
AtlasScientific Environmental Robotics

V 2.1 Revised 10/23

Table of contents

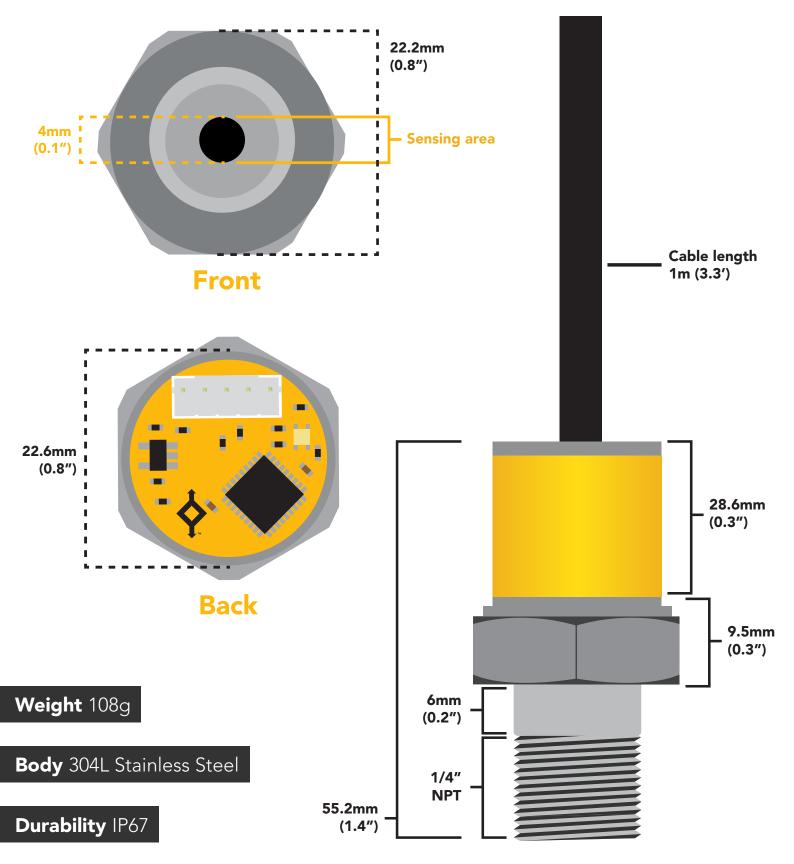
34445

EZO-PRS [™] dimensions
Operating principle
Power consumption
Absolute max ratings
Gauge pressure vs
Absolute pressure

UART

UART mode	12
Receiving data from device	13
Sending commands to device	14
LED color definition	15
UART quick command page	16
LED control	17
Find	18
Continuous mode	19
Single reading mode	20
Alarm	21
Custom calibration	22
Add/remove decimal places	23
Pressure units	24
Naming device	25
Device information	26
Response codes	27
Reading device status	28
Sleep mode/low power	29
Change baud rate	30
Protocol lock	31
Factory reset	32
Change to I ² C mode	33
Manual switching to I ² C	34

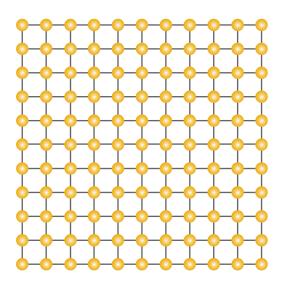
Typical applications	6
Calibration theory	8
Pin out	8
Default state	9
Available data protocols	10

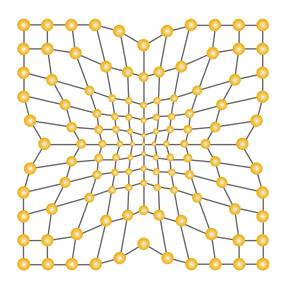

²C

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Datasheet change log	58
Firmware updates	58
Warranty	59

Atlas Scientific


EZO-PRS[™] dimensions



Operating principle

Internally the pressure sensor uses a piezoresistive semiconducting element. The semiconducting element (a silicon wafer) changes its resistance in proportion to pressure. As the pressure increases the atomic spacing of the silicon atoms decreases, this in turn lowers the resistance of the silicon wafer.

Atmospheric pressure

50 PSI

Chemical compatibly

Any gas, liquid or oil compatible with 304L Stainless Steel.

	LED	ΜΑΧ	STANDBY	SLEEP
5V	ON	14.25 mA	14.25 mA	1.66 mA
	OFF	14.00 mA	14.00 mA	
3.3V	ON	13.21 mA	13.21 mA	0.85 mA
	OFF	12.95 mA	12.95 mA	

Power consumption Absolute max ratings

Parameter	MIN	ΤΥΡ	MAX
Storage temperature (EZO-Pressure)	-65 °C		125 °C
Operational temperature (EZO-Pressure)	-40 °C	25 °C	105 °C
VCC	3.3V	5V	5.5V
Pressure limit (sensor damage)			~150 psi
Burst Pressure			7,500 psi

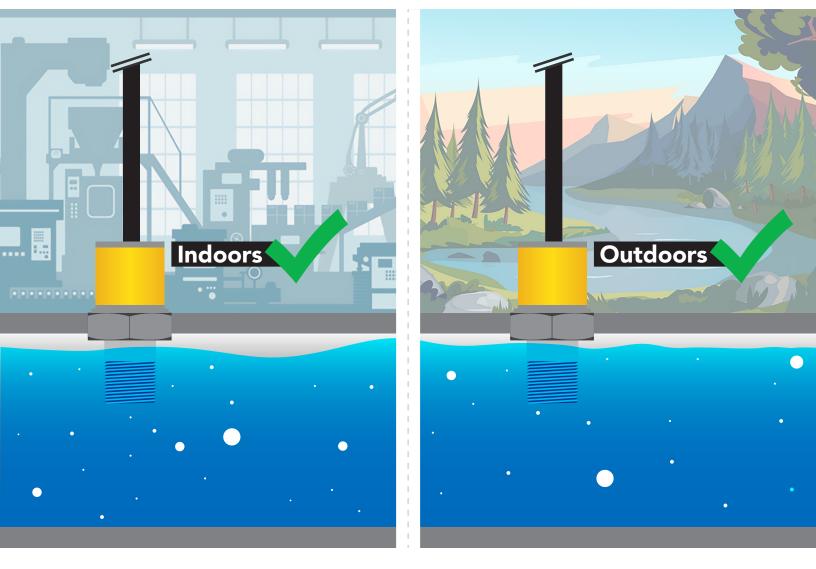
Gauge pressure vs Absolute pressure

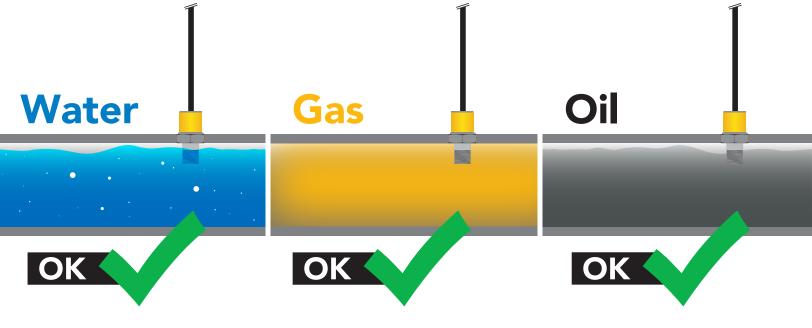
The EZO-PRS[™] reads **gauge pressure** only.

