Dual Precision Bus Accelerator

General Description

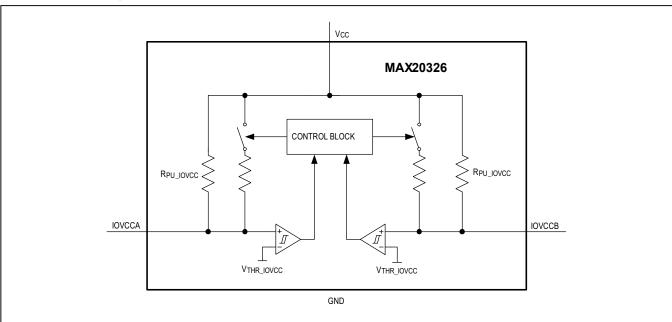
The MAX20326 is a dual-channel, precision, open-drain, communication-line accelerator. It provides the acceleration from a low-to-high transition necessary to allow faster data transfer in a highly capacitive, multidrop node system.

The MAX20326 is optimized for the I²C bus, as well as 1-Wire[®] bus, where a high-speed, open-drain operation is often required with a highly capacitive load.

This device is available in a 4-pin 0.5mm pitch 1.25mm x 1.25mm flip-chip QFN package and operates over the -40°C to +85°C extended temperature range.

Applications

- I²C
- MDIO
- 1-Wire Bus


Benefits and Features

- Reliable Communication
 - Wide Operating Input Voltage: +1.4V to +5.5V
 - Precision Accelerator Trigger Threshold: 0.5V ±50mV
 - · Fast Charge Up to 1000pF Load
 - · Low EMI: Controlled Acceleration Slope
- Space Saving
 - 4-Pin (0.5mm Pitch 1.25mm x 1.25mm Flip-Chip QFN)
 - · Integrated Precision Pullup

Ordering Information appears at end of data sheet.

1-Wire is a registered trademark of Maxim Integrated Products, Inc.

Functional Diagram

Absolute Maximum Ratings

(All voltages referenced to GND.)	Operating Temperature Range40°C to +85°C
V _{CC} 0.5V to +6V	Junction Temperature+150°C
IOVCCA, IOVCCB0.5V to V _{CC} + 0.5V	Storage Temperature Range65°C to +150°C
Continuous Current Into Any Terminal±100mA	Soldering Temperature (reflow)+260°C
Continuous Power Dissipation (T _A = +70°C)	
FC QFN (derate 5.15mW/°C above +70°C)412mW	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

4 FC QFN

PACKAGE CODE	F41A1F+1	
Outline Number	21-100188	
Land Pattern Number	90-100054	
Thermal Resistance, Four-Layer Board:		
Junction to Ambient (θ _{JA})	194°C/W	
Junction to Case (θ _{JC})	84°C/W	

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

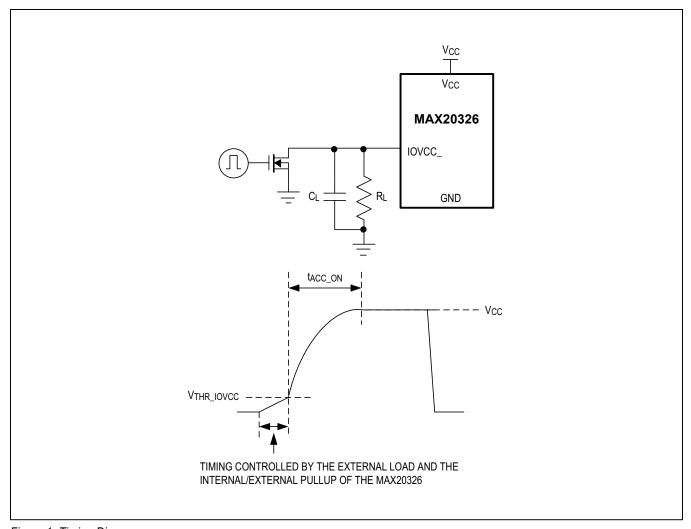
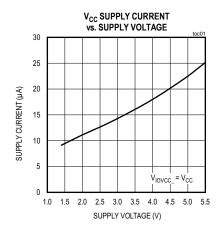
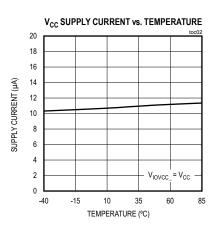
 $(V_{CC} = 1.4V \text{ to } 5.5V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = 1.8V, T_A = +25^{\circ}\text{C})$ (Notes 1, 2)

