

Product Specification

US0075-001 Ultrasonic Liquid Flow Transducer (Plastic - 1 MHz)

Description

The Ultrasonic Flow Transducer is used as the core element of ultrasonic flow meters. Ultrasonic flow measurement uses the transit time principle, whereby opposite sending and receiving ultrasonic flow sensors are used to transmit signals through the flow. The signal travels faster when moving with the flow stream than it does against the flow stream. The difference between the two transit times is used to calculate the flow rate.

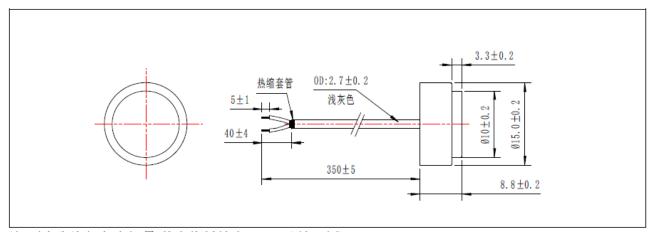
Features

- High sensitivity with receive signal rapidly reaching peak value for easy processing.
- Highly stable electrical performance at high and low temperature with zero flow drift.

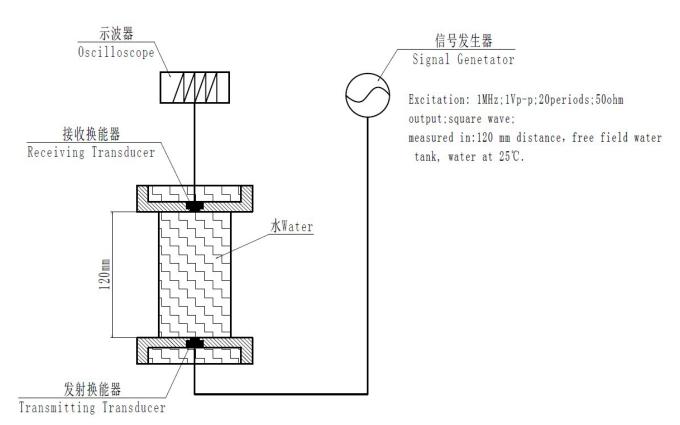
Ordering Information

Part Number: US0075-001

Model Number: T/R1130-US0075L353-01


Electrical Specifications

No.	Item	Specification	Unit	Test Condition: T = 25°C	
1	Thick Resonant Frequency	1130 ± 30	KHz	Microtest 6632 Impedance Analyzer	
2	Resonant Impedance	600 ± 250	Ω	Microtest 6632 Impedance Analyzer	
3	Receive Signal Amplitude	290 ± 70	mV	Test Equipment: 1. Square Wave Generator: 1MHz/1.0Vpp/20Puls/square wave/ default at 0°/Output impedance 50Ω. 2. Oscilloscope: 10X probe.	
4	Free Capacitance	400 ± 20%	pF	Digital electric bridge at 1000Hz/1V	
5	Maximum Input Voltage	5	V_{PP}	At 1MHz	
6	Maximum Pressure Rating	2.5	MPa		
7	Mean Time to Failure	5	years	At 1MHz/1VP-P	
8	Operating Temperature	+0.1~+90	°C		
9	Storage Temperature	-25 ~ +90	°C		


US0075-001 Ultrasonic Liquid Flow Transducer (Plastic - 1 MHz)

Appearance and Dimensions (Units = mm)

Note: All materials comply with RoHS Standards with piezoelectric ceramic exempt from lead restriction.

Receive Signal Measuring Method

US0075-001 Ultrasonic Liquid Flow Transducer (Plastic - 1 MHz)