Gauge pressure

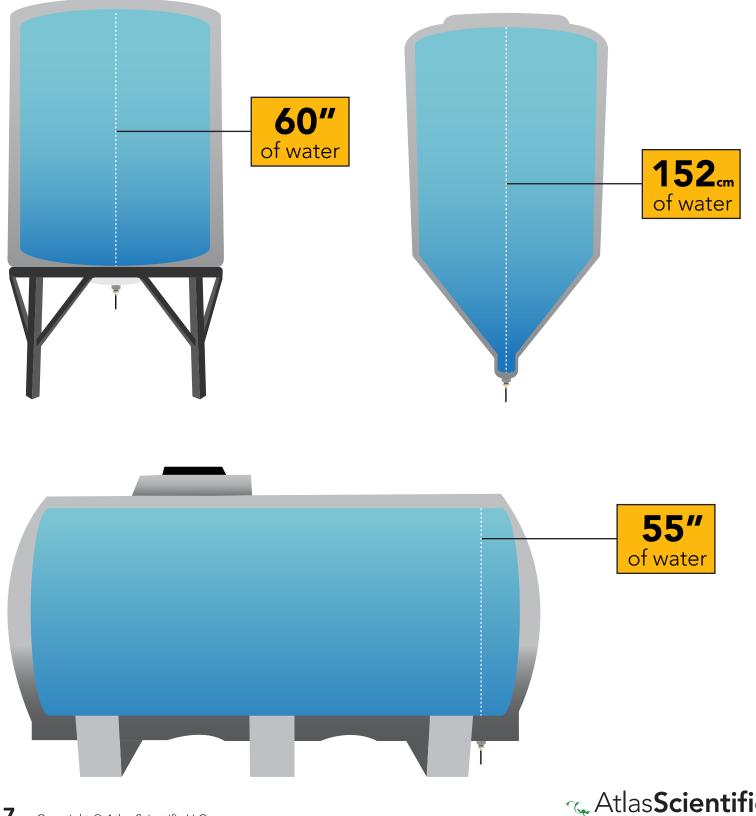
A gauge pressure sensor reads pressure relative to atmospheric pressure.

A gauge pressure sensor will always read atmospheric pressure as 0.


Absolute pressure


An absolute pressure sensor reads pressure relative to the vacuum of space.

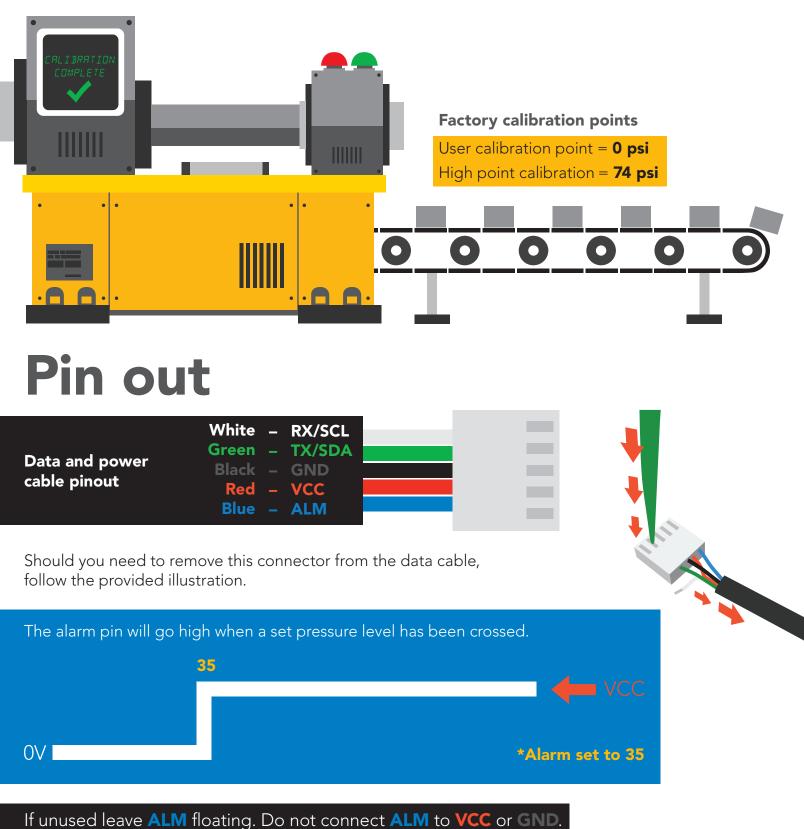
Typical applications



Atlas Scientific

Typical applications

Measuring the water level in a tank


Setting the EZO-PRS[™] to measure the hight of water is a great way to measure the volume of a tank. See page **24** or **48** for more info.

nvironmental Robotic

Calibration theory

The Atlas Scientific EZO-PRS[™] Embedded Pressure Sensor comes half-calibrated. When using the sensor for the first time, it is common to see a small pressure reading even though it is not connected to a pressure source. Issue the "Cal,0" command to complete the calibration process.

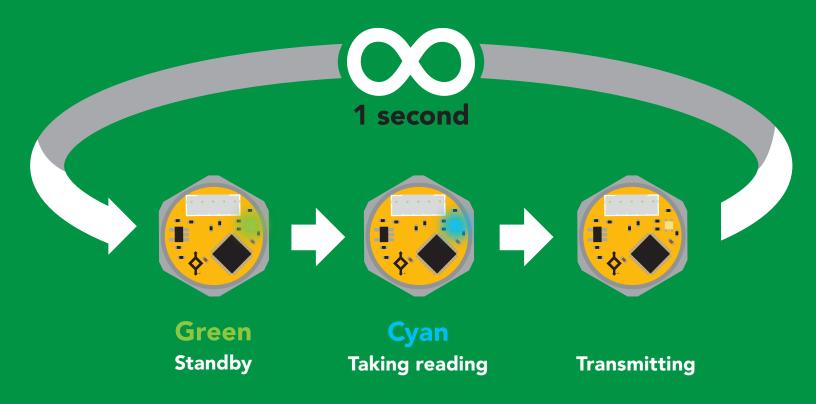
See page **21** or **45** to enable pressure level alarm.

Default state UART

mode

Readings Units Speed

LED


9,600

continuous

PSI

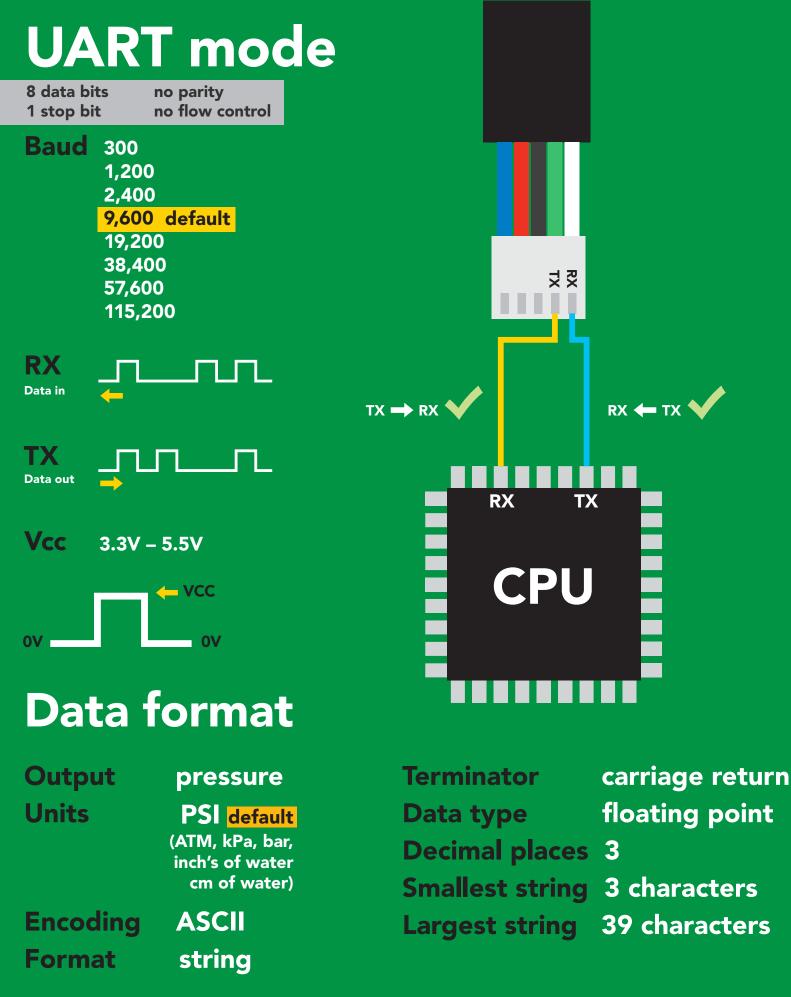
1 reading per second

on

1²C

X Unavailable data protocols SPI Analog RS-485 Mod Bus 4–20mA

10 Copyright © Atlas Scientific LLC


UART mode

Settings that are retained if power is cut

Baud rate Calibration Continuous mode Custom calibration Device name Enable/disable response codes Hardware switch to I²C mode LED control Protocol lock Software switch to I²C mode

