , roll rate (Ω_x) and acceleration (a_{xyz}) . It provides all relevant inertial signals in just one sensor. Subsequent system algorithms will use these sensor signals to compute the dynamical driving state of a vehicle or its position.

FUNCTION

The SMI860 sensor is based on MEMS technology combining gyroscope and low-g acceleration sensors.

Its gyros can measure whether a vehicle is rotated around its vertical or lateral axis, the low-g channels will detect whether an acceleration is exerted to the vehicle.

Rotations will deflect a micro machined seismic mass of a MEMS gyro chip, accelerations deflect a MEMS accelerometer chip. As a result of external forces acting on the vehicle, deflections of the seismic masses along the sensitive axis generate changes in the capacity of the system. These movements are detected by a signal conditioning ASIC. Subsequent processing consists of low-pass filtering the signals and translating them into a SafeSPI communication protocol. The sensor is developed according to ISO26262 for use in systems up to ASIL D.

safe and economical

integrated sensor solution, applicable in systems up to ASIL D requirements

MEASUREMENT CHARACTERISTICS

Measurement axis	$\Omega_{\textbf{x}}$	Ω_{z}	a _{xy}	a _z
Range	±300°/s		6 g	
Digital resolution	16-bit		16-bit	
Sensitivity (nominal)	100LSB per°/s		5000LSB perg	
Sensitivity variation ¹	±3%		±3%	
Offset variation ¹	±2°/s	±3°/s	50 mg	55 mg
Noise (rms)	±0.1°/s		4 mg	6 mg

TECHNICAL CHARACTERISTICS

Communication	SafeSPI
Low pass filter settings: f _{-3dB} ²	10, 20 or 80 Hz
Start-up time³	max. 400 ms

OPERATING CONDITIONS

Supply voltage	3.3 V, 5 V or 6.7 V
Supply current	<28mA
Operating temperature	-40°C to +125°C

¹ over lifetime and temperature

² nominal corner frequency corresponding to programmable filter settings

³ depends on filter settings. Here: incl. up to 3 self-tests for 80 Hz setting