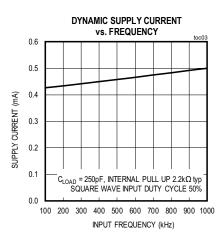
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
SUPPLY OPERATION							
Operating Voltage	V _{CC}		1.4		5.5	V	
Supply Current		V _{IOVCCA} = V _{IOVCCB} = V _{CC} , V _{CC} ≤ 1.8V		11	18		
Supply Current	la_vcc	$V_{IOVCCA} = V_{IOVCCB} = V_{CC}, V_{CC} \le 5.5V$	45			μA	
Supply Shutdown Threshold	V _{TH_VCC}	V _{CC} rising		0.7	1.1	V	
Supply Shutdown Threshold Hysteresis	V _{TH_HY_VCC}	:		40		mV	
I/O LOGIC LEVELS							
Resistive Static Pullup	R _{PU_IOVCC}		1.98	2.2	2.42	kΩ	
IOVCC_Accelerator Rising Trigger Threshold	V _{THR_IOVCC}		0.45	0.5	0.55	V	
IOVCC_Accelerator Falling Threshold Hysteresis	V _{THH_IOVCC}			19		mV	
Minimum IOVCC_Low Pulse Duration	tLOW_REARM		125			ns	
ACCELERATOR							
Accelerator Pulse Duration	t _{ACC_ON}	V _{CC} ≥ 1.6V	120		200	ns	
Accelerator Fulse Duration		V _{CC} ≥ 1.4V	120		250		
Accelerator Static Source Impedance (Note 3) RACC_STAT		R_{LOAD} = 25Ω, accelerator driven with internal clock waveform	22		Ω		
CAPACITANCE							
IOVCC_ Capacitance C _{IOVCC}				13		pF	
ESD PROTECTION							
Human Body Model		All pins		±2		kV	

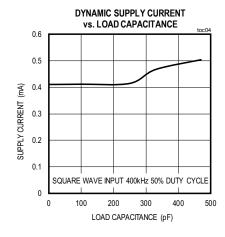
Note 1: All devices are 100% production tested at T_A = +25°C. Specifications over the operating temperature range are guaranteed

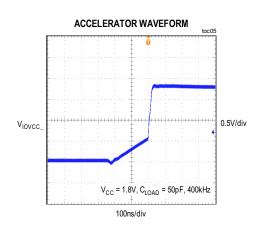
Note 2: After V_{CC} reaches V_{TH_VCC}, at least 3ms is needed in order to guarantee all min/max values.

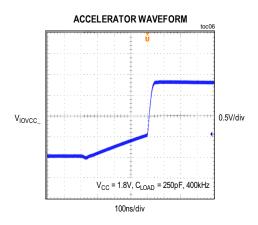
Note 3: The impedance exhibited by the accelerator when driving a capacitive load varies and transiently differs from the static one.

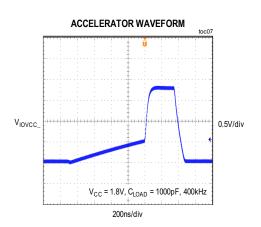




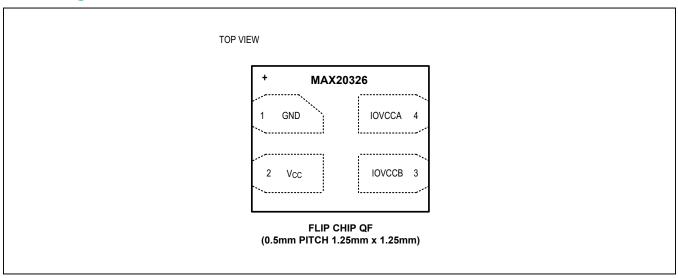

Figure 1. Timing Diagram


Typical Operating Characteristics


(V_{CC} = 1.8V, T_A = +25°C, unless otherwise noted.)





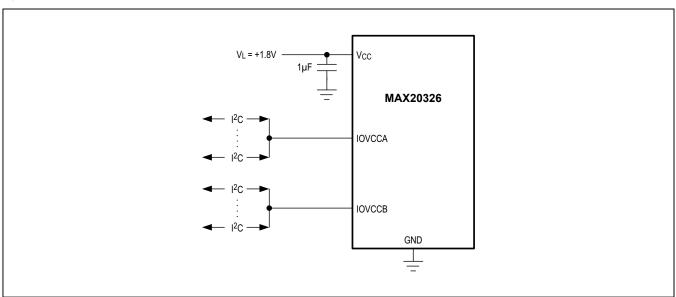


Pin Configuration

Pin Description

PIN	NAME	FUNCTION	
1	GND	Ground	
2	V _{CC}	V_{CC} Supply Input. Bypass V_{CC} with a ceramic capacitor 0.1 μ F or greater as close as possible to the device.	
3	IOVCCB	Input/Output Channel B. Reference to V _{CC} .	
4	IOVCCA	Input/Output Channel A. Reference to V _{CC} .	

www.maximintegrated.com Maxim Integrated | 6


Detailed Description

The MAX20326 is a precision input/output accelerator. The MAX20326 provides the precision pullup resistance to the IOVCC_ line. When the IOVCC_ transitions from logic-low to logic-high, the slope-adjusted accelerator kicks in to optimize the turn-on time to cope with various load capacitance. The device is optimized for an open-drain and high-speed operation, such as I²C bus, MDIO bus, or 1-wire bus. The device features a precision ±10% accurate internal pullup on each IOVCC_ line.

High-Speed Operation

The MAX20326 assists the system with meeting the requirements of high-speed, open-drain operation. The maximum data rate is at least 1MHz for open-drain operation, with the total bus capacitance up to 1000pF. The maximum operating frequency is limited by the load capacitance, the internal/external pullup used on the IOVCC_line, accelerator pulse duration, and the minimum IOVCC low-pulse duration.

Typical Application Circuit

Ordering Information

PART	INTERNAL PULLUP			PIN-PACKAGE	
MAX20326EFS+T	2.2kΩ	AA	-40°C TO +85°C	4 FC QFN	

⁺ Denotes a lead(Pb)-free/RoHS-compliant package.

Chip Information

PROCESS: BICMOS

T = Tape and reel.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED	
0	12/17	Initial release	_	

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.