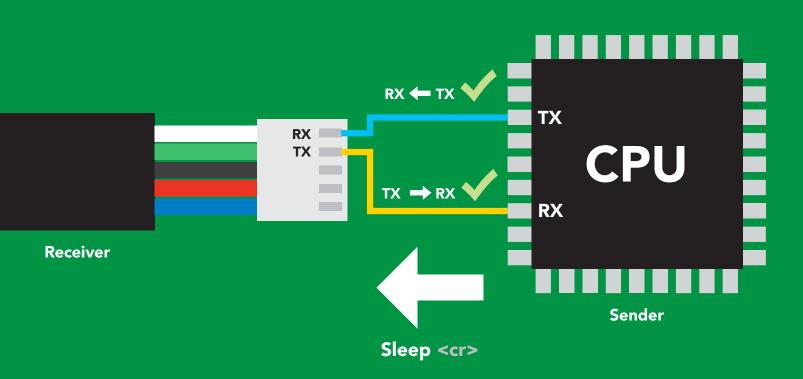
Settings that are **NOT** retained if power is cut

Find Sleep mode

Advanced

ASCII:	2	5	·	1	0	4	<cr></cr>
Hex:	32	35	2E	31	30	34	0D
Dec:	50	53	46	49	48	52	13

Sending commands to device


2 parts

Command (not case sensitive)

Carriage return <cr>

ASCII data string

Terminator

Advanced

ASCII:	S		е	е	р	<cr></cr>
Hex:	53	6C	65	65	70	0D
Dec:	83	108	101	101	112	13

LED color definition

Green UART standby

Cyan Taking reading

Purple Changing baud rate

Red Command not understood

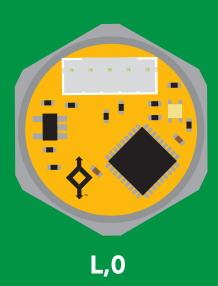
White Find

5V	LED ON +.25 mA	
3.3V	+.26 mA	

UART mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function		Default state
Alarm	enable/disable alarm	pg. 21	n/a
Baud	change baud rate	pg. 30	9,600
С	enable/disable continuous mode	pg. 19	enabled
Cal	performs custom calibration	pg. 22	n/a
Dec	add/remove decimal places	pg. 23	n/a
Factory	enable factory reset	pg. 32	n/a
Find	finds device with blinking white LED	pg. 18	n/a
i	device information	pg. 26	n/a
12C	change to I ² C mode	pg. 33	not set
L	enable/disable LED	pg. 17	enabled
Name	set/show name of device	pg. 25	not set
Plock	enable/disable protocol lock	pg. 31	disabled
R	returns a single reading	pg. 20	n/a
Sleep	enter sleep mode/low power	pg. 29	n/a
Status	retrieve status information	pg. 28	enable
U	pressure units	pg. 24	psi
*OK	enable/disable response codes	pg. 27	enable


LED control

Command syntax

- L,0 <cr>> LED off
- L,? <cr> LED state on/off?

Example	Response
L,1 <cr></cr>	*OK <cr></cr>
L,0 <cr></cr>	*OK <cr></cr>
L,? <cr></cr>	?L,1 <cr> or ?L,0 <cr> *OK <cr></cr></cr></cr>

Command syntax

This command will disable continuous mode Send any character or command to terminate find.

Find <cr> LED rapidly blinks white, used to help find device

Continuous mode

Command syntax

C,1 <cr> enable continuous readings once per second default
C,n <cr> continuous readings every n seconds (n = 2 to 99 sec)
C,0 <cr> disable continuous readings
C,? <cr> continuous reading mode on/off?

Example	Response
C,1 <cr></cr>	*OK <cr> pressure (1 sec) <cr> pressure (2 sec) <cr> pressure (n sec) <cr></cr></cr></cr></cr>
C,30 <cr></cr>	*OK <cr> pressure (30 sec) <cr> pressure (60 sec) <cr> pressure (90 sec) <cr></cr></cr></cr></cr>
C,0 <cr></cr>	*OK <cr></cr>
C,? <cr></cr>	?C,1 <cr> or ?C,0 <cr> or ?C,30 <cr> *OK <cr></cr></cr></cr></cr>

Single reading mode

Command syntax

Alarm

Command synt	The alarm pin will = 1 when pressure levels are > alarm set point. Alarm tolerance sets how far below the set point pressure levels need to drop before the pin will = 0 again.		
Alarm,n <cr> Alarm,tol,n <cr></cr></cr>	arm,en,[1,0] <cr> enable / disable alarm arm,n <cr> sets alarm arm,tol,n <cr> sets alarm tolerance</cr></cr></cr>		
Example	Response		
Alarm,en,1 < <r></r>	*OK <cr> Enable alarm</cr>		
Alarm,35 <cr></cr>	*OK <cr></cr>		
Alarm,tol,10 <cr></cr>	*OK <cr> Pressure level must fall 10 units below set point for alarm to reset.</cr>		
Alarm,? <cr></cr>	?,alarm,35,10,1 < <r> if all are enabled</r>		
Alarm (35) 25 Pressure			

Alarm on

(Alarm set point - tolerance) (35 - 10)

Alarm off

Alarm

Custom calibration

Command syntax

Although calibration is not required, it may be necessary to adjust your 0 point or perform a custom calibration.

- Cal,n <cr> calibrates the high point
- Cal,0 <cr> calibrates the zero point
- Cal, clear <cr> restores calibration to factory settings
- Cal,? <cr> device calibrated?

Example	Response
Cal,50 <cr></cr>	*OK <cr> high point calibration in psi</cr>
Cal,0 <cr></cr>	*OK <cr> low point calibration in psi</cr>
Cal,clear < <r></r>	*OK <cr></cr>
Cal,? <cr></cr>	<pre>?Cal,0 <cr> or ?Cal,1 <cr> or ?Cal,2 <cr> or only zero point calibration</cr></cr></cr></pre> only zero point calibration only high point calibration ?Cal,3 <cr> *OK <cr> zero and high point calibration</cr></cr>
	Calibration should be done using the pressure scale you have set the sensor to. Example Readings are set to bar. High point calibration = 3.44 (3.44 bar = 50 psi)

Add/remove decimal places

Command syntax

Change how many decimal points the reading outputs.

- Dec,n <cr> n = number of decimal points between 0 and 3
- Dec,? <cr> number of decimal points the output is set to

Example	Response
R <cr> Dec,1 <cr> R <cr></cr></cr></cr>	38.462 <cr> *OK <cr> 38.4 <cr></cr></cr></cr>
Dec,? <cr></cr>	?Dec,1 < <r></r>

Pressure units

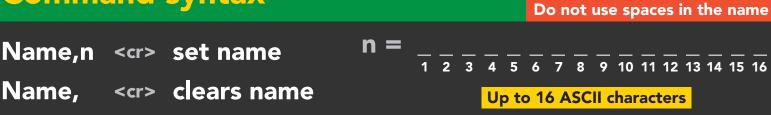
(psi, atm, bar, kPa, inch's of water, cm of water)

Command syntax

U,[1/0]	<cr></cr>	1 will add a unit identifier to the o	utput
U,psi	<cr></cr>	output will be in psi default	
U,atm	<cr></cr>	output will be in atm	
U,bar	<cr></cr>	output will be in bar	
U,kPa	<cr></cr>	output will be in kPa	
U,inh2o	<cr></cr>	output will be in inches of water	(Resolution: 0.027")
U,cmh2o	<cr></cr>	output will be in cm of water	(Resolution: 0.7mm)
U,?	<cr></cr>	pressure units?	

