

### **Enhanced Product**

# 3-Axis, ±200 g Digital MEMS **Accelerometer**

## ADXL375-EP

### **FEATURES**

Low power: as low as 35 µA in measurement mode and 0.1  $\mu$ A in standby mode at V<sub>s</sub> = 2.5 V Power consumption scales automatically with bandwidth Embedded, 32-level FIFO buffer minimizes processor load -3 dB bandwidth of up to 1.6 kHz Bandwidth selectable via serial command Shock event detection Activity/inactivity monitoring Supply voltage range: 2.0 V to 3.6 V I/O voltage range: 1.7 V to Vs SPI (3- or 4-wire) and I<sup>2</sup>C digital interfaces 10,000 g shock survival Pb free/RoHS compliant Small and thin: 3 mm  $\times$  5 mm  $\times$  1 mm LGA package

### **ENHANCED PRODUCT FEATURES**

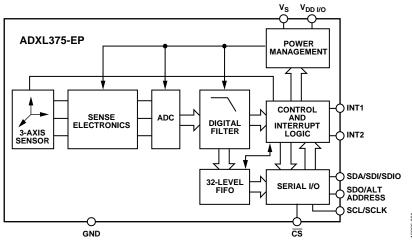
Supports defense and aerospace applications (AQEC standard) Extended industrial temperature range: -55°C to +105°C **Controlled manufacturing baseline** 

- 1 assembly/test site 1 fabrication site **Product change notification**
- Qualification data available on request

### **APPLICATIONS**

**Concussion and head trauma detection High force event detection** 

### GENERAL DESCRIPTION


The ADXL375-EP is a small, thin, 3-axis accelerometer that provides low power consumption and high resolution measurement up to ±200 g. The digital output data is formatted as 16-bit, twos complement data and is accessible through a serial peripheral interface (SPI) (3- or 4-wire) or I<sup>2</sup>C digital interface.

An integrated memory management system with a 32-level first in, first out (FIFO) buffer can be used to store data to minimize host processor activity and lower overall system power consumption.

Low power modes enable intelligent motion-based power management with threshold sensing and active acceleration measurement at extremely low power dissipation.

The ADXL375-EP is supplied in a small, thin, 3 mm  $\times$  5 mm  $\times$ 1 mm, 14-terminal land grid array (LGA).

Additional application and technical information can be found in the ADXL375 data sheet.



### FUNCTIONAL BLOCK DIAGRAM

Figure 1.

#### Rev. 0

**Document Feedback** 

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2018 Analog Devices, Inc. All rights reserved. **Technical Support** www.analog.com

## TABLE OF CONTENTS

| Features                  | . 1 |
|---------------------------|-----|
| Enhanced Product Features | . 1 |
| Applications              | . 1 |
| General Description       | . 1 |
| Functional Block Diagram  | . 1 |
| Revision History          | . 2 |
| Specifications            | . 3 |
| Absolute Maximum Ratings  | . 4 |

| Thermal Resistance4                          |
|----------------------------------------------|
| ESD Caution4                                 |
| Pin Configuration and Function Descriptions5 |
| Typical Performance Characteristics          |
| Outline Dimensions7                          |
| Ordering Guide7                              |

### **REVISION HISTORY**

7/2018—Revision 0: Initial Version

### **SPECIFICATIONS**

 $T_A = 25^{\circ}$ C,  $V_S = 2.5$  V,  $V_{DD I/O} = 2.5$  V, acceleration = 0 g,  $C_S = 10 \mu$ F tantalum,  $C_{I/O} = 0.1 \mu$ F, and output data rate (ODR) = 800 Hz, unless otherwise noted.