Environmental Testing

Environmental Tests

Tost Itom		Accontance Criteria
Test Item	Test Procedure	Acceptance Criteria
Low	1. Place the transducer in a non-operating environment of -	
Temperature	40°C ± 3°C for 96h.	Meet $\textcircled{1}$ and $\textcircled{2}$
Storage Test	After placing transducer at room temperature for 24h, test transducer operation.	
	Place the transducer in a non-operating environment of	
High	+90°C ± 2°C for 96h.	Meet $\textcircled{1}$ and $\textcircled{2}$
Temperature	 After placing transducer at room temperature for 24h, test 	Wieet (1) and (2)
Storage Test	transducer operation.	
Low	1. Place the transducer in an operating environment of -25°C	
Temperature	± 3°C for 2h.	Meet $\textcircled{1}$ and $\textcircled{2}$
Operation	2. After placing transducer at room temperature for 24h, test	0 0
Test	transducer operation.	
High	1. Place the transducer in an operating environment of +90°C	
Temperature	± 2°C for 2h.	Meet $\textcircled{1}$ and $\textcircled{2}$
Operation	2. After placing transducer at room temperature for 24h, test	
Test	transducer operation.	
	1. Repeat the following for 6 cycles:	
	a. Place the transducer for 1h @25 \pm 3°C, 95%HR	
Cyclic Damp	b. Increase to $55 \pm 3^{\circ}$ C within 3h and hold for $9 \pm 0.5h$	Meet $\textcircled{1}$ and $\textcircled{2}$
Heat Test	c. Decrease to $25 \pm 3^{\circ}$ C within 3h and hold for 9 ± 0.5 h	
	2. After placing transducer at room temperature for 24h, test	
	transducer operation.	
	1. Sweep frequency range 10Hz~55Hz, amplitude 1.5mm,	
\/ibration Tost	sweep frequency 1oct/min, vibration in X, Y, Z directions for 2h.	Most 1 and 2
Vibration Test	 After placing transducer at room temperature for 24h, test 	Meet $\textcircled{1}$ and $\textcircled{3}$
	transducer operation.	
	Repeat the following for 100 cycles	
	a. Place the transducer for 0.5h @ -20°C±3°C	
Rapid	b. Increase to +70°C ± 2°C within 3mins and hold for 0.5h	
Temperature	c. Decrease to -20°C ± 3°C	Meet $\textcircled{1}$ and $\textcircled{2}$
Change Test	2. After placing transducer at room temperature for 24h, test	
	transducer operation.	
	1. Perform 4 drops from a drop height of 50 ± 5 mm.	
Drop Test	2. After placing transducer at room temperature for 4h, test	Meet $\textcircled{1}$ and $\textcircled{3}$
	transducer operation.	
	1. Place transducer in a flow condition and slowly increase to	
Static	4.8Mpa and hold for 15mins.	Meet $\textcircled{1}$ and $\textcircled{3}$
Pressure Test	2. After placing transducer at room temperature for 4h, test	wicet (2) and (3)
	transducer operation.	
	1. Apply a water pressure of 6Mpa to the transducer for 1	
Burst Pressure	min.	No damage
Test	2. After placing transducer at room temperature for 4h, test	(breakthrough)
	transducer operation.	

US0075-001 Ultrasonic Liquid Flow Transducer (Plastic - 1 MHz)

Environmental Tests (cont'd)

Test Item	Test Procedure	Acceptance Criteria	
	1. Test with pressure variation from 0.5Mpa to 2.4Mpa for		
Water	100,000 cycles.	Meet $\textcircled{1}$ and $\textcircled{4}$	
Hammer Test	2. After placing transducer at room temperature for 4h, test	ivieet (1) and (4)	
	transducer operation.		
	1. Test with duty cycle 20 ~ 80°C during 4000 cycles (90s		
Endurance	insulation time, 10s conversion time.	Meet (1) and (4)	
Test	2. After placing transducer at room temperature for 24h, test	ivieet (1) and (4)	
	transducer operation.		
Constant	1. Apply 85°C ± 2°C @ 85%RH to the transducer for 240h		
Damp Heat	2. After placing transducer at room temperature for 24h, test	Meet $\textcircled{1}$ and $\textcircled{4}$	
Test	transducer operation.		

Environmental Test Acceptance Criteria

No.	Description		
1	No abnormal changes in appearance, no deformation, cracking, corrosion, excessive glue etc.		
2	Fr2 varies ± 1.50%, Zr2 varies within ± 30%, capacitance varies within ± 20%, amplitude varies within ± 15%.		
3	Fr2, Zr2, capacitance and amplitude within specification.		
4	Amplitude variation within $\pm 15\%$.		

Packaging for Shipping

PCS / CTN	Carton 123 (mm)	Carton 125 (mm)	Gross weight (kg)	Net Weight (kg)
720	440 x 320 x 35	44 x 32 x29	5.0	3.5

Precautions

- 1. The product can only be used for liquid medium, not for air medium.
- 2. It is recommended to incorporate an anti-interference function in the drive circuit.
- 3. To prevent accidents caused by work failure, the failure prevention function should be added in the design of secondary products.
- 4. To prevent the sensor from malfunctioning, working failure or performance degradation, avoid using this product under the following or similar conditions:
 - a. Strong shock or vibration.
 - b. Soluble organic matter environment
 - c. Application of an input voltage outside of the specified maximum range.

US0075-001 Ultrasonic Liquid Flow Transducer (Plastic - 1 MHz)

Revision History

Revision	Revision		Pages
Number	Date	Description	Changed
A1	2022-1-19	New Standard Specification	-

Contacts

For pricing, delivery, and detailed ordering information please contact:

Audiowell International 12060 County Line Rd. Suite J 265 Madison, AL 35756

Phone: 256.929.3734

Email: sales@audiowell-international.com

Tentative Release

This specification is based on design objectives and is strictly Preliminary and subject to change. Test data may exist, but this specification is subject to change based on the results of additional testing and evaluation. Application specific specifications will be produced for approval prior to production product being released.

This product can expose you to chemicals including Lead, Chromium (hexavalent compounds) and Phthalates (DEHP) which are known to the State of California to cause cancer and birth defects or other reproductive harm. For more information, go to www.P65Warnings.ca.gov