Example	Response
U,bar <‹r>	*OK <cr></cr>
U,1 <cr></cr>	*OK < <r> 1.228,bar <<r></r></r>
U,? <cr></cr>	?U,bar <cr></cr>

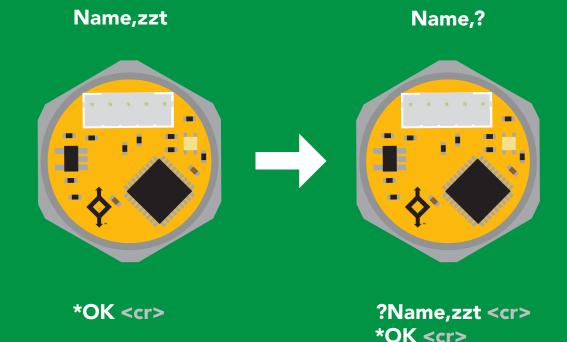
Naming device


Command syntax

Name,

Exa

Nam


Nam

Name,? <cr> show name

mple	Response
e, <cr></cr>	*OK <cr> name has been cleared</cr>
e,zzt <cr></cr>	*OK <cr></cr>

Name,?	<cr></cr>	?Name,zzt	<cr></cr>
		*OK	<cr></cr>

Device information

Command syntax

i <cr> device information

ExampleResponsei <<r>?i,PRS,1.0 <<r>

*OK <cr>

Response breakdown

?i,	PRS	1.0
	1	1
	Device	Firmware

Response codes

Command syntax

*OK,1 <cr>enable responsedefault*OK,0 <cr>disable response*OK,? <cr>response on/off?</cr></cr></cr>		
Example	Response	
R <cr></cr>	38.462 <cr> *OK <cr></cr></cr>	
*OK,0 <cr></cr>	no response, *OK disabled	
R <cr></cr>	38.462 <cr> *OK disabled</cr>	
*OK,? <cr></cr>	?*OK,1 <cr> or ?*OK,0 <cr></cr></cr>	

Other response codes

- *ER unknown command
- *OV over volt (VCC>=5.5V)
- *UV under volt (VCC<=3.1V)
- *RS reset
- *RE boot up complete, ready
- *SL entering sleep mode
- *WA wake up

These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

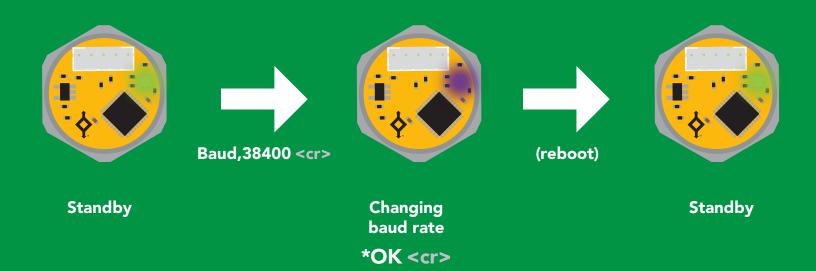
U unknown

Sleep mode/low power

Command syntax

Send any character or command to awaken device.

Example		Response
Sleep <cr></cr>		*OK <cr> *SL <cr></cr></cr>
Any command		*WA <cr> wakes up device</cr>
5V	STANDB 13.4 m/	SLEEP 0.415 mA
3.3V	12.4 m/	A 0.13 mA


Change baud rate

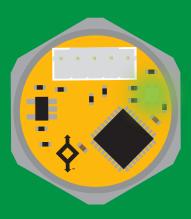
Command syntax

Baud,n <cr> change baud rate

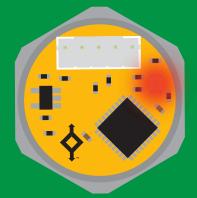
115200

Example		Response	
Baud,38400 <cr></cr>		*OK <cr></cr>	
Baud,? <cr></cr>		?Baud,38400 <cr> *OK <cr></cr></cr>	
n =			

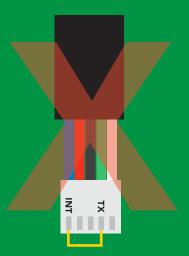
Protocol lock


Command syntax

Locks device to UART mode.


	enable Plock disable Plock <mark>default</mark> Plock on/off?
Example	Response
Plock,1 <cr></cr>	*OK <cr></cr>
Plock,0 <cr></cr>	*OK <cr></cr>
Plock,? <cr></cr>	?Plock,1 < <r> or ?Plock,0 <<r></r></r>