#### Table 1.

| Parameter                                                             | Test Conditions/Comments | Min   | Typ <sup>1</sup> | Max   | Unit   |
|-----------------------------------------------------------------------|--------------------------|-------|------------------|-------|--------|
| SENSOR INPUT                                                          | Each axis                |       |                  |       |        |
| Measurement Range <sup>2</sup>                                        |                          | ±180  | ±200             |       | g      |
| Nonlinearity                                                          | Percentage of full scale |       | ±0.25            |       | %      |
| Cross-Axis Sensitivity <sup>3</sup>                                   |                          |       | ±2.5             |       | %      |
| SENSITIVITY                                                           | Each axis                |       |                  |       |        |
| Sensitivity at Xout, Yout, Zout <sup>2,4</sup>                        | ODR ≤ 800 Hz             | 18.4  | 20.5             | 22.6  | LSB/g  |
| Scale Factor at Xout, Yout, Zout <sup>2, 4</sup>                      | ODR ≤ 800 Hz             | 44    | 49               | 54    | mg/LSB |
| Sensitivity Change Due to Temperature                                 |                          |       | ±0.02            |       | %/°C   |
| 0 g OFFSET                                                            | Each axis                |       |                  |       |        |
| 0 g Output for Х <sub>оит</sub> , Ү <sub>оит</sub> , Z <sub>оит</sub> |                          | -6000 | ±400             | +6000 | mg     |
| 0 g Offset vs. Temperature                                            |                          |       | ±10              |       | mg∕°C  |
| NOISE                                                                 | X-, y-, and z-axes       |       | 5                |       | mg/√Hz |
| OUTPUT DATA RATE AND BANDWIDTH <sup>5</sup>                           | User selectable          |       |                  |       |        |
| Output Data Rate (ODR) <sup>4, 6</sup>                                |                          | 0.1   |                  | 3200  | Hz     |
| SELF-TEST <sup>7</sup>                                                |                          |       |                  |       |        |
| Output Change in Z-Axis                                               |                          |       | 6.4              |       | g      |
| POWER SUPPLY                                                          |                          |       |                  |       |        |
| Operating Voltage Range (Vs)                                          |                          | 2.0   | 2.5              | 3.6   | V      |
| Interface Voltage Range (VDD I/O)                                     |                          | 1.7   | 1.8              | Vs    | V      |
| Supply Current                                                        |                          |       |                  |       |        |
| Measurement Mode                                                      | ODR ≥ 100 Hz             |       | 145              |       | μA     |
|                                                                       | ODR ≤ 3 Hz               |       | 35               |       | μA     |
| Standby Mode                                                          |                          |       | 0.1              |       | μA     |
| Turn-On and Wake-Up Time <sup>8</sup>                                 | ODR = 3200 Hz            |       | 1.4              |       | ms     |
| TEMPERATURE                                                           |                          |       |                  |       |        |
| Operating Temperature Range                                           |                          | -55   |                  | +105  | °C     |
| WEIGHT                                                                |                          |       |                  |       |        |
| Device Weight                                                         |                          |       | 30               |       | mg     |

<sup>1</sup> Typical specifications are for at least 68% of the population of devices and are based on the worst case of mean  $\pm$  1  $\sigma$  distribution, except for sensitivity, which represents the target value.

 $^2$  Minimum and maximum specifications represent the worst case of mean ± 3  $\sigma$  distribution and are not guaranteed in production.

<sup>3</sup> Cross axis sensitivity is defined as coupling between any two axes.

<sup>4</sup> The output format for the 1600 Hz and 3200 Hz output data rates is different from the output format for the other output data rates. For more information, see the ADXL375 data sheet.

 $^{5}$  Bandwidth is the -3 dB frequency and is half the output data rate: bandwidth = ODR/2.

<sup>6</sup> Output data rates < 6.25 Hz exhibit additional offset shift with increased temperature.