Plock,1


I2C,100

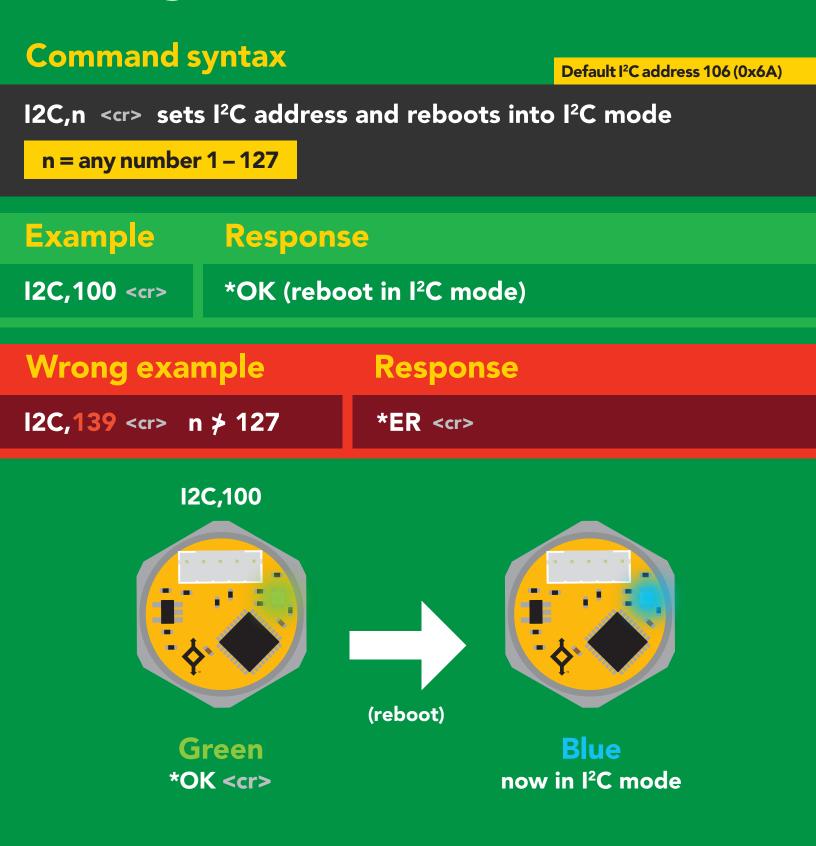
*OK <cr>

cannot change to I²C

Factory reset

Command syntax

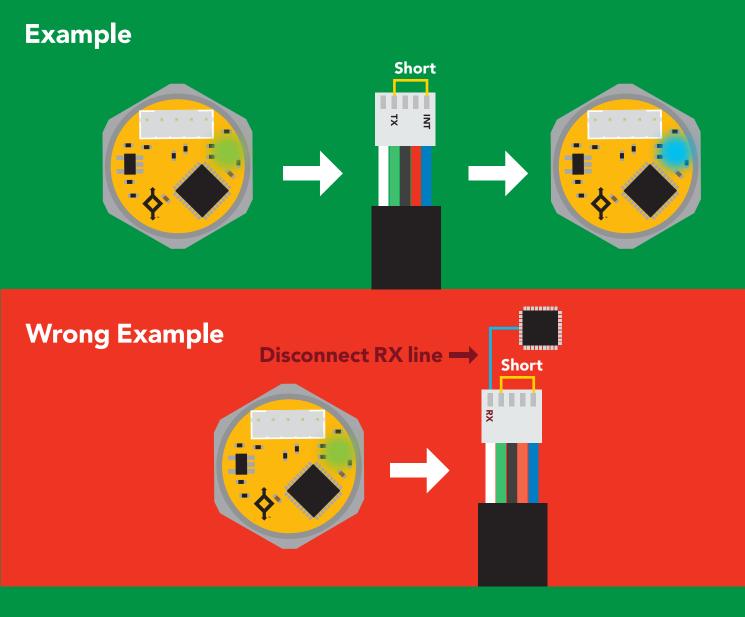
Factory <cr> enable factory reset


Clears calibration LED on "*OK" enabled

ExampleResponseFactory <cr>*OK <cr>

Baud rate will not change

Change to I²C mode



Manual switching to I²C

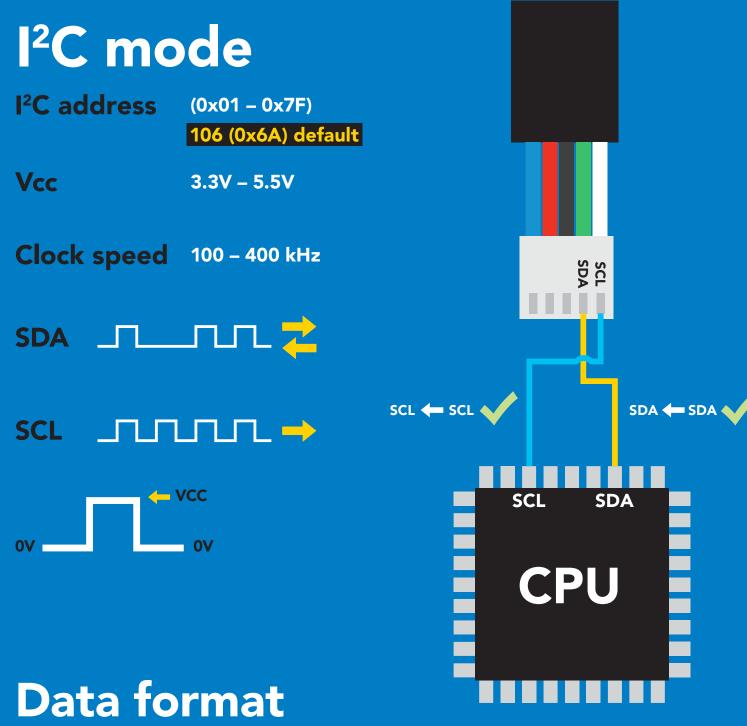
- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to INT
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from
- Green to Blue
- Disconnect ground (power off) Reconnect all data and power

Manually switching to I²C will set the I²C address to 106 (0x6A)

12C mode

The I²C protocol is **considerably more complex** than the UART (RS-232) protocol. Atlas Scientific assumes the embedded systems engineer understands this protocol.

To set your EZO-PRS[™] into I²C mode click here


Settings that are retained if power is cut

Calibration Change I²C address Custom calibration Hardware switch to UART mode LED control Protocol lock Software switch to UART mode

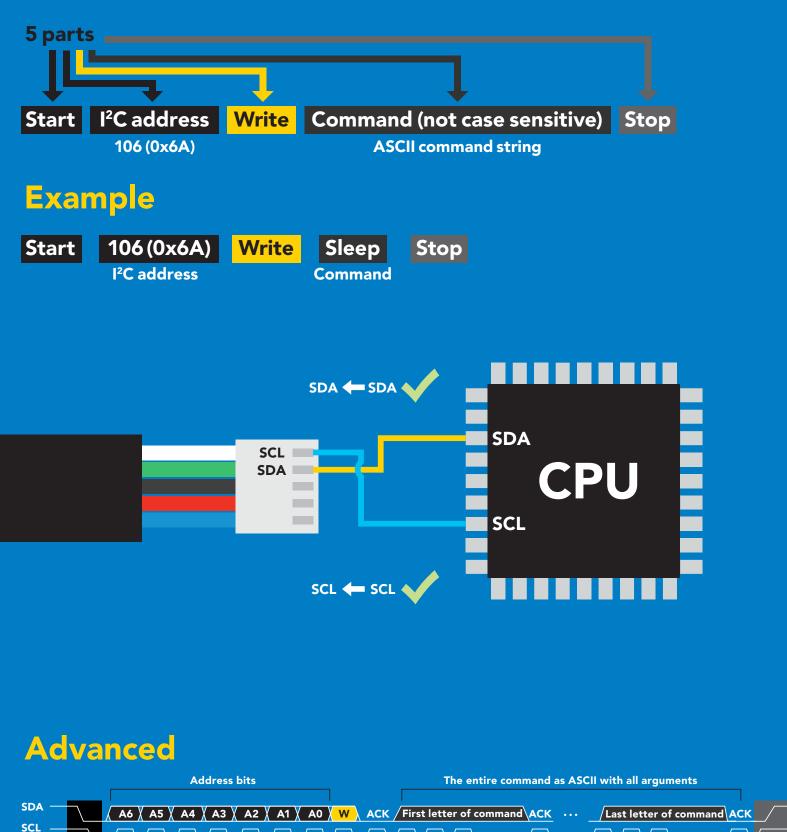
Settings that are **NOT** retained if power is cut

Find Sleep mode

Output Units

pressure

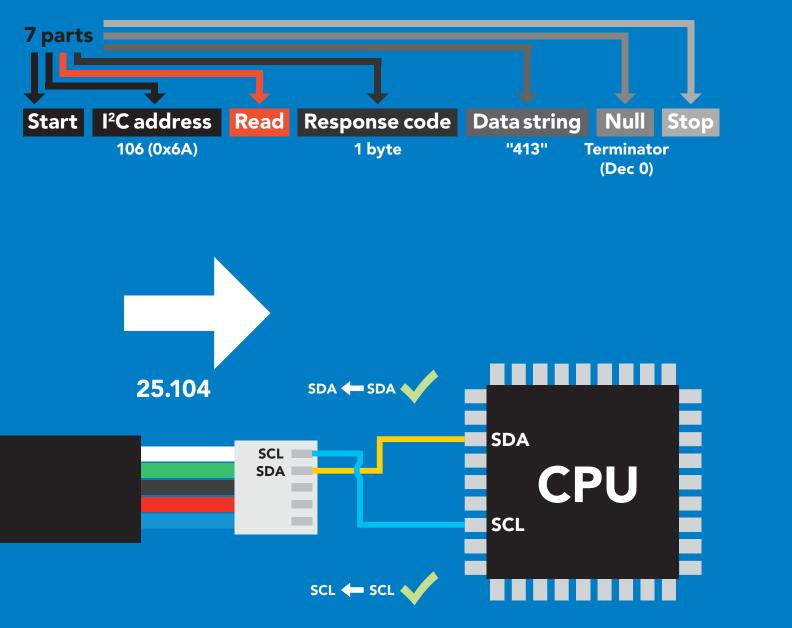
PSI default (ATM, kPa, bar, inch's of water cm of water)

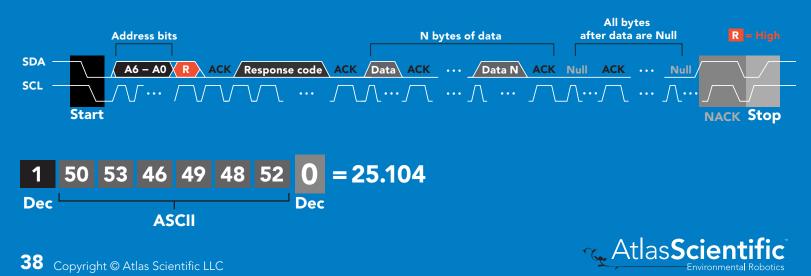

Encoding Format

ASCII string Data type **Decimal places** 3 **Smallest string 3 characters** Largest string

floating point **39 characters**

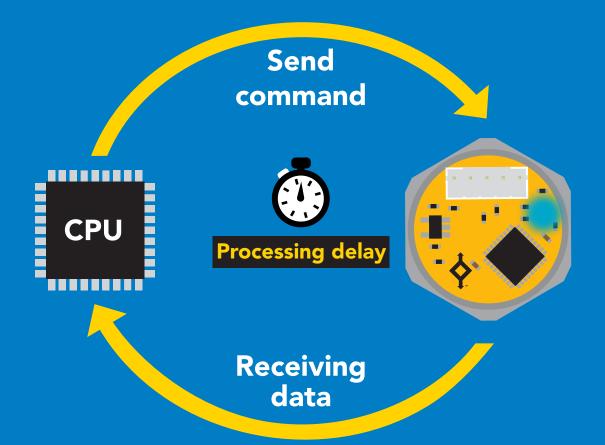
Sending commands to device


Start


W = low

Stop

Requesting data from device


Advanced

Response codes

After a command has been issued, a 1 byte response code can be read in order to confirm that the command was processed successfully.

Reading back the response code is completely optional, and is not required for normal operation.

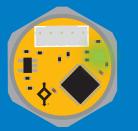
Example

I2C_start; I2C_address; I2C_write(EZO_command); I2C_stop;

delay(300);

I2C_start; I2C_address; Char[] = I2C_read; I2C_stop; If there is no processing delay or the processing delay is too short, the response code will always be 254.

Response codes Single byte, not string


- 255 no data to send
- 254 still processing, not ready
- 2 syntax error
- 1 successful request

LED color definition

Blue I²C standby

Green Taking reading

Purple Changing I²C address

Red

Command not understood

White Find

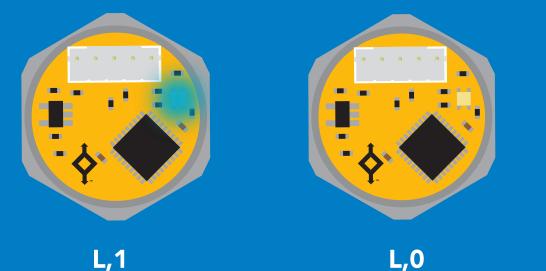
5V	LED ON +.25 mA
3.3V	+.26 mA

I²C mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function	
Alarm	enable/disable alarm	pg. 45
Baud	switch back to UART mode	pg. 56
Cal	performs custom calibration	pg. 46
Dec	add/remove decimal places	pg. 47
Factory	enable factory reset	pg. 55
Find	finds device with blinking white LED	pg. 43
i	device information	pg. 50
12C	change I ² C address	pg. 54
L	enable/disable LED	pg. 42
Name	set/show name of device	pg. 49
Plock	enable/disable protocol lock	pg. 53
R	returns a single reading	pg. 44
Sleep	enter sleep mode/low power	pg. 52
Status	retrieve status information	pg. 51
U	pressure units	pg. 48

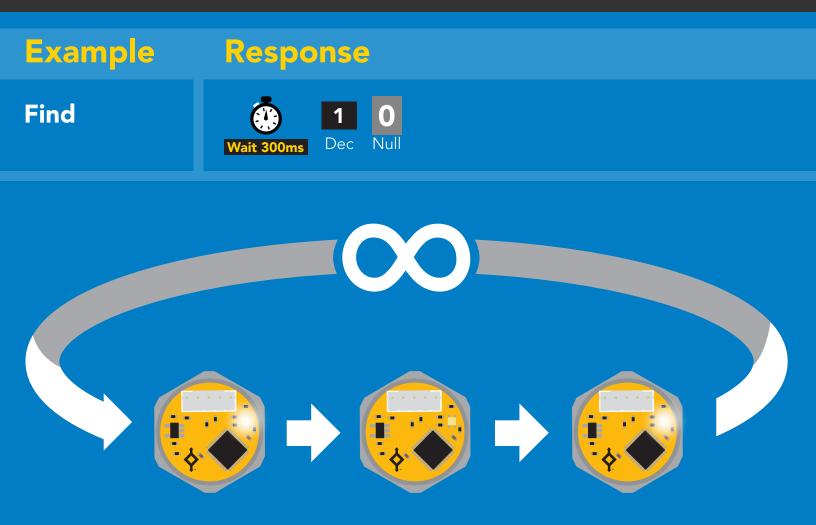
LED control


Command syntax

L,1 LED on default

- L,0 LED off
- L,? LED state on/off?

300ms 💮 processing delay

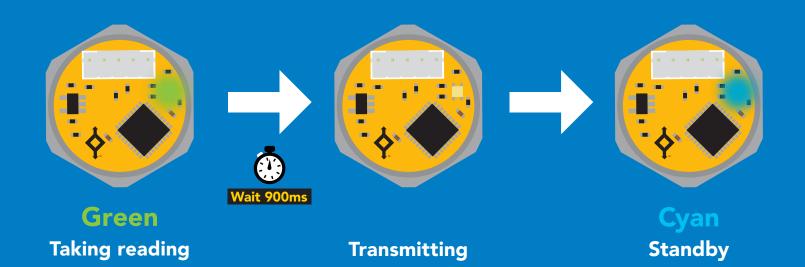


300ms 💮 processing delay

Command syntax

This command will disable continuous mode. Send any character or command to terminate find.

Find LED rapidly blinks white, used to help find device


Taking reading

Command syntax

900ms 🕐 processing delay

R return 1 reading

Alarm

300ms 🕐 processing delay

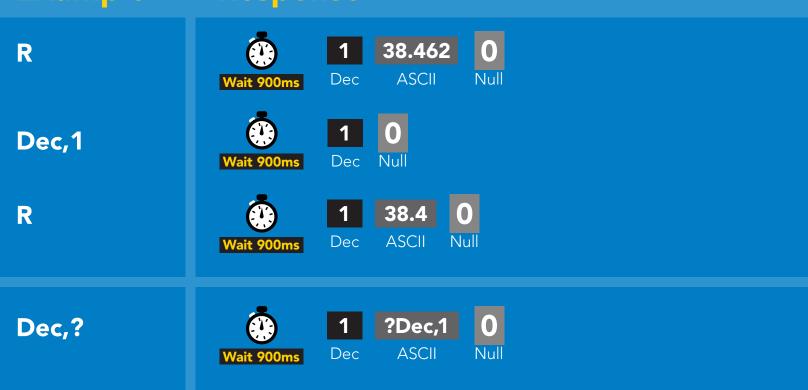
Command syr	ıtax	The alarm pin will = 1 when pressure levels are > alarm set point. Alarm tolerance sets how far below the set point pressure levels need to drop before the pin will = 0 again.
Alarm,en,[1,0]	enable	e / disable alarm
Alarm,n	sets ala	arm
Alarm,tol,n	sets ala	arm tolerance
Alarm,?	alarm s	set?
Example	Re	sponse
Alarm,en,1	Wait 30	
Alarm,35	Wait 30	
Alarm,tol,10	Wait 30	00ms10Pressure level must fall 10 units below set point for alarm to reset.
Alarm,?	Wait 30	
Alarm		
Pressure		
Alarm		(Alarm set point - tolerance) (35 - 10)
45 Copyright © Atlas Scientific LLC	Ala	Alarmon Alarmoff

Custom calibration 900ms (*) processing delay

Command syn	tax	Although calibration is not required, it may be necessary to adjust your 0 point or perform a custom calibration.
Cal,0 calik Cal,clear rest	prates the high poi prates the zero poin ores calibration to ice calibrated?	nt
Example	Response	
Cal,50	Image: Wait 900msImage: DecImage: DecWait 900msDecNull	high point calibration in psi
Cal,0	Vait 900ms10DecNull	low point calibration in psi
Cal,clear	Image: Wait 300msImage: DecImage: Dec	
Cal,?	Wait 300ms 1 ?Ca Dec AS no calif	CII Null Dec ASCII Null
	Dec AS	al,2 0 or 1 ?Cal,3 0 CII Null Int calibration Dec ASCII Null zero and high point calibration
	Calibration should be the pressure scale you the sensor to.	
46 Copyright © Atlas Scientific LLC	Example Readings are set to bar. High point calibration = 3.4 (3.44 bar = 50 psi)	4 Atlas Scientific