<sup>7</sup> Self test change is defined as the output (g) when the SELF\_TEST bit = 1 (DATA\_FORMAT register, Address 0x31) minus the output (g) when the SELF\_TEST bit = 0. Due to device filtering, the output reaches its final value after  $4 \times \tau$  when enabling or disabling self test, where  $\tau = 1/(data rate)$ . For the self test to operate correctly, the part must be in normal power operation (LOW\_POWER bit = 0 in the BW\_RATE register, Address 0x2C).

<sup>8</sup> Turn on and wake-up times are determined by the user defined bandwidth. At a 100 Hz data rate, the turn on and wake-up times are each approximately 11.1 ms. For other data rates, the turn on and wake-up times are each approximately  $\tau + 1.1$  ms, where  $\tau = 1/(data rate)$ .

### **ABSOLUTE MAXIMUM RATINGS**

#### Table 2.

| Parameter                                            | Rating                                                           |
|------------------------------------------------------|------------------------------------------------------------------|
| Acceleration, Any Axis                               |                                                                  |
| Unpowered                                            | 10,000 g                                                         |
| Powered                                              | 10,000 g                                                         |
| Vs                                                   | –0.3 V to +3.9 V                                                 |
| V <sub>DD I/O</sub>                                  | –0.3 V to +3.9 V                                                 |
| Digital Pins                                         | -0.3 V to V <sub>DD VO</sub> + 0.3 V or 3.9 V, whichever is less |
| Output Short-Circuit Duration<br>(Any Pin to Ground) | Indefinite                                                       |
| Temperature Range                                    |                                                                  |
| Powered                                              | –55°C to +105°C                                                  |
| Storage                                              | –65°C to +150°C                                                  |

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

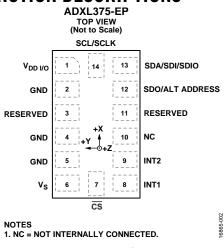
### THERMAL RESISTANCE

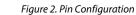
Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 $\theta_{JA}$  is the natural convection, junction to ambient thermal resistance measured in a one cubic foot sealed enclosure.  $\theta_{JC}$  is the junction to case thermal resistance.

#### Table 3. Package Characteristics

| Package Type         | θ」Α | οıc | Unit |  |  |
|----------------------|-----|-----|------|--|--|
| CC-14-1 <sup>1</sup> | 150 | 85  | °C/W |  |  |


<sup>1</sup> Thermal impedance simulated values are based on JEDEC 2S2P thermal test board. See JEDEC JESD-51.


#### **ESD CAUTION**



**ESD (electrostatic discharge) sensitive device.** Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS





#### **Table 4. Pin Function Descriptions**

| Pin No. | Mnemonic            | Description                                                                                                           |
|---------|---------------------|-----------------------------------------------------------------------------------------------------------------------|
| 1       | V <sub>DD I/O</sub> | Digital Interface Supply Voltage.                                                                                     |
| 2       | GND                 | Ground. This pin must be connected to ground.                                                                         |
| 3       | RESERVED            | Reserved. This pin must be connected to V <sub>S</sub> or left open.                                                  |
| 4       | GND                 | Ground. This pin must be connected to ground.                                                                         |
| 5       | GND                 | Ground. This pin must be connected to ground.                                                                         |
| 6       | Vs                  | Supply Voltage.                                                                                                       |
| 7       | CS                  | Chip Select.                                                                                                          |
| 8       | INT1                | Interrupt 1 Output.                                                                                                   |
| 9       | INT2                | Interrupt 2 Output.                                                                                                   |
| 10      | NC                  | Not Internally Connected.                                                                                             |
| 11      | RESERVED            | Reserved. This pin must be connected to ground or left open.                                                          |
| 12      | SDO/ALT ADDRESS     | SPI 4-Wire Serial Data Output (SDO)/I <sup>2</sup> C Alternate Address Select (ALT ADDRESS).                          |
| 13      | SDA/SDI/SDIO        | I <sup>2</sup> C Serial Data (SDA)/SPI 4-Wire Serial Data Input (SDI)/SPI 3-Wire Serial Data Input and Output (SDIO). |
| 14      | SCL/SCLK            | I <sup>2</sup> C Serial Communications Clock (SCL)/SPI Serial Communications Clock (SCLK).                            |

### ADXL375-EP

### **TYPICAL PERFORMANCE CHARACTERISTICS**

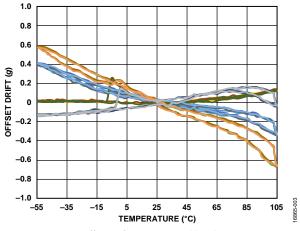



Figure 3. X-Axis Offset Drift, 15 Devices Soldered to PCB,  $V_S = 2.5 V$ 

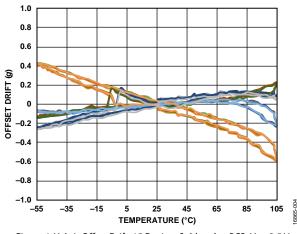
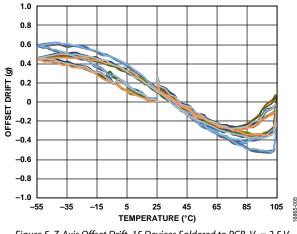
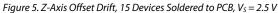





Figure 4. Y-Axis Offset Drift, 15 Devices Soldered to PCB,  $V_S = 2.5 V$ 





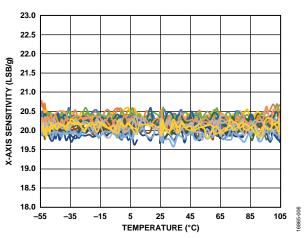



Figure 6. X-Axis Sensitivity vs. Temperature, 15 Devices Soldered to PCB, Vs = 2.5 V

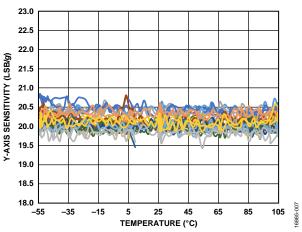



Figure 7. Y-Axis Sensitivity vs. Temperature, 15 Devices Soldered to PCB,  $V_{\rm S}$  = 2.5 V

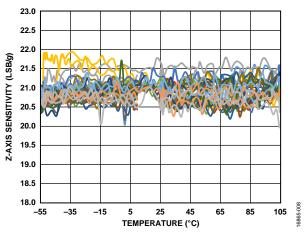



Figure 8. Z-Axis Sensitivity vs. Temperature, 15 Devices Soldered to PCB,  $V_{\rm S}$  = 2.5 V

### **OUTLINE DIMENSIONS**

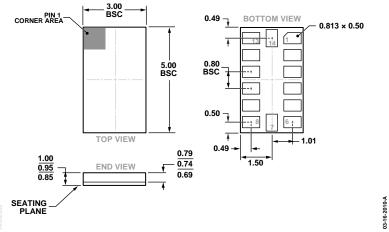



Figure 9. 14-Terminal Land Grid Array [LGA] (CC-14-1) Dimensions shown in millimeters

#### **ORDERING GUIDE**

| Model <sup>1</sup> | Temperature<br>Range | Measurement<br>Range ( <i>g</i> ) | Specified<br>Voltage (V) | Package Description               | Package<br>Option |
|--------------------|----------------------|-----------------------------------|--------------------------|-----------------------------------|-------------------|
| ADXL375SCCZ-EP     | -55°C to +105°C      | ±200                              | 2.5                      | 14-Terminal Land Grid Array [LGA] | CC-14-1           |
| ADXL375SCCZ-EP-RL7 | –55°C to +105°C      | ±200                              | 2.5                      | 14-Terminal Land Grid Array [LGA] | CC-14-1           |

 $^{1}$  Z = RoHS Compliant Part.

I<sup>2</sup>C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

©2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D16865-0-7/18(0)



Rev. 0 | Page 7 of 7