Add/remove decimal places

900ms 🕐 processing delay


Command syntax

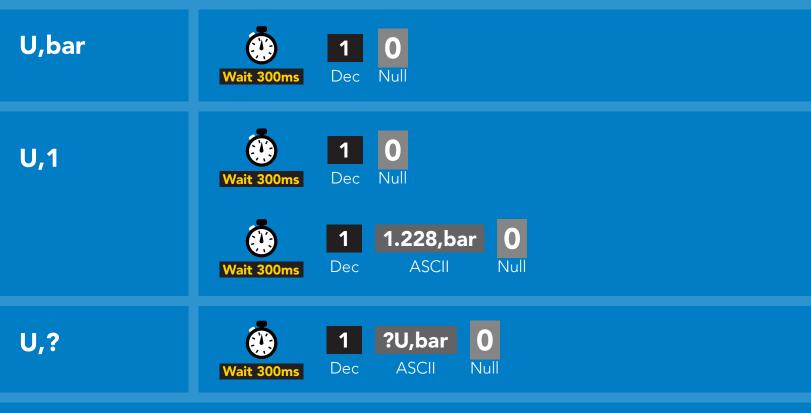
Change how many decimal points the reading outputs.

- Dec,n n = number of decimal points between 0 and 3
- Dec,? number of decimal points the output is set to

Example

<u>Response</u>

Pressure units


(psi, atm, bar, kPa, inch's of water, cm of water)

Command syntax

U,[1/0]	1 will add a unit identifier to the out	put
U,psi	output will be in psi	
U,atm	output will be in atm	
U,bar	output will be in bar	
U,kPa	output will be in kPa	
U,inh2o	output will be in inches of water	(Resolution: 0.027")
U,cmh2o	output will be in cm of water	(Resolution: 0.7mm)
U,?	pressure units?	

Example

Response

Naming device

Command syntax

300ms 🕐 processing delay

Do not use spaces in the name

Example Response
Name, <u>Wait 300ms</u> <u>Dec</u> Null name has been cleared
Name,zzt
Name,? 1 ?Name,zzt Wait 300ms Dec ASCII Null
Name,zzt Name,?
1 0 1 ?Name,zzt 0

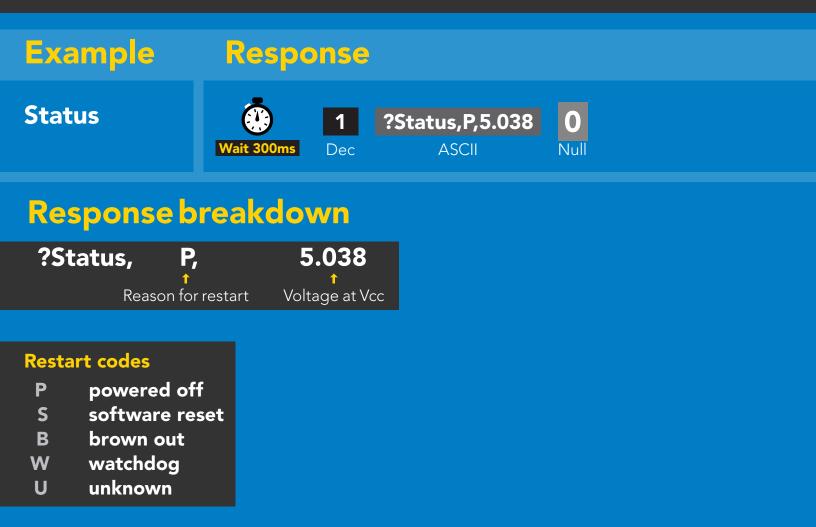
Device information

Command syntax

300ms 🕐 processing delay

i device information

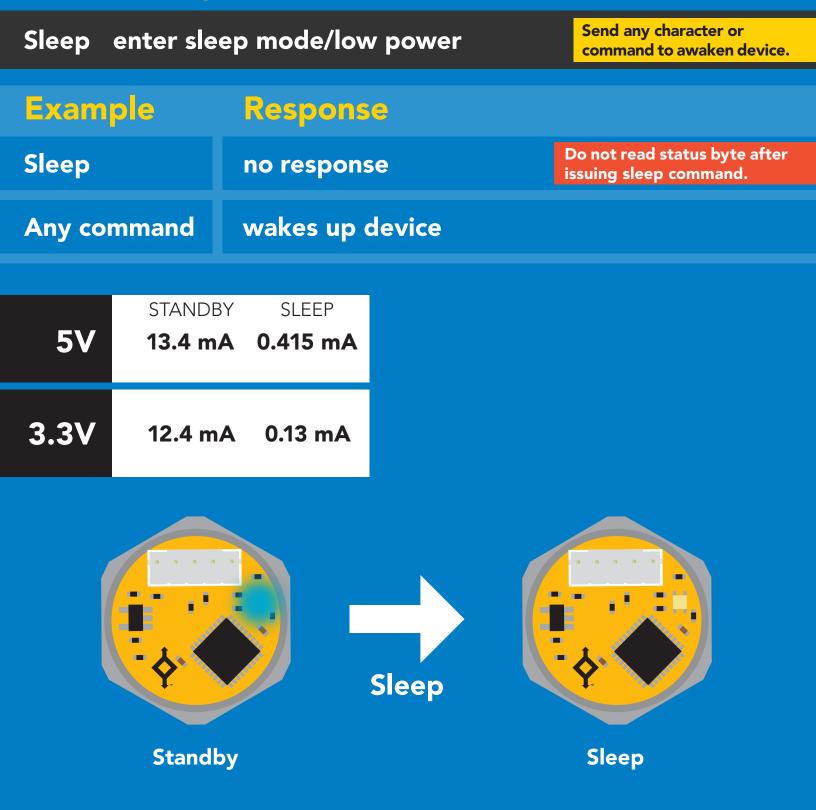
Response breakdown

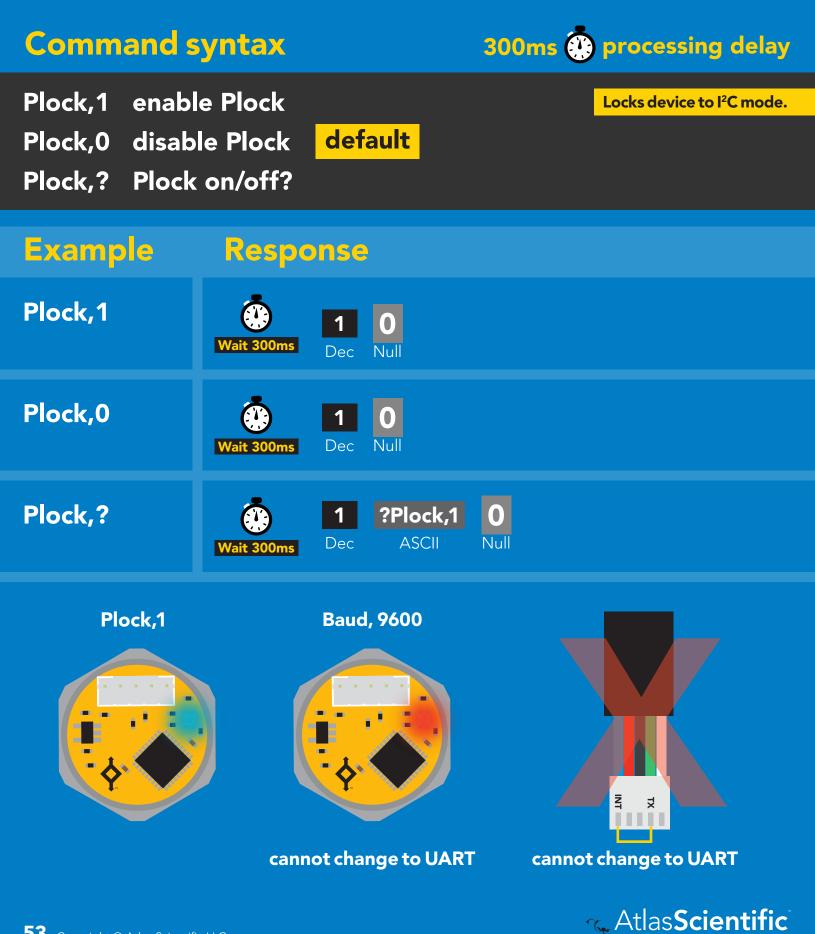


Reading device status

Command syntax

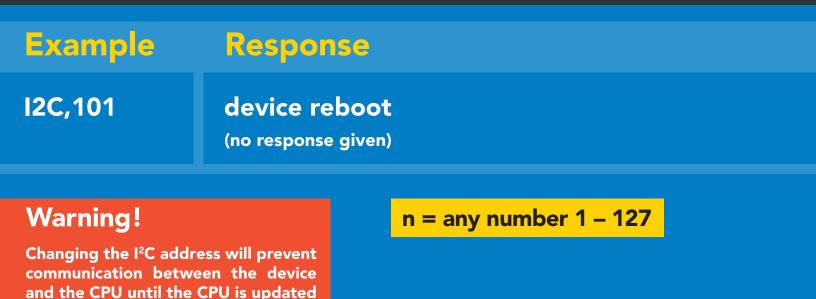
300ms 💮 processing delay


Status voltage at Vcc pin and reason for last restart


Sleep mode/low power

Command syntax

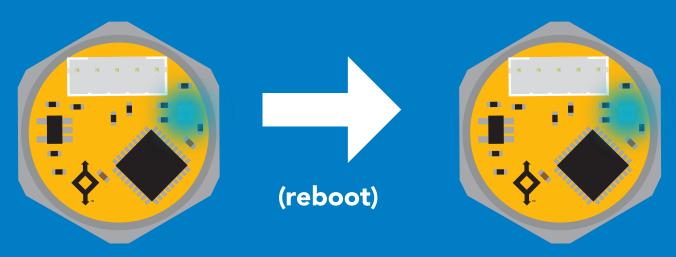
Protocol lock



I²C address change

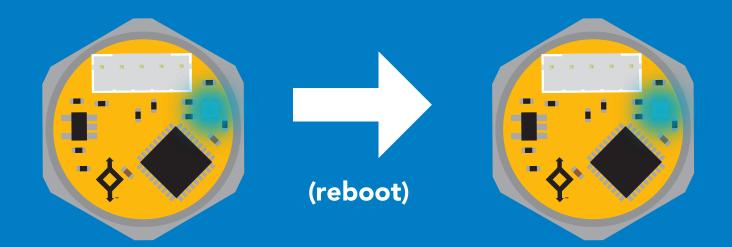
Command syntax

300ms 💮 processing delay


I2C,n sets I²C address and reboots into I²C mode

Default I²C address is 106 (0x6A).

with the new I²C address.



Factory reset

Command syntax Factory reset will not take the device out of I²C mode. Factory enable factory reset I²C address will not change Example Response Factory device reboot (no response given)

Clears calibration LED on Response codes enabled

Factory

Change to UART mode

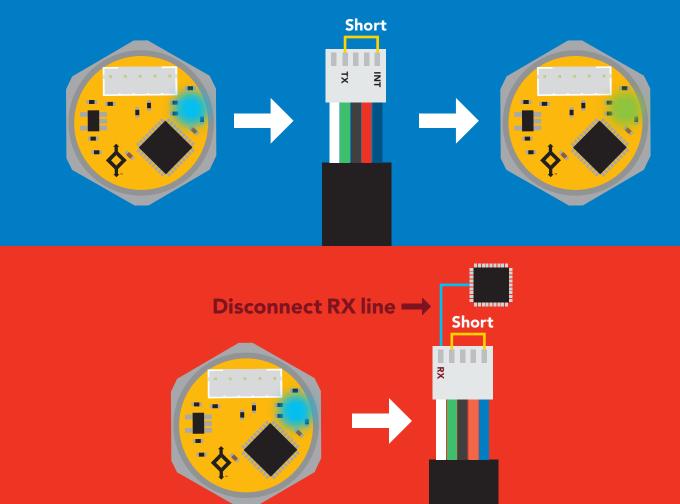
Command syntax

Baud,n switch from I²C to UART

Example Response

Baud,9600 reboot in UART mode (no response given)

1200 2400
2400
2700
n = 9600
19200
38400
57600
115200



Manual switching to UART

- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to INT
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Blue to Green
- Disconnect ground (power off)
- Reconnect all data and power

Example

Datasheet change log

Datasheet V 2.1

Revised artwork on page 8.

Datasheet V 2.0

Revised design of EZO-PRS throughout document.

Datasheet V 1.6

Revised naming device info on pages 25 & 49.

Datasheet V 1.5

Added the custom calibartion pages on pages 22 & 46.

Datasheet V 1.4

Revised accuracy value on cover page.

Datasheet V 1.3

Revised pressure output in PSI to 50.000 on cover pg. added inches of water & cm of water resolution info on pages 23 and 46.

Datasheet V 1.2

Updated firmware info on pg 55.

Datasheet V 1.1

Moved Default state to pg 9.

Datasheet V 1.0

Initial release - New datasheet

Firmware updates

V1.0 – Initial release (Aug, 7 2019)

V1.01 – (Nov, 5 2019)

• Fixed glitch where the alarm was not initially set correctly.

V1.02 – (April, 9 2021)

Added custom calibration

Warranty

Atlas Scientific[™] Warranties the EZO-PRS[™] Embedded Pressure Sensor to be free of defect during the debugging phase of device implementation, or 30 days after receiving the EZO-PRS[™] Embedded Pressure Sensor (which ever comes first).

The debugging phase

The debugging phase as defined by Atlas Scientific[™] is the time period when the EZO-PRS[™] Embedded Pressure Sensor is inserted into a bread board, or shield. If the EZO-PRS[™] is being debugged in a bread board, the bread board must be devoid of other components. If the EZO-PRS[™] Embedded Pressure Sensor is being connected to a microcontroller, the microcontroller must be running code that has been designed to drive the EZO-PRS[™] Embedded Pressure Sensor exclusively and output the EZO-PRS[™] data as a serial string.

It is important for the embedded systems engineer to keep in mind that the following activities will void the EZO-PRS[™] Embedded Pressure Sensor warranty:

- Soldering any part of the EZO-PRS[™] Embedded Pressure Sensor.
- Running any code, that does not exclusively drive the EZO-PRS[™] Embedded Dosing Pump and output its data in a serial string.
- Embedding the EZO-PRS[™] Embedded Pressure Sensor into a custom made device.
- Removing any potting compound.

Reasoning behind this warranty

Because Atlas Scientific[™] does not sell consumer electronics; once the device has been embedded into a custom made system, Atlas Scientific[™] cannot possibly warranty the EZO-PRS[™] Embedded Pressure Sensor, against the thousands of possible variables that may cause the EZO-PRS[™] Embedded Pressure Sensor to no longer function properly.

Please keep this in mind:

- 1. All Atlas Scientific[™] devices have been designed to be embedded into a custom made system by you, the embedded systems engineer.
- 2. All Atlas Scientific[™] devices have been designed to run indefinitely without failure in the field.
- 3. All Atlas Scientific[™] devices can be soldered into place, however you do so at your own risk.

Atlas Scientific[™] is simply stating that once the device is being used in your application, Atlas Scientific can no longer take responsibility for the EZO-PRS[™] Embedded Pressure Sensors continued operation. This is because that would be equivalent to Atlas Scientific[™] taking responsibility over the correct operation of your entire device.

